Iterative ∂-varieties via group scheme actions

Piotr Kowalski (joint work with Anand Pillay)

Instytut Matematyczny
Uniwersytetu Wrocławskiego

November 16, 2007
Iterative C-derivations

$C \subseteq K$ is a field extension.

Definition of iterative (Hasse-Schmidt) C-derivations

$\partial = (\partial_n)_{n \in \mathbb{N}}$ is an iterative C-derivation if for each $n, m \in \mathbb{N}$:

1. $\partial_n : K \to K$ is additive and $\partial_n(xy) = \sum_{i+j=n} \partial_i(x)\partial_j(y)$,
2. $\partial_n|_C = 0$,
3. $\partial_0 = \text{id}$,
4. $\partial_m \circ \partial_n = \binom{n+m}{m} \partial_{n+m}$ (iterativity).

- Let $\partial : K \to K[X]$, $\partial(x) = \sum \partial_n(x)X^n$. Then 1 (with 2) is equivalent to ∂ being a ring homomorphism (C-algebra map).
- 3 is equivalent to ∂ being a section of $K[X] \to K$.

Iterative ∂-varieties via group scheme actions
Iterative C-derivations

$C \subseteq K$ is a field extension.

Definition of iterative (Hasse-Schmidt) C-derivations

$\partial = (\partial_n)_{n \in \mathbb{N}}$ is an **iterative C-derivation** if for each $n, m \in \mathbb{N}$:

1. $\partial_n : K \rightarrow K$ is additive and $\partial_n(xy) = \sum_{i+j=n} \partial_i(x)\partial_j(y)$,
2. $\partial_n|_C = 0$,
3. $\partial_0 = \text{id}$,
4. $\partial_m \circ \partial_n = \binom{n+m}{m} \partial_{n+m}$ (**iterativity**).

- Let $\partial : K \rightarrow K[\!\![X]\!\!]$, $\partial(x) = \sum \partial_n(x)X^n$. Then 1 (with 2) is equivalent to ∂ being a ring homomorphism (C-algebra map).
- 3 is equivalent to ∂ being a section of $K[\!\![X]\!\!] \rightarrow K$.
\(C \subseteq K \) is a field extension.

Definition of iterative (Hasse-Schmidt) \(C \)-derivations

\[\partial = (\partial_n)_{n \in \mathbb{N}} \] is an iterative \(C \)-derivation if for each \(n, m \in \mathbb{N} \):

1. \(\partial_n : K \to K \) is additive and \(\partial_n(xy) = \sum_{i+j=n} \partial_i(x)\partial_j(y) \),
2. \(\partial_n|_{C} = 0 \),
3. \(\partial_0 = \text{id} \),
4. \(\partial_m \circ \partial_n = \binom{n+m}{m} \partial_{n+m} \) (iterativity).

- Let \(\partial : K \to K[[X]] \), \(\partial(x) = \sum \partial_n(x)X^n \). Then 1 (with 2) is equivalent to \(\partial \) being a ring homomorphism (\(C \)-algebra map).
- 3 is equivalent to \(\partial \) being a section of \(K[[X]] \to K \).
Iterative \mathcal{C}-derivations

$\mathcal{C} \subseteq K$ is a field extension.

Definition of iterative (Hasse-Schmidt) \mathcal{C}-derivations

$\partial = (\partial_n)_{n \in \mathbb{N}}$ is an **iterative \mathcal{C}-derivation** if for each $n, m \in \mathbb{N}$:

1. $\partial_n : K \to K$ is additive and $\partial_n(xy) = \sum_{i+j=n} \partial_i(x)\partial_j(y)$,
2. $\partial_n|_{\mathcal{C}} = 0$,
3. $\partial_0 = \text{id}$,
4. $\partial_m \circ \partial_n = \binom{n+m}{m} \partial_{n+m}$ (**iterativity**).

Let $\partial : K \to K[X]$, $\partial(x) = \sum \partial_n(x)X^n$. Then 1 (with 2) is equivalent to ∂ being a ring homomorphism (\mathcal{C}-algebra map).

3 is equivalent to ∂ being a section of $K[X] \to K$.
The iterativity condition

Let \(c_K : K[[X]] \to K[[X_1, X_2]], c_K(F) = F(X_1 + X_2) \).

Since

\[
c\left(\sum_n a_n X^n \right) = \sum_{i,j} \binom{i+j}{i} a_{i+j} X_1^i X_2^j,
\]

\(\partial \) is iterative iff the following diagram is commutative:

\[
\begin{array}{ccc}
K & \xrightarrow{\partial} & K[[X]] \\
\downarrow{\partial} & & \downarrow{c_K} \\
K[[X]] & \xrightarrow{\partial^*} & K[[X_1, X_2]],
\end{array}
\]

where \(\partial^*(\sum a_n X^n) = \sum \partial_j(a_i) X_1^i X_2^j \).
The iterativity condition

Let \(c_K : K[[X]] \to K[[X_1, X_2]] \), \(c_K(F) = F(X_1 + X_2) \).

Since
\[
c(\sum_{n} a_n X^n) = \sum_{i,j} \binom{i+j}{i} a_{i+j} X_1^i X_2^j,
\]
\(\partial \) is iterative iff the following diagram is commutative:

\[
\begin{array}{ccc}
K & \xrightarrow{\partial} & K[[X]] \\
\downarrow{\partial} & & \downarrow{c_K} \\
K[[X]] & \xrightarrow{\partial^*} & K[[X_1, X_2]],
\end{array}
\]

where \(\partial^*(\sum a_n X^n) = \sum \partial_j(a_i) X_1^i X_2^j \).
Formal group and complete Hopf algebra

- Consider \(c : C[[X]] \to C[[X_1, X_2]], c(F) = F(X_1 + X_2). \)
- Since \(C[[X_1, X_2]] \cong C[[X]] \widehat{\otimes}_C C[[X]] \), the following diagram is commutative:

\[
\begin{array}{ccc}
C[[X]] & \xrightarrow{c} & C[[X]] \widehat{\otimes}_C C[[X]] \\
\downarrow c & & \downarrow \text{id} \widehat{\otimes} c \\
C[[X]] \widehat{\otimes}_C C[[X]] & \xrightarrow{c \widehat{\otimes} \text{id}} & C[[X]] \widehat{\otimes}_C C[[X]] \widehat{\otimes}_C C[[X]]
\end{array}
\]

- This diagram and two more things mean that \(C[[X]] \) becomes a complete Hopf algebra (a co-group object in the category of complete \(C \)-algebras) corresponding to the formal group \(\hat{G}_a \).
Consider \(c : C[[X]] \to C[[X_1, X_2]], c(F) = F(X_1 + X_2) \).

