Vaught's conjecture: classifying countable models of weakly quasi-o-minimal theories

Predrag Tanović ¹ (joint work with Slavko Moconja)

Mathematical Institute SANU, Belgrade

T-complete theory in a countable language with infinite models. $I(T, \aleph_0)$ -the number of countable models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Vaught's conjecture

 $I(\mathcal{T},\aleph_0)\in\{1,3,4,...\}\cup\{\aleph_0,2^{\aleph_0}\} \ \, (\text{independently of CH}).$

T-complete theory in a countable language with infinite models. $I(T, \aleph_0)$ -the number of countable models

Vaught's conjecture

 $I(\mathcal{T},\aleph_0)\in\{1,3,4,...\}\cup\{\aleph_0,2^{\aleph_0}\} \ \, (\text{independently of CH}).$

Theorem (Steel 1976)

Every consistent (with the theory of colored trees) $L_{\omega_1\omega}$ -sentence has either countably many or perfectly many countable models.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Classification problem

Assuming $I(T,\aleph_0) < 2^{\aleph_0}$ find a reasonable system of invariants that describes countable models up to \cong .

 $I(T, \aleph_0) = 2^{\aleph_0}$ if

- *T* is a theory of linearly ordered structure with built-in Skolem functions (Shelah 1978)
- *T* has a definable infinite, discrete linear order (by Steel's methods,

or T. Vaught's conjecture for theories of discretely ordered structures. https://arxiv.org/pdf/2212.13605.pdf

Theorem (Mayer 1988)

If T is o-minimal then $I(T, \aleph_0) \in \{3^m \cdot 6^n \mid m, n \in \omega\} \cup \{2^{\aleph_0}\}.$

- Strongly minimal T (Marsh 1966)
- Uncountably categorical T (Morley 1967)
- Theories of colored orders (Rubin 1974)
- Theories of one unary operation (Miller 1981)
- Stable theories with Skolem functions (Lascar 1981)
- \aleph_0 -stable T (Shelah 1984)
- o-minimal T (Mayer 1988)
- Weakly minimal T (Saffe, Buechler, Newelski 1990)
- Superstable of finite U-rank T (Buechler 2008)
- Varieties (Hart, Starchenko, Valeriote 1994)
- Binary, weakly quasi-o-minimal T (Moconja, T. 2020)
- Weakly o-minimal of finite convexity rank (Kulpeshov 2020)

"Reasonable" open cases of VC:

 T binary (every formula is T-equivalent to a boolean combination of formulas in at most 2 free variables).
 Subcases: T binary stable; T binary, dp-minimal, ordered;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- T stable, one-based;
- T has Skolem functions;
- T weakly quasi-o-minimal.

Definition

Let $T = Th(\mathfrak{C}, <,).$

- *T* is o-minimal (with respect to <) if every definable *D* ⊂ 𝔅 is a boolean combination of intervals;
- *T* is weakly o-minimal (with respect to <) if every definable
 D ⊂ 𝔅 has finitely many convex components;
- *T* is quasi o-minimal (with respect to <) if every definable
 D ⊂ 𝔅 is a boolean combination of unary 0-definable sets and intervals (example (ℤ, +, <, 0));
- *T* is weakly quasi o-minimal (with respect to <) if every definable *D* ⊂ 𝔅 is a boolean combination of unary 0-definable sets and convex sets.

Theorem

Vaught's conjecture holds for weakly quasi-o-minimal satisfying:

(R) Every relatively definable equivalence relation on the locus of a complete 1-type is relatively 0-definable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The following wqom theories satisfy (R):

- binary;
- quasi o-minimal;
- finite convexity rank and $I(T, \aleph_0) < 2^{\aleph_0}$;
- rosy and $I(T, \aleph_0) < 2^{\aleph_0}$.

The main result follows from:

Theorem

Let T be weakly quasi-o-minimal.

• If $I(\aleph_0, T) < 2^{\aleph_0}$ and T satisfies (R), then T is 1-trivial.

• If T is 1-trivial and $I(\aleph_0, T) < 2^{\aleph_0}$ then T is binary.

