Valued difference fields

Gönenç Onay

Abstract

Let (K, v) be a valued field with a distinguished automorphism σ which preserves the valuation ring \mathcal{O}_K , hence inducing automorphisms: σ_v on the ordered value group of (K, v) and $\bar{\sigma}$ on the residue field of (K, v). In [1], S. Durhan (formerly S. Azgın) considered the case where σ_v is contractive (: $\sigma_v(\gamma) > n\gamma \quad \forall \gamma > 0$ and $\forall n \in \mathbb{N}$); in [3], K. Pal considered the case where σ_v is multiplicative (: $\sigma_v : \gamma \mapsto \rho \gamma$, for some $\rho > 0$ in some real closed field) while my thesis (cf. [2]) involves study of σ -linear equations (i.e. equations of the form $\sum_i a_i \sigma^i(x) = b$), where σ_v is auto-increasing (: $\sigma_v(\gamma) > \gamma$ for $\gamma > 0$).

In this talk, after recalling these results, I will present some new ones on the way of Ax-Kochen and Ershov type theorems which permit one to recognise the first order theory of the valued difference field (K, v, σ) by those of its value group and residue field with no assumption on σ_v while keeping already present hypotheses in above works on residue field. This is an ongoing work joint with Salih Durhan.

References

- [1] S. Azgin. Valued fields with contractive automorphism and Kaplansky fields. *Journal of Algebra* **324**(10), 2757–2785 (2010).
- [2] G. Onay. "Modules valués: en vue d'applications à la théorie des corps valués de caractéristique positive". Thése de doctorat, Université Paris VII, France (2011).
- [3] K. Pal. Multiplicative valued difference fields. *J. Symbolic Logic* 77, 545–579 (2012).