
0. Introduction

Lecture plan

(1) Affine varieties globally: dimension, regular functions, rational
functions.

(2) Affine varieties locally: smoothness, DVR rings, multiplicities
of zeros and poles, intersection numbers.

(3) Projective varieties, Bezout’s theorem and applications, elliptic
curves.

Books Fulton “Algebraic curves”, first chapter of Hartshorne’s “Alge-
braic geometry”.

Algebraic preliminaries The word ring will always mean commuta-
tive ring with identity. Homomorphisms of rings preserve identity. Let
R be a ring and A ⊆ R. The ideal of R generated by A is denoted by
(A) or AR. We have the following operations on I, J P R:

I + J, I ∩ J, IJ,
√
I.

An R-algebra is a (fixed) ring homomorphism R→ S. We usually say
“an R-algebra S” guessing the homomorphism. If S is an R-algebra, it
is also an R-module. We have the natural notion of a homomorphism
of R-algebras (ring homomorphism which is also R-linear, equivalently
certain diagram has to commute). If K is a field and S is a non-zero
ring, then any ring homomorphism K → S is necessarily injective, so
non-zero K-algebras may be identified with ring extensions of K.
Let R be a domain. If A ⊂ R is a multiplicative subset, then we have
the R-algebra of fractions (with denominators from A) denoted RA. If
P is a prime ideal in R, then R \P is a multiplicative subset and RR\P
is denoted RP . The field of fractions of R is R{0} which we denote by
R0.
If K ⊆ L is a field extension, then trdegK L is the cardinality of (any)
transcendence basis of L over K. If S is a K-algebra, then by dimK S,
we mean the dimension of S considered as a K-linear space.

1. Affine varieties globally

Let K be an algebraically closed field and n ∈ N>0. By An or An(K)
we mean just Kn (the n-th Cartesian power of K), and call it affine
n-space (over K). Elements of An are called points and the notation
ā, x̄ ∈ An suggests that x̄ = (x1, . . . , xn), ā = (a1, . . . , an). Affine 1-
space K is called affine line and affine 2-space K is called affine plane.
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1.1. Zariski topology. In this section we will not really use the as-
sumption that K is algebraically closed (just K being infinite will be
used sometimes). Let X̄ = (X1, . . . , Xn) be a tuple of variables.

Definition 1.1. For any A ⊆ K[X̄], let

V (A) := {x̄ ∈ Kn | (∀F ∈ A)(F (x̄) = 0)}.
A subset V ⊆ An is an affine algebraic set or a Zariski closed set, if
there is A ⊆ K[X̄] such that V = V (A).

Example 1.2. We have the following affine algebraic sets:

(1) Parabola (n = 2, A = {Y −X2}).
(2) Hyperbola (n = 2, A = {Y X − 1}).
(3) More generally, if F ∈ K[X̄]\K, then V (F ) is an affine algebraic

set. If F is irreducible, then:
• for n = 2, V (F ) is called plane curve;
• for n = 3, V (F ) is called surface;
• for n > 3, V (F ) is called hypersurface.

(4) Any singleton {ā} (A = {X1 − a1, . . . , Xn − an}).
(5) Empty set (A = {1}).
(6) Affine n-space (A = {0}).

Lemma 1.3. Let (Ai ⊆ K[X̄])i<κ and I, J P K[X̄]. Then:

(1) If A0 ⊆ A1, then V (A1) ⊆ V (A0);
(2) V (

⋃
Ai) =

⋂
i V (Ai);

(3) V (A0) = V ((A0)) (recall that (A0) is the ideal generated by A0);
(4) V (I ∩ J) = V (IJ) = V (I) ∪ V (J);
(5) V (I + J) = V (I) ∩ V (J).

Proof. We omit the easy proofs of (1) and (2).
For (3), we get by (1) that V ((A0)) ⊆ V (A0). Take any a ∈ V (A0)
and F ∈ (A0). Thus there are F1, . . . , Fk ∈ A0 and G1, . . . , Gk ∈ K[X̄]
such that F =

∑
GiFi. Therefore:

F (a) =
∑

Gi(a)Fi(a) = 0.