Since \(C[[X_1, X_2]] \cong C[[X]] \hat{\otimes}_C C[[X]] \), the following diagram is commutative:

\[
\begin{array}{ccc}
C[[X]] & \xrightarrow{c} & C[[X]] \hat{\otimes}_C C[[X]] \\
\downarrow{c} & & \downarrow{id \hat{\otimes} c} \\
C[[X]] \hat{\otimes}_C C[[X]] & \xrightarrow{c \hat{\otimes} id} & C[[X]] \hat{\otimes}_C C[[X]] \hat{\otimes}_C C[[X]]
\end{array}
\]

This diagram and two more things mean that \(C[[X]] \) becomes a complete Hopf algebra (a co-group object in the category of complete \(C \)-algebras) corresponding to the formal group \(\hat{G}_a \).
Consider $c : C[X] \to C[X_1, X_2], c(F) = F(X_1 + X_2)$.

Since $C[X_1, X_2] \cong C[X] \widehat{\otimes}_C C[X]$, the following diagram is commutative:

$$
\begin{array}{ccc}
C[X] & \xrightarrow{c} & C[X] \widehat{\otimes}_C C[X] \\
\downarrow{c} & & \downarrow{id \widehat{\otimes} c} \\
C[X] \widehat{\otimes}_C C[X] & \xrightarrow{c \widehat{\otimes} id} & C[X] \widehat{\otimes}_C C[X] \widehat{\otimes}_C C[X]
\end{array}
$$

This diagram and two more things mean that $C[X]$ becomes a complete Hopf algebra (a co-group object in the category of complete C-algebras) corresponding to the formal group \hat{G}_a.
Complete Hopf algebra co-action

- Since $K[X] \cong K \widehat{\otimes}_C C[X]$, ∂ is an iterative C-derivation iff the following diagram is commutative:

\[
\begin{array}{ccc}
K & \xrightarrow{\partial} & K \widehat{\otimes}_C C[X] \\
\downarrow & & \downarrow \text{id} \otimes c \\
K \widehat{\otimes}_C C[X] & \xrightarrow{\partial \otimes \text{id}} & K \widehat{\otimes}_C C[X] \widehat{\otimes}_C C[X]
\end{array}
\]

- This means that ∂ is a co-action of the complete Hopf algebra $C[X]$ on K. Note that ∂ is a section of $K[X] \to K$ iff the following diagram is commutative ("1 · x = x" axiom):

\[
\begin{array}{ccc}
K & \xrightarrow{\partial} & K \widehat{\otimes}_C C[X] \\
\downarrow \text{id} & & \downarrow \text{mod } X \\
K & &
\end{array}
\]
Complete Hopf algebra co-action

- Since $K[[X]] \cong K \hat{\otimes}_C C[[X]]$, ∂ is an iterative C-derivation iff the following diagram is commutative:

$$
\begin{array}{ccc}
K & \xrightarrow{\partial} & K \hat{\otimes}_C C[[X]] \\
\downarrow \partial & & \downarrow \text{id} \otimes c \\
K \hat{\otimes}_C C[[X]] & \xrightarrow{\partial \otimes \text{id}} & K \hat{\otimes}_C C[[X]] \hat{\otimes}_C C[[X]]
\end{array}
$$

- This means that ∂ is a co-action of the complete Hopf algebra $C[[X]]$ on K. Note that ∂ is a section of $K[[X]] \rightarrow K$ iff the following diagram is commutative ("$1 \cdot x = x$" axiom):

$$
\begin{array}{ccc}
K & \xrightarrow{\partial} & K \hat{\otimes}_C C[[X]] \\
\downarrow \text{id} & & \downarrow \text{mod } X \\
K & &
\end{array}
$$
Other formal group laws

- What happens if we take a 1-dimensional formal group (law) other than \(X_1 + X_2\)?
- If \(\text{char}(C) = 0\), then all 1-dimensional formal groups are isomorphic.
- If \(\text{char}(C) > 0\), then e.g. \(\hat{\mathbb{G}}_a \not\cong \hat{\mathbb{G}}_m\) and 1-dimensional formal groups are classified by \(\mathbb{N} \cup \{\infty\}\).
- Assume we take the iterative law \(X_1X_2 + X_1 + X_2\) corresponding to \(\hat{\mathbb{G}}_m\). What is the corresponding theory of existentially closed fields with \(\hat{\mathbb{G}}_m\)-iterative derivations?
- The iterative law \(X_1X_2 + X_1 + X_2\) (apparently) gives \((i \leq j)\):

\[
\partial_i \circ \partial_j = \sum_{k=j}^{i+j} \frac{k!}{(k-j)!(k-i)!(i+j-k)!} \partial_k.
\]
Other formal group laws

- What happens if we take a 1-dimensional formal group (law) other that $X_1 + X_2$?
- If $\text{char}(C) = 0$, then all 1-dimensional formal groups are isomorphic.
- If $\text{char}(C) > 0$, then e.g. $\hat{G}_a \not\cong \hat{G}_m$ and 1-dimensional formal groups are classified by $\mathbb{N} \cup \{\infty\}$.
- Assume we take the iterative law $X_1 X_2 + X_1 + X_2$ corresponding to \hat{G}_m. What is the corresponding theory of existentially closed fields with \hat{G}_m-iterative derivations?
- The iterative law $X_1 X_2 + X_1 + X_2$ (apparently) gives ($i \leq j$):

$$
\partial_i \circ \partial_j = \sum_{k=j}^{i+j} \frac{k!}{(k-j)! (k-i)! (i+j-k)!} \partial_k.
$$
Other formal group laws

