Ramsey Cardinals and the HNN Embedding Theorem

Simon Thomas

Rutgers University

May 15th 2014

The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

If G is a countable group, then G can be embedded into a 2-generator group K_G .

Notation

- ullet ${\cal G}$ denotes the Polish space of countably infinite groups.
- ullet \mathcal{G}_{fg} denotes the Polish space of finitely generated groups.

Theorem

There does not exist a Borel map $G \mapsto K_G$ from \mathcal{G} to \mathcal{G}_{fg} such that for all $G, H \in \mathcal{G}$,

- $G \hookrightarrow K_G$; and
- if $G \cong H$, then $K_G \cong K_H$.

Acknowledging the existence of large cardinals ...

Main Theorem (LC)

- Suppose that $G \mapsto K_G$ is any Borel map from \mathcal{G} to \mathcal{G}_{fg} such that $G \hookrightarrow K_G$ for all $G \in \mathcal{G}$.
- Then there exists an uncountable Borel family $\mathcal{F} \subseteq \mathcal{G}$ of pairwise isomorphic groups such that the groups $\{K_G \mid G \in \mathcal{F}\}$ are pairwise incomparable with respect to relative constructibility; i.e., if $G \neq H \in \mathcal{F}$, then $K_G \notin L[K_H]$ and $K_H \notin L[K_G]$.

Remarks

- (*LC*): There exists a Ramsey cardinal κ .
- In ZFC, we can find an uncountable Borel family $\mathcal F$ such that the groups $\{ K_G \mid G \in \mathcal F \}$ are pairwise incomparable with respect to embeddability.

Towards a proof of the Main Theorem ...

Question

What is known about the kernels of homomorphisms from complete analytic equivalence relations to countable Borel equivalence relations?

Answer (Kechris)

Not a lot!

Definition

- $\mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ is the Polish space of all injective maps $z : \mathbb{N} \to 2^{\mathbb{N}}$.
- E_{cntble} is the Borel equivalence relation on $Inj(\mathbb{N}, 2^{\mathbb{N}})$ defined by

$$z \in E_{cntble} z' \iff \{z(n) \mid n \in \mathbb{N}\} = \{z'(n) \mid n \in \mathbb{N}\}.$$

Homomorphisms have large kernels

Theorem

- Let E be a countable Borel equivalence relation on the standard Borel space X and suppose that $\theta : \mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to X$ is a Borel homomorphism from E_{cntble} to E.
- There exists $x \in X$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \text{range}(z)$ such that $\theta(z) = x$.

Corollary

If E is a countable Borel equivalence relation, then $E_{cntble} \nleq_B E$.

Remark

There is no known "classical proof" of the Theorem.

Countable Quasi-orders

Definition

The relation \leq on the Polish space X is a countable quasi-order if:

- (a) \leq is reflexive and transitive.
- (b) For all $x \in X$, the set $\{ y \in X \mid y \leq x \}$ is countable.

Some countable Borel quasi-orders

- The embeddability relation on \mathcal{G}_{fg} .
- The Turing reducibility relation \leq_T on $2^{\mathbb{N}}$.

A countable Σ_2^1 quasi-order (*LC*)

The relative constructibility relation \leq_c on $2^{\mathbb{N}}$ defined by

$$x \leq_c y \iff x \in L[y].$$

The Main Lemma

Main Lemma

Suppose that X is a Polish space and that $\theta: \mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to X$ is any Borel map. Then at least one of the following must hold:

- (a) There exists $x \in X$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \text{range}(z)$ such that $\theta(z) = x$.
- (b) For each countable Borel quasi-order \leq on X, there exists a perfect subset $P \subseteq \mathsf{Inj}(\mathbb{N},2^{\mathbb{N}})$ such that
 - (i) $y E_{cntble} z$ for all $y, z \in P$; and
 - (ii) $\theta(y)$, $\theta(z)$ are incomparable with respect to \leq for all $y \neq z \in P$.

Moreover, if (LC) holds, then the conclusion also holds with respect to the quasi-order \leq_c of relative constructibility.

We shall also make use of ...

Theorem (B.H. Neumann 1937)

There exists a Borel family $\{H_r \mid r \in 2^{\mathbb{N}}\} \subseteq \mathcal{G}$ of pairwise nonisomorphic 2-generator groups.