Hence a ∈ V ((A0)) and V ((A0)) = V (A0).
For (4), since IJ ⊆ I ∩ J ⊆ I, J , we get by (1) that

V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (IJ).

For the remaining inclusion take a ∈ V (IJ) and assume that a /∈ V (I).
Hence there is F ∈ I such that F (a) 6= 0. Take any G ∈ J . Then
FG ∈ IJ , so (FG)(a) = 0. Therefore, G(a) = 0 and a ∈ V (J).
For (5) we observe by (2) and (3) that:

V (I) ∩ V (J) = V (I ∪ J) = V ((I ∪ J)) = V (I + J),
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since I + J = (I ∪ J). �

Corollary 1.4. Any finite subset of An is Zariski closed.

Proof. Since we know that the singletons are Zariski closed, it is enough
to use 1.3(3) and 1.3(4). �

By Lemma 1.3, Zariski closed subsets of An are indeed closed sets of
a certain topology on An. This topology is called Zariski topology.
By Corollary 1.4, this topology is T1 (points are closed). We will see
soon that it is not Hausdorff (points can not be separated by open
neighborhoods).

Example 1.5. Let us look at the Zariski topology on the affine line
A1 = K. A non-zero polynomial in one variable can have only finitely
many zeroes and for any finite subset V ⊂ K, there is a polynomial
F ∈ K[X] vanishing exactly on V . Therefore, a subset V ⊂ K is
Zariski closed iff V is finite or V = K. Thus the Zariski topology on
A1 is the cofinite topology, in particular it is not Hausdorff.

Remark 1.6. If K = C, then we have another topology on An coming
from the identification of C with R2 and the order topology on R. We
will call the latter (and much more natural) topology the Euclidean
topology. The Zariski topology is (much) coarser than the Euclidean
one, e.g. closed boxes are not closed in Zariski topology (see Example
1.5).

Remark 1.7. By Example 1.5, there are many subsets of A2 which
are Zariski closed, but are not closed in A2 with the product topology
A1 × A1 (e.g. parabola). Hence the Zariski topology on A2 is not
the product topology (note that the Euclidean topology on C2 is the
product topology). Similarly for n > 2.

The next proposition says that for studying V (A), we can concentrate
on finite subsets A0 ⊆ A.

Proposition 1.8. For any A ⊆ K[X̄] there is a finite A0 ⊆ A such
that V (A) = V (A0).

Proof. By Hilbert’s Basissatz (Basis Theorem), the ring K[X̄] is Noe-
therian, in particular the ideal (A) is finitely generated. Hence we can
find a finite A0 ⊆ A such that (A0) = (A). By 1.3(3), we have

V (A) = V ((A)) = V ((A0)) = V (A0),

which is exactly what we want. �

Definition 1.9. A topological space X is called Noetherian, if any
descending chain of closed subsets of X stabilizes.
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Remark 1.10. Let X be a topological space.

(1) If X is Noetherian, then X is quasi-compact (need not be Haus-
dorff). However, it is not a good intuition to think about Noe-
therian spaces as compact spaces.

(2) Problem 1.1: X is Hausdorff and Noetherian iff X is finite with
the discrete topology. Hence all “infinite, nice spaces” are not
Noetherian.

(3) By a subspace of X we mean a subset with the induced topology.
It is easy to see (Problem 1.0) that any subspace of a Noetherian
topological space is again Noetherian. Note that compactness
is not inherited by subspaces.

(4) By the example above, we see that the affine line is Noetherian.

Proposition 1.11. An with the Zariski topology is Noetherian.

Proof. Let us take (Vi)i∈N, a decreasing sequence of closed subsets of
An. For each i ∈ N, there is Ai ⊆ K[X̄] such that Vi = V (Ai). Let
Ii := (A0 ∪ . . . ∪ Ai). By Lemma 1.3(2,3), we have:

V (Ii) = V (A0 ∪ . . . ∪ Ai) = V (A0) ∩ . . . ∩ V (Ai) = V0 ∩ . . . ∩ Vi = Vi.