- What happens if we take a 1-dimensional formal group (law) other than $X_1 + X_2$?
- If $\text{char}(C) = 0$, then all 1-dimensional formal groups are isomorphic.
- If $\text{char}(C) > 0$, then e.g. $\hat{G}_a \not\cong \hat{G}_m$ and 1-dimensional formal groups are classified by $\mathbb{N} \cup \{\infty\}$.
- Assume we take the iterative law $X_1 X_2 + X_1 + X_2$ corresponding to \hat{G}_m. What is the corresponding theory of existentially closed fields with \hat{G}_m-iterative derivations?
- The iterative law $X_1 X_2 + X_1 + X_2$ (apparently) gives ($i \leq j$):

$$\partial_i \circ \partial_j = \sum_{k=j}^{i+j} \frac{k!}{(k-j)!(k-i)!(i+j-k)!} \partial_k.$$
Other formal group laws

- What happens if we take a 1-dimensional formal group (law) other than $X_1 + X_2$?
- If $\text{char}(C) = 0$, then all 1-dimensional formal groups are isomorphic.
- If $\text{char}(C) > 0$, then e.g. $\hat{\mathbb{G}}_a \not\cong \hat{\mathbb{G}}_m$ and 1-dimensional formal groups are classified by $\mathbb{N} \cup \{\infty\}$.
- Assume we take the iterative law $X_1 X_2 + X_1 + X_2$ corresponding to $\hat{\mathbb{G}}_m$. What is the corresponding theory of existentially closed fields with $\hat{\mathbb{G}}_m$-iterative derivations?
- The iterative law $X_1 X_2 + X_1 + X_2$ (apparently) gives ($i \leq j$):

$$\partial_i \circ \partial_j = \sum_{k=j}^{i+j} \frac{k!}{(k-j)!(k-i)!(i+j-k)!} \partial_k.$$
Other formal group laws

- What happens if we take a 1-dimensional formal group (law) other that $X_1 + X_2$?
- If $\text{char}(C) = 0$, then all 1-dimensional formal groups are isomorphic.
- If $\text{char}(C) > 0$, then e.g. $\hat{G}_a \not\cong \hat{G}_m$ and 1-dimensional formal groups are classified by $\mathbb{N} \cup \{\infty\}$.
- Assume we take the iterative law $X_1 X_2 + X_1 + X_2$ corresponding to \hat{G}_m. What is the corresponding theory of existentially closed fields with \hat{G}_m-iterative derivations?
- The iterative law $X_1 X_2 + X_1 + X_2$ (appearently) gives ($i \leq j$):

$$\partial_i \circ \partial_j = \sum_{k=j}^{i+j} \frac{k!}{(k-j)!(k-i)!(i+j-k)!} \partial_k.$$
Kernel of the Frobenius map

- We prefer to have actual Hopf algebras (corresponding to group schemes rather than formal groups).
- Since $\mathbb{C}[X] \cong \varprojlim \mathbb{C}[X]/(X^n)$ we want a map c_n such that the following diagram is commutative:

$$
\begin{array}{ccc}
\mathbb{C}[X] & \xrightarrow{c} & \mathbb{C}[X_1, X_2] \\
\downarrow & & \downarrow \\
\mathbb{C}[X]/(X^n) & \xrightarrow{c_n} & \mathbb{C}[X_1, X_2]/(X_1^n, X_2^n)
\end{array}
$$

- We need $c(X^n) \in (X_1^n, X_2^n)\mathbb{C}[X_1, X_2]$. For $n > 1$, it happens if and only if $\text{char}(\mathbb{C}) = p > 0$ and $n = p^m$.
- $\mathbb{C}[X]/(X^p^m)$ is a Hopf algebra, so $\text{Spec}(\mathbb{C}[X]/(X^p^m))$ is a group scheme: $\ker(\text{Fr}^m : \mathbb{G}_a \to \mathbb{G}_a)$ \textit{(not an algebraic group!)}.
We prefer to have actual Hopf algebras (corresponding to group schemes rather than formal groups).

Since $C[X] \cong \lim\limits_{\leftarrow} C[X]/(X^n)$ we want a map c_n such that the following diagram is commutative:

\[
\begin{array}{ccc}
C[X] & \xrightarrow{c} & C[X_1, X_2] \\
\downarrow & & \downarrow \\
C[X]/(X^n) & \xrightarrow{c_n} & C[X_1, X_2]/(X_1^n, X_2^n)
\end{array}
\]

We need $c(X^n) \in (X_1^n, X_2^n)C[X_1, X_2]$. For $n > 1$, it happens if and only if $\text{char}(C) = p > 0$ and $n = p^m$.

$C[X]/(X^{p^m})$ is a Hopf algebra, so $\text{Spec}(C[X]/(X^{p^m}))$ is a group scheme: $\ker(\text{Fr}^m : G_\alpha \to G_\alpha)$ (not an algebraic group!).
Kernel of the Frobenius map

- We prefer to have actual Hopf algebras (corresponding to group schemes rather than formal groups).
- Since $C[X] \cong \varprojlim C[X]/(X^n)$ we want a map c_n such that the following diagram is commutative:

\[
\begin{array}{ccc}
C[X] & \xrightarrow{c} & C[X_1, X_2] \\
\downarrow & & \downarrow \\
C[X]/(X^n) & \xrightarrow{c_n} & C[X_1, X_2]/(X_1^n, X_2^n)
\end{array}
\]

- We need $c(X^n) \in (X_1^n, X_2^n)C[X_1, X_2]$. For $n > 1$, it happens if and only if $\text{char}(C) = p > 0$ and $n = p^m$.
- $C[X]/(X^{p^m})$ is a Hopf algebra, so $\text{Spec}(C[X]/(X^{p^m}))$ is a group scheme: $\ker(\text{Fr}^m : \mathbb{G}_a \to \mathbb{G}_a)$ (not an algebraic group!).
Kernel of the Frobenius map

- We prefer to have actual Hopf algebras (corresponding to group schemes rather than formal groups).

- Since $C[X] \cong \lim C[X]/(X^n)$ we want a map c_n such that the following diagram is commutative:

$$
\begin{array}{ccc}
C[X] & \overset{c}{\longrightarrow} & C[X_1, X_2] \\
\downarrow & & \downarrow \\
C[X]/(X^n) & \overset{c_n}{\longrightarrow} & C[X_1, X_2]/(X_1^n, X_2^n)
\end{array}
$$

- We need $c(X^n) \in (X_1^n, X_2^n)C[X_1, X_2]$. For $n > 1$, it happens if and only if $\text{char}(C) = p > 0$ and $n = p^m$.