Proof.

- For each strictly increasing sequence $\mathbf{d} = \langle d_n \mid n \in \omega \rangle$ of odd integers with $d_0 \geq 5$, let $X_{\mathbf{d}}^n = \{x_1^n, x_2^n, \dots, x_{d_n}^n\}$.
- And let $\Gamma_{\mathbf{d}}$ be the subgroup of $\prod_{n \in \omega} \operatorname{Alt}(X_{\mathbf{d}}^n)$ generated by

$$\alpha_{\mathbf{d}} = \prod_{n \in \omega} (x_1^n \ x_2^n \ x_3^n \ \cdots \ x_{d_n}^n) \quad \text{and} \quad \beta_{\mathbf{d}} = \prod_{n \in \omega} (x_1^n \ x_2^n \ x_3^n).$$

• Then $\Gamma_{\mathbf{d}}$ has a normal subgroup isomorphic to $\mathrm{Alt}(m)$ iff $m = d_n$ for some $n \in \mathbb{N}$.

The Proof of the Main Theorem

- Suppose that $\varphi : \mathcal{G} \to \mathcal{G}_{fg}$ is a Borel map such that $G \hookrightarrow \varphi(G)$ for all $G \in \mathcal{G}$.
- Let $\{H_r \mid r \in 2^{\mathbb{N}}\} \subseteq \mathcal{G}$ be a Borel family of pairwise nonisomorphic 2-generator groups.
- Let $\psi : \mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to \mathcal{G}$ be the injective Borel map defined by

$$\psi(z) = H_{z(0)} \oplus H_{z(1)} \oplus \cdots \oplus H_{z(n)} \oplus \cdots$$

and consider $\theta = \varphi \circ \psi : \mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to \mathcal{G}_{\mathsf{fg}}$.

- First suppose that there exists a group $G \in \mathcal{G}_{fg}$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ such that $r \in \text{range}(z)$ and $\theta(z) = G$.
- Then H_r embeds into G for all $r \in 2^{\mathbb{N}}$, which is impossible since G has only countably many 2-generator subgroups!

The Proof of the Main Theorem

- Let ≤ be either the embeddability relation or the relative constructibility relation on G_{fq}.
- Then there exists a perfect subset $P \subseteq \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ such that
 - (i) $y E_{cntble} z$ for all $y, z \in P$; and
 - (ii) $\theta(y)$, $\theta(z)$ are incomparable with respect to \leq for all $y \neq z \in P$.
- Hence $\mathcal{F}=\psi(P)\subseteq\mathcal{G}$ is an uncountable Borel family of pairwise isomorphic groups such that the groups $\{\varphi(G)\mid G\in\mathcal{F}\}$ are pairwise incomparable with respect to \preceq .
- This completes the proof of the Main Theorem.

Towards a proof of the Main Lemma ...

Notation

- From now on, let V be the actual set-theoretic universe.
- Let \mathbb{P} be a forcing notion.

Definition

• The relation R on the Polish space X is Σ_n^1 if $R(\bar{v})$ has the form

$$(\exists x_1 \in X_1)(\forall x_2 \in X_2) \cdots B(x_1, x_2, \cdots, \bar{v}),$$

where X_1, \dots, X_n are Polish spaces and $B(\bar{x}, \bar{v})$ is a Borel relation.

- In this case, $R^{V^{\mathbb{P}}}$ denotes the relation obtained by applying the definition of R within the generic extension $V^{\mathbb{P}}$.
- R is absolute for $V^{\mathbb{P}}$ if $R^{V^{\mathbb{P}}} \cap V = R$.

Shoenfield Absoluteness

Theorem (Shoenfield)

If $R \in V$ is a Σ_2^1 relation, then R is absolute for every generic extension $V^{\mathbb{P}}$.

An Application

If \leq is a countable Borel quasi-order on the Polish space X, then $\leq^{V^{\mathbb{P}}}$ is a countable Borel quasi-order on $X^{V^{\mathbb{P}}}$.

Proof.