Clearly, (Ii)i∈N, is an increasing sequence of ideals ofK[X̄]. By Hilbert’s
Basis Theorem, K[X̄] is a Noetherian ring, hence there is N ∈ N such
that IN = IN+1 = . . .. Therefore, VN = VN+1 = . . ., so the sequence
(Vi)i∈N stabilizes indeed. �

For any affine algebraic set V ⊆ An, we consider V as a topological
space with the induced Zariski topology. Then the closed subsets of V
are exactly those subsets of V which are affine algebraic sets. By Prob-
lem 1.1, V is Hausdorff iff it is finite (so usually it is not Hausdorff).
By Proposition 1.11 and Remark 1.10, V is Noetherian.

Definition 1.12. A non-empty topological space X is irreducible if it is
not a non-trivial union of its two closed subsets, i.e. for any Y1, Y2 ⊆ X
closed, if X = Y1 ∪ Y2, then X = Y1 or X = Y2.

Remark 1.13. Let X be a topological space.

(1) If X is irreducible, then X is connected (in the definition of
irreducibility, we do not require Y1 ∩ Y2 = ∅).

(2) If X is irreducible and Hausdorff, then X is a singleton (similar
to Problem 1.1). So “nice spaces” are not irreducible.

(3) By the description of the topology on the affine line, we see
that A1 is Noetherian and irreducible. In the next section we
will find an algebraic criterium for irreducibility of an algebraic
variety.
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(4) Problem 1.2: Let Y ⊆ X. Then Y is irreducible (as a topolog-
ical space with the topology induced from X) iff the closure of
Y is irreducible.

Proposition 1.14. If X is a Noetherian topological space, then:

(1) There are closed, irreducible X1, . . . , Xk ⊆ X such that X =
X1 ∪ . . . ∪Xk and for all i 6= j, we have Xi * Xj.

(2) If we have X1, . . . , Xk and X ′1, . . . , X
′
k′ as above, then k = k′

and there is σ ∈ Sym(k) such that X1 = X ′σ(1), . . . , Xk = X ′σ(k).

Proof. Proof of (1) is basically the same as the proof of the fact that any
non-invertible non-zero element of a Noetherian domain decomposes
as the product of irreducible elements. Assume X does not have a
decomposition into the union of finitely many irreducible closed subsets
(in short: does not have decomposition). Then X is not irreducible, so
there are non-empty closed X1, X2  X such that X = X1 ∪X2. Since
X does not have decomposition, either X1 does not have decomposition
or X2 does not have decomposition. Assume that X1 does not have
decomposition. Proceeding as above with X1 in place of X, we get
non-empty closed X11, X12  X1 such that X1 = X11 ∪ X12 and X11

does not have decomposition. If we continue like this, we get a sequence
of closed subsets

X ! X1 ! X11 ! X111 ! . . .

contradicting the assumption that X is Noetherian. Therefore X has
decomposition. By throwing away the redundant Xi’s, we may assume
that Xi * Xj for i 6= j, so (1) is proved.
Let us take X ′1, . . . , X

′
k′ from (2) and i 6 k. Then Xi ⊆ X ′1 ∪ . . .∪X ′k′ ,

so

Xi = (X ′1 ∩Xi) ∪ . . . ∪ (X ′k′ ∩Xi).

But Xi is irreducible, so there is i′ 6 k′ such that Xi = X ′i′ ∩ Xi, i.e.
Xi ⊆ X ′i′ . Proceeding similarly, we find j 6 k such that X ′i′ ⊆ Xj.
But then Xi ⊆ Xj, so i = j and we get Xi = X ′σ(i). Let σ(i) := i′.

We have constructed a function σ : {1, . . . , k} → {1, . . . , k′} such that
for each i 6 k, we have Xi = X ′σ(i). Similarly, we get a function τ :

{1, . . . , k′} → {1, . . . , k} such that for each j 6 k′, we have X ′j = Xτ(j).
But then for any i 6 k, we have

Xτ(σ(i)) = X ′σ(i) = Xi,

so τ(σ(i)) = i. Similarly, for each j 6 k′, we have σ(τ(j)) = j. Hence
k = k′ and σ is a permutation. �
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The closed subsets X1, . . . , Xk from Proposition 1.14 are called the
irreducible components of X.

Definition 1.15. Let V be an affine algebraic set. We call V an
affine variety, if it is irreducible as a topological space with the Zariski
topology.

We can now directly apply Proposition 1.14.