- $C[X]/(X^{p^m})$ is a Hopf algebra, so $\text{Spec}(C[X]/(X^{p^m}))$ is a group scheme: $\ker(\text{Fr}^m : \mathbb{G}_a \to \mathbb{G}_a)$ (not an algebraic group!).
Iterative C-derivations in positive characteristic

- An iterative C-derivation on K is a compatible sequence of co-actions ∂_m of the Hopf algebras $C[X]/(X^{p^m})$ on K.

- “Compatible” here means that for $n < m$ the following diagram is commutative:

$$
\begin{array}{c}
K \xrightarrow{\partial_n} K \otimes_C C[X]/(X^{p^n}) \\
\downarrow \quad \downarrow \\
K \xrightarrow{\partial_m} K \otimes_C C[X]/(X^{p^m})
\end{array}
$$
An iterative C-derivation on K is a compatible sequence of co-actions ∂_m of the Hopf algebras $C[X]/(X^{p^m})$ on K. “Compatible” here means that for $n < m$ the following diagram is commutative:

\[
\begin{array}{c}
K \xrightarrow{\partial_n} K \otimes_C C[X]/(X^{p^n}) \\
\downarrow \hspace{1cm} \downarrow \\
K \xrightarrow{\partial_m} K \otimes_C C[X]/(X^{p^m})
\end{array}
\]
Iterative C-schemes

The situation looks more natural when we go to the category of C-schemes. Hopf algebras correspond to group schemes and co-actions correspond to group scheme actions.

Definition of the category of iterative C-schemes

- Let $\alpha_n := \text{Spec}(C[X]/(X^{p^n}))$. It is a group scheme.
- An iterative C-scheme is a C-scheme X together with a compatible sequence of group scheme actions

$$\partial_n : \alpha_n \times_C X \to X.$$

- An iterative C-morphism is an equivariant C-morphism.

If $X = \text{Spec}(R)$ then an iterative C-scheme structure on X is the same as an iterative C-derivation on R.
Iterative C-schemes

The situation looks more natural when we go to the category of C-schemes. Hopf algebras correspond to group schemes and co-actions correspond to group scheme actions.

Definition of the category of iterative C-schemes

- Let $\alpha_n := \text{Spec}(C[X]/(X^{p^n}))$. It is a group scheme.
- An iterative C-scheme is a C-scheme X together with a compatible sequence of group scheme actions

$$\partial_n : \alpha_n \times_C X \to X.$$

- An iterative C-morphism is an equivariant C-morphism.

If $X = \text{Spec}(R)$ then an iterative C-scheme structure on X is the same as an iterative C-derivation on R.

Kowalski
Iterative ∂-varieties via group scheme actions
Iterative C-schemes

The situation looks more natural when we go to the category of C-schemes. Hopf algebras correspond to group schemes and co-actions correspond to group scheme actions.

Definition of the category of iterative C-schemes

- Let $\alpha_n := \text{Spec}(C[X]/(X^{p^n}))$. It is a group scheme.
- An **iterative C-scheme** is a C-scheme X together with a compatible sequence of group scheme actions

\[\partial_n : \alpha_n \times_C X \to X. \]

- An **iterative C-morphism** is an equivariant C-morphism.

If $X = \text{Spec}(R)$ then an iterative C-scheme structure on X is the same as an iterative C-derivation on R.
Iterative C-schemes

The situation looks more natural when we go to the category of C-schemes. Hopf algebras correspond to group schemes and co-actions correspond to group scheme actions.

Definition of the category of iterative C-schemes

- Let $\alpha_n := \text{Spec}(C[X]/(X^p)^n))$. It is a group scheme.
- An iterative C-scheme is a C-scheme X together with a compatible sequence of group scheme actions

\[\partial_n : \alpha_n \times_C X \to X. \]

- An iterative C-morphism is an equivariant C-morphism.

If $X = \text{Spec}(R)$ then an iterative C-scheme structure on X is the same as an iterative C-derivation on R.
Iterative C-schemes

The situation looks more natural when we go to the category of C-schemes. Hopf algebras correspond to group schemes and co-actions correspond to group scheme actions.

Definition of the category of iterative C-schemes

- Let $\alpha_n := \text{Spec}(C[X]/(X^{p^n}))$. It is a group scheme.
- An **iterative C-scheme** is a C-scheme X together with a compatible sequence of group scheme actions
 \[\partial_n : \alpha_n \times_C X \to X. \]
- An **iterative C-morphism** is an equivariant C-morphism.

If $X = \text{Spec}(R)$ then an iterative C-scheme structure on X is the same as an iterative C-derivation on R.
Iterative ∂-schemes

We fix a C-iterative field (K, ∂) which is existentially closed and ω-saturated. Then $S := \text{Spec}(K)$ is an iterative C-scheme. Assume $C = K^{p\infty}$.

- An (iterative) ∂-scheme is an iterative C-scheme X with an iterative C-morphism $X \rightarrow S$.
- (Iterative) ∂-morphism is a K-morphism which is C-iterative.
- ∂-point of a ∂-scheme X is a K-point x such that the corresponding morphism $x : S \rightarrow X$ is a ∂-morphism.
- $X^\#$ is the set of all ∂-points.

If $X = \text{Spec}(R)$ then an iterative ∂-scheme structure on X is the same as an iterative C-derivation on R extending ∂.
Iterative ∂-schemes

We fix a C-iterative field (K, ∂) which is existentially closed and ω-saturated. Then $S := \text{Spec}(K)$ is an iterative C-scheme. Assume $C = K^{p\infty}$.

An (iterative) ∂-scheme is an iterative C-scheme X with an iterative C-morphism $X \to S$.

(Iterative) ∂-morphism is a K-morphism which is C-iterative.

∂-point of a ∂-scheme X is a K-point x such that the corresponding morphism $x : S \to X$ is a ∂-morphism.

$X^\#$ is the set of all ∂-points.

If $X = \text{Spec}(R)$ then an iterative ∂-scheme structure on X is the same as an iterative C-derivation on R extending ∂.
We fix a C-iterative field (K, ∂) which is existentially closed and ω-saturated. Then $S := \text{Spec}(K)$ is an iterative C-scheme. Assume $C = K^{p^\infty}$.

Iterative ∂-schemes

- An *(iterative) ∂-scheme* is an iterative C-scheme X with an iterative C-morphism $X \to S$.
- *(Iterative) ∂-morphism* is a K-morphism which is C-iterative.
- ∂-point of a ∂-scheme X is a K-point x such that the corresponding morphism $x : S \to X$ is a ∂-morphism.
- $X^\#$ is the set of all ∂-points.