Moconja, T. *Does weak quasi o-minimality behave better than weak o-minimality*? https://arxiv.org/pdf/1811.05228.pdf

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Moconja, T. *Does weak quasi o-minimality behave better than weak o-minimality?* https://arxiv.org/pdf/1811.05228.pdf

Definition

 $p \in S_n(A)$ is a **weakly o-minimal type** if there is a relatively A-definable linear order $<_p$ on $p(\mathfrak{C})$ such that every relativrly definable subset of $p(\mathfrak{C})$ has finitely many convex components $\mathbf{p} = (p, <_p)$ is called a **weakly o-minimal pair** over A.

For *E* a convex equivalence relation on (X, <) define:

$$x <_E y$$
 iff $[x]_E < [y]_E \lor ([x]_E = [y]_E \land y < x)$

For $\vec{E} = (E_1, E_2, ..., E_n)$ decreasing convex equivalences, define $<_{\vec{E}}$.

Theorem

Let $\mathbf{p} = (\mathbf{p}, <)$ be a weakly o-minimal pair over A.

- Any relatively A-definable linear order on p(𝔅), <_p, is of the form <_p=<_E for some A-definable E
 [−];
 (p, <_p) is a weakly o-minimal pair.
- *T* is weakly quasi o-minimal with respect to some (equivalently all) 0-definable order iff every *p* ∈ *S*₁(*T*) is a weakly o-minimal type.
- (Weak monotonicity theorem) If (D, <_D) is a A-definable linear order and f : p(𝔅) → D is relatively A-definable, then f is weakly monotone, i.e f : (p(𝔅), <_Ē) → D is increasing for some definable Ē.

Let p = (p, <_p) be a weakly o-minimal pair over A. Then p has exactly two A-invariant (equivalently non-forking) globalizations: the left one

 $\mathbf{p}_{l} = \{\phi(x) \mid \phi(\mathfrak{C}) \cap p(\mathfrak{C}) \text{ is left-eventual in } p(\mathfrak{C})\}$ and the right one \mathbf{p}_{r} .

- $a \models p$ is right p-generic over B, $B \triangleleft^{p} a$, if $a \models p_{r} \upharpoonright AB$.
- $B \lhd^{\mathbf{p}} a_1 <_{\mathbf{p}} a_2$ implies $B \lhd^{\mathbf{p}} a_2$.
- Relatively A-definable equivalence relations on the locus of a wom type p(𝔅) are convex and ⊆-comparable.
- x↓y(A) is an equivalence relation on realizations of wom-types over A.
- \measuredangle^w and \measuredangle^f are equivalence relations on the wom-types over A.

Shifts are redefined quasi-successors (generalized successor) from:

Alibek, Baizhanov, Zambarnaya. *Discrete order on a definable set and the number of models* (2014)

Motivated by: $I(T, \aleph_0) = 2^{\aleph_0}$ if T has a definable infinite, discrete linear order:

Conjecture

If T has a definable shift then $I(T, \aleph_0) = 2^{\aleph_0}$.

Let (D, <) be a linear order.

- A convex set S ⊂ D is a semi-interval if a = min S exists; we write S_a instead of S.
- S = (S_a | a ∈ D) is a monotone family of semi-intervals if a < b implies sup S_a ≤ sup S_b.

Let (D, <) be a A-definable linear order and let $S = (S_a \mid a \in D)$ be a monotone, A-definable family of semi-intervals of (D, <).

- Recursively define $S_x^1 = S_x$, $S_x^{n+1} = \bigcup_{y \in S_x^n} S_y$.
- $S_x^1 \subseteq \S_x^2 \subseteq S_x^3 \subseteq ...$ are semi-intervals with minimum x

(日)

• Say that S_a is a \mathcal{S} -shift if $S_a^1 \subset S_a^2 \subset S_a^3 \subset \dots$

Theorem

If T is weakly quasi-o-minimal with a definable shift (i.e. there is a monotone family of semi-intervals of $(\mathfrak{C}, <)$ that contains a shift) then $I(T, \aleph_0) = 2^{\aleph_0}$.

Corollary

If T is weakly quasi-o-minimal with $I(T,\aleph_0) < 2^{\aleph_0}$ and $a, b \in \mathfrak{C}$ then

 $a \perp b (dcl^{eq}(aA) \cap dcl^{eq}(bA))$

trivial (stable) theory $\,\approx\,$ every pairwise independent set is independent

Definition

Let $\mathfrak{p} \in S_n(\mathfrak{C})$ be A-invariant and $p = \mathfrak{p} \upharpoonright A$.