Let Perf(X) be the Polish space of nonempty perfect subsets of X. Then \leq is countable if and only if

$$(\forall x \in X) (\forall P \in Perf(X)) (\exists y \in X) [y \in P \land y \not\preceq x].$$

Martin-Solovay Absoluteness

Theorem (Martin-Solovay)

Let $\kappa \in V$ be a Ramsey cardinal. If $R \in V$ is a Σ_3^1 relation and $|\mathbb{P}| < \kappa$, then R is absolute for $V^{\mathbb{P}}$.

An Application (LC)

 \leq_c is a countable Σ_2^1 quasi-order on $2^{\mathbb{N}}$.

Proof.

If $\mathbb P$ is the poset of finite functions $p:\omega\to\omega_1$, then for all $x\in 2^\mathbb N\cap V$,

$$V^{\mathbb{P}} \vDash (\exists f \in (2^{\mathbb{N}})^{\mathbb{N}})(\forall z \in 2^{\mathbb{N}})[\ z \in L[x] \Longrightarrow (\exists n)\ f(n) = z\].$$

By Martin-Solovay, this $\Sigma_3^1(x)$ statement also holds in V.

Virtual equivalence classes

Definition (Kanovei après Hjorth après Harrington)

Let E be a Borel equivalence relation on the Polish space X and let \mathbb{P} be a forcing notion. Then a \mathbb{P} -name τ is a virtual E-class if:

- ullet $oldsymbol{ au} \in X^{V^{\mathbb{P}}}$
- ullet $\Vdash_{\mathbb{P} imes\mathbb{P}}$ $oldsymbol{ au}$ left $oldsymbol{E}^{V^{\mathbb{P} imes\mathbb{P}}}$ $oldsymbol{ au}$ right

Here $\tau_{\textit{left}}$, $\tau_{\textit{right}}$ are the $(\mathbb{P} \times \mathbb{P})$ -names such that if $G \times H$ is $(\mathbb{P} \times \mathbb{P})$ -generic, then $\tau_{\textit{left}}[G \times H] = \tau[G]$ and $\tau_{\textit{right}}[G \times H] = \tau[H]$.

Virtual equivalence classes

Example

- Let $E = E_{cntble}$ and let \mathbb{P} consist of all finite injective partial functions $p : \mathbb{N} \to 2^{\mathbb{N}}$.
- If G is \mathbb{P} -generic, then $g = \bigcup G$ is a bijection between \mathbb{N} and $2^{\mathbb{N}} \cap V$.
- Hence if τ is the canonical \mathbb{P} -name such that $\tau[G] = g$, then τ is a virtual E_{cntble} -class.

A reminder ...

Main Lemma

Suppose that X is a Polish space and that $\theta: \mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to X$ is any Borel map. Then at least one of the following must hold:

- (a) There exists $x \in X$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \text{range}(z)$ such that $\theta(z) = x$.
- (b) For each countable Borel quasi-order \preccurlyeq on X, there exists a perfect subset $P \subseteq \mathsf{Inj}(\mathbb{N},2^\mathbb{N})$ such that
 - (i) $y E_{cntble} z$ for all $y, z \in P$; and
 - (ii) $\theta(y)$, $\theta(z)$ are incomparable with respect to \leq for all $y \neq z \in P$.

Moreover, if (LC) holds, then the conclusion also holds with respect to the quasi-order \leq_c of relative constructibility.

Towards a proof of the Main Lemma ...

- Let $\theta : \mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to X$ be any Borel map.
- Let \leq be either a countable Borel quasi-order on X or else the relative constructibility relation \leq_c .

Notation

- $x \perp y \iff x, y \text{ are } \leq \text{-incomparable.}$
- $x \mid\mid y \iff x, y \text{ are } \leq \text{-comparable.}$
- Let $\mathbb P$ consist of all finite injective partial functions $p:\mathbb N\to 2^\mathbb N$ and let au be the corresponding virtual E_{cntble} -class.

The Fundamental Dichotomy

Are $\theta(\tau_{left})$, $\theta(\tau_{right})$ comparable with respect to $\preceq^{V^{\mathbb{P} \times \mathbb{P}}}$?

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{left}}) || \theta(\tau_{\text{right}}).$

Claim

There exists $p_1 \leq p_0$ such that $\langle p_1, p_1 \rangle \Vdash \theta(\tau_{left}) = \theta(\tau_{right})$.

Proof.