If $X = \text{Spec}(R)$ then an iterative ∂-scheme structure on X is the same as an iterative C-derivation on R extending ∂.
We fix a C-iterative field (K, ∂) which is existentially closed and ω-saturated. Then $S := \text{Spec}(K)$ is an iterative C-scheme. Assume $C = K^{p\infty}$.

Iterative ∂-schemes

- An **(iterative) ∂-scheme** is an iterative C-scheme X with an iterative C-morphism $X \to S$.
- **(Iterative) ∂-morphism** is a K-morphism which is C-iterative.
- **∂-point** of a ∂-scheme X is a K-point x such that the corresponding morphism $x : S \to X$ is a ∂-morphism.
- $X^\#$ is the set of all ∂-points.

If $X = \text{Spec}(R)$ then an iterative ∂-scheme structure on X is the same as an iterative C-derivation on R extending ∂.
Iterative ∂-schemes

We fix a C-iterative field (K, ∂) which is existentially closed and ω-saturated. Then $S := \text{Spec}(K)$ is an iterative C-scheme. Assume $C = K^{p\infty}$.

Iterative ∂-schemes

- An (iterative) ∂-scheme is an iterative C-scheme X with an iterative C-morphism $X \rightarrow S$.
- (Iterative) ∂-morphism is a K-morphism which is C-iterative.
- ∂-point of a ∂-scheme X is a K-point x such that the corresponding morphism $x : S \rightarrow X$ is a ∂-morphism.
- $X^\#$ is the set of all ∂-points.

If $X = \text{Spec}(R)$ then an iterative ∂-scheme structure on X is the same as an iterative C-derivation on R extending ∂.
We fix a C-iterative field (K, ∂) which is existentially closed and ω-saturated. Then $S := \text{Spec}(K)$ is an iterative C-scheme. Assume $C = K^{p^\infty}$.

An (iterative) ∂-scheme is an iterative C-scheme X with an iterative C-morphism $X \to S$.

(Iterative) ∂-morphism is a K-morphism which is C-iterative.

∂-point of a ∂-scheme X is a K-point x such that the corresponding morphism $x : S \to X$ is a ∂-morphism.

$X^\#$ is the set of all ∂-points.

If $X = \text{Spec}(R)$ then an iterative ∂-scheme structure on X is the same as an iterative C-derivation on R extending ∂.
If $X \subseteq \mathbb{A}^n$, then $X^\#$ is given by an infinite system of iterative differential equations (so is type-definable in $(K, +, \cdot, \partial)$).

It plays the same role as $(X, f)(K, \sigma)$ from Scanlon’s talk.

$X^\#$ is “very” very thin and of finite U-rank.

Lemma

If a ∂-scheme X has an open affine subvariety, then $X^\# \neq \emptyset$.

Proof

An open sub-scheme $U \to X$ (even in the étale topology) has a unique ∂-structure such that $U \to X$ is a ∂-morphism.

(K, ∂) is existentially closed and ω-saturated, so $X^\# \supseteq U^\# \neq \emptyset$.
\(\partial\)-points exist

Iterative differential equations

- If \(X \subseteq \mathbb{A}^n\), then \(X^\#\) is given by an infinite system of iterative differential equations (so is type-definable in \((K, +, \cdot, \partial)\)).
- It plays the same role as \((X, f)(K, \sigma)\) from Scanlon’s talk.
- \(X^\#\) is “very” very thin and of finite \(U\)-rank.

Lemma

If a \(\partial\)-scheme \(X\) has an open affine subvariety, then \(X^\# \neq \emptyset\).

Proof

- An open sub-scheme \(U \rightarrow X\) (even in the étale topology) has a unique \(\partial\)-structure such that \(U \rightarrow X\) is a \(\partial\)-morphism.
- \((K, \partial)\) is existentially closed and \(\omega\)-saturated, so \(X^\# \supseteq U^\# \neq \emptyset\).
\(\partial\)-points exist

Iterative differential equations

- If \(X \subseteq \mathbb{A}^n\), then \(X^\#\) is given by an infinite system of iterative differential equations (so is type-definable in \((K, +, \cdot, \partial)\)).
- It plays the same role as \((X, f)(K, \sigma)\) from Scanlon’s talk.
- \(X^\#\) is “very” very thin and of finite \(U\)-rank.

Lemma

If a \(\partial\)-scheme \(X\) has an open affine subvariety, then \(X^\# \neq \emptyset\).

Proof

- An open sub-scheme \(U \to X\) (even in the étale topology) has a unique \(\partial\)-structure such that \(U \to X\) is a \(\partial\)-morphism.
- \((K, \partial)\) is existentially closed and \(\omega\)-saturated, so \(X^\# \supseteq U^\# \neq \emptyset\).
Iterative differential equations

- If $X \subseteq \mathbb{A}^n$, then $X^\#$ is given by an infinite system of iterative differential equations (so is type-definable in $(K, +, \cdot, \partial)$).
- It plays the same role as $(X, f)(K, \sigma)$ from Scanlon’s talk.
- $X^\#$ is “very” very thin and of finite U-rank.

Lemma

If a ∂-scheme X has an open affine subvariety, then $X^\# \neq \emptyset$.

Proof

- An open sub-scheme $U \to X$ (even in the étale topology) has a unique ∂-structure such that $U \to X$ is a ∂-morphism.
- (K, ∂) is existentially closed and ω-saturated, so $X^\# \supseteq U^\# \neq \emptyset$.
\(\partial\)-points exist

Iterative differential equations
- If \(X \subseteq \mathbb{A}^n\), then \(X^\#\) is given by an infinite system of iterative differential equations (so is type-definable in \((K, +, \cdot, \partial)\)).
- It plays the same role as \((X, f)(K, \sigma)\) from Scanlon’s talk.
- \(X^\#\) is “very” very thin and of finite \(U\)-rank.

Lemma
If a \(\partial\)-scheme \(X\) has an open affine subvariety, then \(X^\# \neq \emptyset\).