(a) \mathfrak{p} is **trivial over** A if whenever $I = (a_i \mid i \in \omega)$ is a sequence of realizations of p such that $(a_i, a_j) \models \mathfrak{p}^2 \upharpoonright A$ for all $i < j \in \omega$, then I is Morley over A.

(b) \mathfrak{p} is order-trivial over A if whenever $I = (a_i \mid i \in \omega)$ is a sequence of realizations of p such that $(a_i, a_{i+1}) \models \mathfrak{p}^2 \upharpoonright A$, then I is Morley over A.

Question

If \mathfrak{p} is order-trivial over A, must there exist a definable partial order over some $B \supset A$ such that Morley sequences in \mathfrak{p} over B are strictly increasing?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Fact

For a weakly o-minimal pair \mathbf{p} over A tfae:

- \mathbf{p}_r is trivial over A;
- \mathbf{p}_r is order-trivial over A;
- \mathbf{p}_l is trivial over A;
- $-\mathbf{p}_{l}$ is order-trivial over A.

In that case, we say p is trivial.

Let $\mathbf{p} = (\mathbf{p}, <_{\mathbf{p}})$ and $\mathbf{q} = (\mathbf{q}, <_{\mathbf{q}})$ be wom pairs over A.

• Define: **p** and **q** are **directly non-orthogonal**, $\delta(\mathbf{p}, \mathbf{q})$, if for all $a \models p$ and $b \models q$:

a is left **p**-generic over *b* iff *b* is right **q**-generic over *a*.

- δ is an equivalence relation with 2 classes on each ∠^w-class of wom pairs over A.
- Fix one δ -class \mathfrak{F} ; then $\lhd^{\mathfrak{F}}$ is a well defined strict ordering ... A pairwise independent set is one that is totally ordered by $\lhd^{\mathfrak{F}}$.

Proposition

- Triviality is preserved under \measuredangle^w of wom types.
- Pairwise independence implies independence for realizations of trivial ⊥^w types over A:
 if a₀ ⊲^F a₁ ⊲^F a₂ ⊲^F ..., then ā_{<n} ⊲^F a_n

Theorem

Assume $I(T, \aleph_0) < 2^{\aleph_0}$. Let A be finite and let $p \in S_n(A)$ be a trivial weakly o-minimal type.

- p is convex: there is an A-definable (D, <) with $p(\mathfrak{C})$ a convex subset of D.
- *p* is simple: *x*↓*y*(*A*) is a relatively *A*-definable equivalence relation on *p*(𝔅)

A wqom theory is 1-trivial if every $p \in S_1(A)$ is trivial for all $A \subset \mathfrak{C}^{eq}$.

Proposition

If $I(\aleph_0, T) < 2^{\aleph_0}$ and T satisfies (R), then T is 1-trivial.

The main result follows from:

Theorem

If T is 1-trivial and $I(\aleph_0, T) < 2^{\aleph_0}$ then T is binary. In particular Vaught's conjecture holds for 1-trivial theories.

Theorem (Moconja, T. 2020)

T-countable, binary, weakly quasi-o-minimal theory.

- $I(\aleph_0, T) = 2^{\aleph_0}$ iff at least one of the following holds:
 - T is not small;
 - **(D)** there is a non-convex type $p \in S_1(T)$;
 - If there is a non-simple type $p \in S_1(T)$;
 - there are infinitely many ∠^w-classes of non-isolated types in S₁(T);
 - Solution there is a non-isolated forking extension of some $p \in S_1(T)$ over an 1-element domain.
- I(ℵ₀, T) = ℵ₀ iff none of the above holds and there are infinitely many ∠^f-classes of non-isolated types in S₁(T);
- If none of the above holds, then:

$$I(\aleph_0, T) = \prod_{i \in w_T \smallsetminus u} (|\alpha_i^{\mathcal{F}}| + 2) \cdot \prod_{j \in u} (|\alpha_j^{\mathcal{F}}|^2 + 3|\alpha_j^{\mathcal{F}}| + 2)$$

THANK YOU!!!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