- Suppose not and let \mathbb{Q} collapse $\mathcal{P}(\mathbb{P} \times \mathbb{P})$ to a countable set.
- Working in $V^{\mathbb{Q}}$, there exists a perfect subset $P \subseteq \operatorname{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ such that $\theta(P)$ is an uncountable Borel set of pairwise \preceq -comparable elements.
- Let $Z \subseteq \theta(P)$ be a perfect subset.
- By Kuratowski-Ulam, both $A = \{ (x, y) \in Z \times Z \mid x \leq y \}$ and $B = \{ (x, y) \in Z \times Z \mid y \leq x \}$ are meager subsets of $Z \times Z$.
- Since $Z \times Z = A \cup B$, this contradicts the Baire Category Theorem.

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{left}}) || \theta(\tau_{\text{right}}).$

Working in V and assuming that X = [0, 1], we can inductively define conditions

$$p_1 \ge p_2 \ge p_3 \ge \cdots \ge p_n \ge \cdots$$

and closed intervals $I_n \subseteq [0, 1]$ with rational endpoints

$$I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$$

such that the following conditions hold:

- $|I_n| = 2^{-(n-1)}$
- $p_n \Vdash \theta(\tau) \in I_n$.

Still working in V, let

$$\bigcap_{n>1}I_n=\{x\}.$$

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{left}}) || \theta(\tau_{\text{right}}).$

Claim

$$p_1 \Vdash \theta(\tau) = x$$
.

Proof.

- Otherwise, there exists $q \le p_1$ and $n \ge 1$ such that $q \Vdash \theta(\tau) \notin I_n$.
- But then $\langle q, p_n \rangle \leq \langle p_1, p_1 \rangle$ satisfies

$$\langle q, p_n \rangle \Vdash \theta(\tau_{\text{left}}) \notin I_n \text{ and } \theta(\tau_{\text{right}}) \in I_n$$

which is a contradiction.

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\mathsf{left}}) || \theta(\tau_{\mathsf{right}}).$

- Let $G \subseteq \mathbb{P}$ be V-generic with $p_1 \in G$.
- Then $V[G] \models \theta(\tau[G]) = x$.
- Hence for each $r \in 2^{\mathbb{N}} \cap V$,

$$V[G] \vDash (\exists z \in Inj(\mathbb{N}, 2^{\mathbb{N}})) (\exists n \in \mathbb{N}) [z(n) = r \text{ and } \theta(z) = x].$$

- By Shoenfield Absoluteness, this Σ_1^1 property of the reals $r, x \in 2^{\mathbb{N}} \cap V$ must also hold in V.
- Thus, in V, for all $r \in 2^{\mathbb{N}}$, there exists $z \in \operatorname{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \operatorname{range}(z)$ such that $\theta(z) = x$.

Case 2: $(\forall p \in \mathbb{P}) \langle p, p \rangle \not \vdash \theta(\tau_{\mathsf{left}}) \mid\mid \theta(\tau_{\mathsf{right}})$.

- Once again, let \mathbb{Q} collapse $\mathcal{P}(\mathbb{P} \times \mathbb{P})$ to a countable set.
- Then $V^{\mathbb{Q}}$ satisfies the following statement:

$$(\exists P \in \mathsf{Perf}(\mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}}))) (\forall x) (\forall y) \\ [(x, y \in P \land x \neq y) \Longrightarrow (x \, \mathsf{E}_{\mathit{cntble}} \, y \land \theta(x) \perp \theta(y))].$$

- Applying either Shoenfield or Martin-Solovay Absoluteness, this statement also holds in V.
- This completes the proof of the Main Lemma.

An open problem

Definition

 \mathcal{G}_{fg}^{*} is the space of f.g. groups with underlying set \mathbb{N} .

Theorem

There does not exist a Borel map $\psi: \mathcal{G}_{\mathsf{fg}}^* \to \mathbb{N}^{<\mathbb{N}}$ such that

- $\psi(G)$ generates G; and
- if $G \cong H$, then $Cay(G, \psi(G)) \cong Cay(H, \psi(H))$.

Conjecture

- Suppose that $\psi: \mathcal{G}^*_{\mathit{fg}} \to \mathbb{N}^{<\mathbb{N}}$ is any Borel map such that $\psi(G)$ generates G.
- Then what ???

The End