Proof
- An open sub-scheme \(U \rightarrow X\) (even in the étale topology) has a unique \(\partial\)-structure such that \(U \rightarrow X\) is a \(\partial\)-morphism.
- \((K, \partial)\) is existentially closed and \(\omega\)-saturated, so \(X^\# \supseteq U^\# \neq \emptyset\).
Iterative differential equations

- If $X \subseteq \mathbb{A}^n$, then $X^\#$ is given by an infinite system of iterative differential equations (so is type-definable in $(K, +, \cdot, \partial)$).
- It plays the same role as $(X, f)(K, \sigma)$ from Scanlon’s talk.
- $X^\#$ is “very” very thin and of finite U-rank.

Lemma

If a ∂-scheme X has an open affine subvariety, then $X^\# \neq \emptyset$.

Proof

- An open sub-scheme $U \rightarrow X$ (even in the étale topology) has a unique ∂-structure such that $U \rightarrow X$ is a ∂-morphism.
- (K, ∂) is existentially closed and ω-saturated, so $X^\# \supseteq U^\# \neq \emptyset$.
Trivializable ∂-schemes

Definition

- If X_C is a C-scheme, then it has a C-iterative scheme structure given by the 0-derivation (trivial action).
- Then $X := X_C \times_C S$ has a ∂-structure coming from the 0-structure on X_C and the ∂-structure on S. We call such a ∂-schemes trivial and ∂-isomorphic to them trivializable.

Remark

- If X is a trivial ∂-scheme, then $X^\# = X_C(C)$.
- If X is a trivializable ∂-variety, then $X^\#$ is C-internal.
Trivializable ∂-schemes

Definition

- If X_C is a C-scheme, then it has a C-iterative scheme structure given by the 0-derivation (trivial action).
- Then $X := X_C \times_C S$ has a ∂-structure coming from the 0-structure on X_C and the ∂-structure on S. We call such a ∂-schemes **trivial** and ∂-isomorphic to them **trivializable**.

Remark

- If X is a trivial ∂-scheme, then $X^\# = X_C(C)$.
- If X is a trivializable ∂-variety, then $X^\#$ is C-internal.
Definition

- If X_C is a C-scheme, then it has a C-iterative scheme structure given by the 0-derivation (trivial action).
- Then $X := X_C \times_C S$ has a ∂-structure coming from the 0-structure on X_C and the ∂-structure on S. We call such a ∂-schemes trivial and ∂-isomorphic to them trivializable.

Remark

- If X is a trivial ∂-scheme, then $X^\# = X_C(C)$.
- If X is a trivializable ∂-variety, then $X^\#$ is C-internal.
Trivializable ∂-schemes

Definition
- If X_C is a C-scheme, then it has a C-iterative scheme structure given by the 0-derivation (trivial action).
- Then $X := X_C \times_C S$ has a ∂-structure coming from the 0-structure on X_C and the ∂-structure on S. We call such a ∂-schemes trivial and ∂-isomorphic to them trivializable.

Remark
- If X is a trivial ∂-scheme, then $X^\# = X_C(C)$.
- If X is a trivializable ∂-variety, then $X^\#$ is C-internal.
The automorphism functor

Let \(C \) be an arbitrary category with fiber products (e.g. category of \(C \)-schemes or category of sets). Let \(X \to Y \) be a morphism in \(C \).

Automorphisms

- It is possible to extend the group of automorphisms of \(X \) over \(Y \) to the following contravariant functor:

\[
A_{X/Y} : C_Y \to \text{Gps}, \quad A_{X/Y}(Z) = \text{Aut}_Z(X \times_Y Z).
\]

- \(\text{Aut}_Y(X) \) is a group object in \(C \) if \(A_{X/Y} \) is representable.

Example

In the category of sets \(\text{Aut}(X) \) indeed represents \(A_X \) – for any set \(Z \) a map \(f : Z \to \text{Aut}(X) \) corresponds to the \(Z \)-automorphism of \(X \times Z \) given by \(\bar{f}(x, z) = (f(z)(x), z) \).
The automorphism functor

Let \mathcal{C} be an arbitrary category with fiber products (e.g. category of \mathcal{C}-schemes or category of sets). Let $X \to Y$ be a morphism in \mathcal{C}. Automorphisms

It is possible to extend the group of automorphisms of X over Y to the following contravariant functor:

$$A_{X/Y} : \mathcal{C}_Y \to \text{Gps}, \quad A_{X/Y}(Z) = \text{Aut}_Z(X \times_Y Z).$$

$\text{Aut}_Y(X)$ is a group object in \mathcal{C} if $A_{X/Y}$ is representable.

Example

In the category of sets $\text{Aut}(X)$ indeed represents A_X — for any set Z a map $f : Z \to \text{Aut}(X)$ corresponds to the Z-automorphism of $X \times Z$ given by $\bar{f}(x, z) = (f(z)(x), z)$.

Kowalski Iterative ∂-varieties via group scheme actions
Let C be an arbitrary category with fiber products (e.g. category of C-schemes or category of sets). Let $X \to Y$ be a morphism in C.

Automorphisms

- It is possible to extend the group of automorphisms of X over Y to the following contravariant functor:

$$A_{X/Y} : C_Y \to \textbf{Gps}, \quad A_{X/Y}(Z) = \text{Aut}_Z(X \times_Y Z).$$

- $\text{Aut}_Y(X)$ is a group object in C if $A_{X/Y}$ is representable.

Example

In the category of sets $\text{Aut}(X)$ indeed represents A_X — for any set Z a map $f : Z \to \text{Aut}(X)$ corresponds to the Z-automorphism of $X \times Z$ given by $\bar{f}(x, z) = (f(z)(x), z)$.
The automorphism functor

Let \mathcal{C} be an arbitrary category with fiber products (e.g. category of \mathcal{C}-schemes or category of sets). Let $X \rightarrow Y$ be a morphism in \mathcal{C}.

Automorphisms

- It is possible to extend the group of automorphisms of X over Y to the following contravariant functor:

$$A_{X/Y} : \mathcal{C}_Y \rightarrow \text{Gps}, \quad A_{X/Y}(Z) = \text{Aut}_Z(X \times_Y Z).$$

- $\text{Aut}_Y(X)$ is a group object in \mathcal{C} if $A_{X/Y}$ is representable.

Example

In the category of sets $\text{Aut}(X)$ indeed represents A_X – for any set Z a map $f : Z \rightarrow \text{Aut}(X)$ corresponds to the Z-automorphism of $X \times Z$ given by $\bar{f}(x, z) = (f(z)(x), z)$.
The first trivialization theorem

Theorem (K., Pillay)

If X is a projective variety over K and D_1, D_2 are iterative ∂-scheme structures on X, then $(X, D_1) \cong (X, D_2)$. In particular, if X descents to \mathbb{C}, then (X, D_1) is trivializable.

Proof

- By Matsumura/Oort, $G := \text{Aut}_K(X)$ is a group scheme whose connected component is an algebraic group.
- D_1 and D_2 give together a ∂-structure D_{12} on G such that $g \in G^\#$ iff g is a ∂-isomorphism between (X, D_1) and (X, D_2).
- Since G^0 is an algebraic variety and is open in G, we know that $G^\#$ is non-empty.
The first trivialization theorem

Theorem (K., Pillay)

If X *is a projective variety over* K *and* D_1, D_2 *are iterative* \(\partial \)-scheme structures on X, *then* $(X, D_1) \cong (X, D_2)$. *In particular, if* X *descends to* C, *then* (X, D_1) *is trivializable.*

Proof

- By Matsumura/Oort, $G := \text{Aut}_K(X)$ is a group scheme whose connected component is an algebraic group.

- D_1 and D_2 give together a \(\partial \)-structure D_{12} on G such that $g \in G^\#$ iff g is a \(\partial \)-isomorphism between (X, D_1) and (X, D_2).

- Since G^0 is an algebraic variety and is open in G, we know that $G^\#$ is non-empty.
The first trivialization theorem

Theorem (K., Pillay)

If X is a projective variety over K and D_1, D_2 are iterative ∂-scheme structures on X, then $(X, D_1) \cong (X, D_2)$.

In particular, if X descents to C, then (X, D_1) is trivializable.

Proof

- By Matsumura/Oort, $G := \text{Aut}_K(X)$ is a group scheme whose connected component is an algebraic group.
- D_1 and D_2 give together a ∂-structure D_{12} on G such that $g \in G^\#$ iff g is a ∂-isomorphism between (X, D_1) and (X, D_2).
- Since G^0 is an algebraic variety and is open in G, we know that $G^\#$ is non-empty.
The first trivialization theorem

Theorem (K., Pillay)

If X is a projective variety over K and D_1, D_2 are iterative ∂-scheme structures on X, then $(X, D_1) \cong (X, D_2)$. In particular, if X descents to C, then (X, D_1) is trivializable.

Proof

- By Matsumura/Oort, $G := \text{Aut}_K(X)$ is a group scheme whose connected component is an algebraic group.
- D_1 and D_2 give together a ∂-structure D_{12} on G such that $g \in G^\#$ iff g is a ∂-isomorphism between (X, D_1) and (X, D_2).
- Since G^0 is an algebraic variety and is open in G, we know that $G^\#$ is non-empty.
Finding ∂-structure on G

- How one finds D_{12} (the ∂-structure on the automorphism group)?

- Assume \mathcal{C} is an arbitrary category with fiber products and $X \rightarrow Y$ is a morphism such that $A_{X/Y}$ is representable by G.

- In our case $Y = S = \text{Spec}(K)$.

Lemma

For a group object α, if we have a group action ∂ of α on Y with two liftings D_1, D_2 to group actions of α on X, then we get a group action of α on G such that equivariant morphisms $Y \rightarrow G$ correspond to equivariant isomorphisms from (X, D_1) to (X, D_2).
Finding ∂-structure on G

- How one finds D_{12} (the ∂-structure on the automorphism group)?
- Assume C is an arbitrary category with fiber products and $X \to Y$ is a morphism such that $A_{X/Y}$ is representable by G.
- In our case $Y = S = \text{Spec}(K)$.

Lemma

For a group object α, if we have a group action ∂ of α on Y with two liftings D_1, D_2 to group actions of α on X, then we get a group action of α on G such that equivariant morphisms $Y \to G$ correspond to equivariant isomorphisms from (X, D_1) to (X, D_2).
Finding ∂-structure on G

- How one finds D_{12} (the ∂-structure on the automorphism group)?
- Assume C is an arbitrary category with fiber products and $X \to Y$ is a morphism such that $A_{X/Y}$ is representable by G.
- In our case $Y = S = \text{Spec}(K)$.

Lemma

For a group object α, if we have a group action ∂ of α on Y with two liftings D_1, D_2 to group actions of α on X, then we get a group action of α on G such that equivariant morphisms $Y \to G$ correspond to equivariant isomorphisms from (X, D_1) to (X, D_2).
Finding ∂-structure on G

- How one finds D_{12} (the ∂-structure on the automorphism group)?
- Assume \mathcal{C} is an arbitrary category with fiber products and $X \to Y$ is a morphism such that $A_{X/Y}$ is representable by G.
- In our case $Y = S = \text{Spec}(K)$.

Lemma

For a group object α, if we have a group action ∂ of α on Y with two liftings D_1, D_2 to group actions of α on X, then we get a group action of α on G such that equivariant morphisms $Y \to G$ correspond to equivariant isomorphisms from (X, D_1) to (X, D_2).
Finding ∂-structure on G continued

Idea of the proof (category of sets)

- Seems to be very simple – in the category of sets if we have $D_1, D_2 : \alpha \to \text{Aut}(X)$ extending given $\partial : \alpha \to \text{Aut}(Y)$, then for $\phi \in \text{Aut}_Y(X), g \in \alpha$, we define:

 $$D_{12}(g)(\phi) := D_1(g)^{-1} \circ \phi \circ D_2(g).$$

- However $\text{Aut}_Y(X)$ does not represent $A_{X/Y}$, e.g. because it has no map to Y! Note that a group over Y is not a group! It is a function $G \to Y$ such that each fiber is a group. E.g. $A_{X/Y}$ is represented by the disjoint union of the automorphism groups of the fibers of $X \to Y$.

- So, the proof has to be done differently but along these lines.
Finding ∂-structure on G continued

Idea of the proof (category of sets)

- Seems to be very simple – in the category of sets if we have $D_1, D_2: \alpha \to \text{Aut}(X)$ extending given $\partial: \alpha \to \text{Aut}(Y)$, then for $\phi \in \text{Aut}_Y(X), g \in \alpha$, we define:

$$D_{12}(g)(\phi) := D_1(g)^{-1} \circ \phi \circ D_2(g).$$

- However $\text{Aut}_Y(X)$ does not represent $A_{X/Y}$, e.g. because it has no map to Y! Note that a group over Y is not a group! It is a function $G \to Y$ such that each fiber is a group. E.g. $A_{X/Y}$ is represented by the disjoint union of the automorphism groups of the fibers of $X \to Y$.

- So, the proof has to be done differently but along these lines.
Finding ∂-structure on G continued

Idea of the proof (category of sets)

- Seems to be very simple – in the category of sets if we have $D_1, D_2 : \alpha \to \text{Aut}(X)$ extending given $\partial : \alpha \to \text{Aut}(Y)$, then for $\phi \in \text{Aut}_Y(X), g \in \alpha$, we define:

$$D_{12}(g)(\phi) := D_1(g)^{-1} \circ \phi \circ D_2(g).$$

- However $\text{Aut}_Y(X)$ does not represent $A_{X/Y}$, e.g. because it has no map to Y! Note that a group over Y is not a group! It is a function $G \to Y$ such that each fiber is a group. E.g. $A_{X/Y}$ is represented by the disjoint union of the automorphism groups of the fibers of $X \to Y$.

- So, the proof has to be done differently but along these lines.
A theorem of Buium

Theorem (Buium)

If $\text{char}(C) = 0$ and X is a projective ∂-variety, then X is trivializable (in particular X descents to C).

Positive characteristic

We would like to prove the same thing. By the previous theorem, it would be enough to prove the descent part.
A theorem of Buium

Theorem (Buium)

If char(\(C\)) = 0 and \(X\) is a projective \(\partial\)-variety, then \(X\) is trivializable (in particular \(X\) descents to \(C\)).

Positive characteristic

We would like to prove the same thing. By the previous theorem, it would be enough to prove the descent part.
The second trivialization theorem

Theorem (K., Pillay)

If X is a smooth projective ∂-variety whose canonical or anti-canonical divisor is ample, then X is trivializable.

Idea of the proof

- The (anti-)canonical sheaf K_X inherits the ∂-structure.
- For each $n \in \mathbb{N}$, K_X^n induces $f_n : X \to \mathbb{P}^N$ which is a ∂-morphism, where \mathbb{P}^N has the trivial ∂-structure.
- Ampleness says that f_n is an embedding for some n.
- This trivializes the ∂-structure on X.
The second trivialization theorem

Theorem (K., Pillay)

If X is a smooth projective ∂-variety whose canonical or anti-canonical divisor is ample, then X is trivializable.

Idea of the proof

- The (anti-)canonical sheaf K_X inherits the ∂-structure.
- For each $n \in \mathbb{N}$, K_X^n induces $f_n : X \to \mathbb{P}^N$ which is a ∂-morphism, where \mathbb{P}^N has the trivial ∂-structure.
- Ampleness says that f_n is an embedding for some n.
- This trivializes the ∂-structure on X.
The second trivialization theorem

Theorem (K., Pillay)

If X is a smooth projective ∂-variety whose canonical or anti-canonical divisor is ample, then X is trivializable.

Idea of the proof

- The (anti-)canonical sheaf K_X inherits the ∂-structure.
- For each $n \in \mathbb{N}$, K^n_X induces $f_n : X \to \mathbb{P}^N$ which is a ∂-morphism, where \mathbb{P}^N has the trivial ∂-structure.
- Ampleness says that f_n is an embedding for some n.
- This trivializes the ∂-structure on X.
The second trivialization theorem

Theorem (K., Pillay)

If X is a smooth projective ∂-variety whose canonical or anti-canonical divisor is ample, then X is trivializable.

Idea of the proof

- The (anti-)canonical sheaf K_X inherits the ∂-structure.
- For each $n \in \mathbb{N}$, K_X^n induces $f_n : X \to \mathbb{P}^N$ which is a ∂-morphism, where \mathbb{P}^N has the trivial ∂-structure.
- Ampleness says that f_n is an embedding for some n.
- This trivializes the ∂-structure on X.
The second trivialization theorem

Theorem (K., Pillay)

If X is a smooth projective ∂-variety whose canonical or anti-canonical divisor is ample, then X is trivializable.

Idea of the proof

- The (anti-)canonical sheaf K_X inherits the ∂-structure.
- For each $n \in \mathbb{N}$, K^n_X induces $f_n : X \to \mathbb{P}^N$ which is a ∂-morphism, where \mathbb{P}^N has the trivial ∂-structure.
- Ampleness says that f_n is an embedding for some n.
- This trivializes the ∂-structure on X.
Abelian varieties and projective curves

Moduli spaces

- Benoit has proved that X has a ∂-structure if and only if for all n, X descends to K^{p^n} (note that $C = \cap_n K^{p^n}$).
- Hence, if a ∂-variety X belongs to a C-definable family with a fine moduli space, then X descends to C.

Theorem

A smooth projective ∂-variety is trivializable if it is an abelian variety or a curve.

Question

Assume X is a projective variety which descends to K^{p^n} for each n. Does it descend to C? If Yes, we have the full result.
Abelian varieties and projective curves

Moduli spaces

- Benoit has proved that X has a ∂-structure if and only if for all n, X descends to K_p^n (note that $C = \cap_n K_p^n$).
- Hence, if a ∂-variety X belongs to a C-definable family with a fine moduli space, then X descends to C.

Theorem

A smooth projective ∂-variety is trivializable if it is an abelian variety or a curve.

Question

Assume X is a projective variety which descents to K_p^n for each n. Does it descent to C? If Yes, we have the full result.
Abelian varieties and projective curves

Moduli spaces

- Benoit has proved that X has a ∂-structure if and only if for all n, X descends to K^{p^n} (note that $C = \cap_n K^{p^n}$).
- Hence, if a ∂-variety X belongs to a C-definable family with a fine moduli space, then X descends to C.

Theorem

A smooth projective ∂-variety is trivializable if it is an abelian variety or a curve.

Question

Assume X is a projective variety which descents to K^{p^n} for each n. Does it descent to C? If Yes, we have the full result.
Abelian varieties and projective curves

Moduli spaces

- Benoit has proved that X has a ∂-structure if and only if for all n, X descents to K^{p^n} (note that $C = \cap_n K^{p^n}$).
- Hence, if a ∂-variety X belongs to a C-definable family with a fine moduli space, then X descents to C.

Theorem

A smooth projective ∂-variety is trivializable if it is an abelian variety or a curve.

Question

Assume X is a projective variety which descents to K^{p^n} for each n. Does it descent to C? If Yes, we have the full result.