Proposition 1.16. Every affine algebraic set can be expressed uniquely
as a finite union of affine varieties, no one containing another.

Example 1.17. Union of affine line and parabola, or line and points
etc. But we still do not know whether e.g. hyperbola or parabola is
irreducible. In the next section we will learn an algebraic criterium for
irreducibility.

Definition 1.18. Let X be a topological space. The dimension of X,
denoted dim(X), is the supremum of k ∈ N such that there is a strictly
decreasing (or increasing) sequence of irreducible closed subsets of X:

X ⊇ X0 ) X1 ) . . . ) Xk.

(Note that the empty set is not considered to be irreducible.)

Problem 1.3: If X is Noetherian and T1 (points are closed), then
dim(X) = 0 iff X is finite.

There is a Noetherian topological space X such that dim(X) =∞.

Let V be an affine algebraic set. By the dimension of V , denoted
dim(V ), we mean the dimension of V as a Noetherian topological space
(with the Zariski topology).

Example 1.19. We can see that dim(A1) = 1, since A1 is irreducible
and a proper closed subset of A1 is irreducible iff it is a singleton.

Definition 1.20. An affine algebraic curve (or just affine curve) is an
affine algebraic variety C such that dim(C) = 1.

We know so far that the affine line is an affine curve. In the next section
we will find algebraic criteria to decide whether an algebraic variety is
a curve (in particular to prove that hyperbola and parabola are indeed
curves as they ought to be).

1.2. Coordinate rings. We want to express some properties of affine
algebraic sets in algebraic terms. The assumption that K is alge-
braically closed will be needed for this.
For any set Y , let Func(Y,K) denote the set of all functions from Y to
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K. It has a natural K-algebra structure (K embeds into Func(Y,K) as
the subfield of constant functions). For F ∈ K[X̄], let us denote (only
for a while) by F̃ the corresponding polynomial function from An to
K. By the definition of the ring operations in K[X̄], the map

K[X̄] 3 F 7→ F̃ ∈ Func(An, K)

is a homomorphism of K-algebras.

Problem 1.4: If F 6= G, then F̃ 6= G̃.

By Problem 1.4, we can identifyK[X̄] with aK-subalgebra of Func(An, K)
consisting of polynomial functions, and we will not write F̃ anymore.

Definition 1.21. If V ⊆ An, then the (affine) coordinate ring of V
(or ring of polynomial functions on V ) is:

K[V ] := {f ∈ Func(V,K) | (∃F ∈ K[X̄])(F |V = f)}.

It is easy to see that K[V ] above is a K-subalgebra of Func(V,K).

Problem 1.5: If V ⊂ An is finite, then K[V ] = Func(V,K).

Therefore, K[V ] ∼=K K |V |, the Cartesian power of the field K (consid-
ered with the coordinate-wise K-algebra structure). By Problem 1.4,
K[An] = K[X̄].

We have a natural epimorphism of K-algebras:

K[X̄] 3 F 7→ F |V ∈ K[V ].

We denote its kernel by I(V ), it is the ideal of V .

Lemma 1.22. The ideal I(V ) is radical, i.e. I(V ) =
√
I(V ).

Proof. Let us take F ∈
√
I(V ). There is k ∈ N such that F k ∈ I(V ).

It means that for each v ∈ V , we have 0 = F k(v) = F (v)k. Hence for
each v ∈ V , F (v) = 0, thus F ∈ I(V ). �

Clearly

I(V ) := {F ∈ K[X̄] | (∀x̄ ∈ V )(F (x̄) = 0)},
and we have an isomorphism of K-algebras:

K[V ] ∼= K[X̄]/I(V ).

Lemma 1.23. Let (Vi ⊆ An)i<κ and J P K[X̄]. Then:

(1) If V0 ⊆ V1, then I(V1) ⊆ I(V0);
(2) I(

⋃
Vi) =

⋂
I(Vi);

(3) J ⊆ I(V (J));
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(4) V (I(V0)) is the Zariski closure (i.e. the closure in the Zariski
topology) of V0.

Proof. We omit easy proofs of (1), (2) and (3). For (4), let V̄0 be the
Zariski closure of V0. It is also easy to see that V0 ⊆ V (I(V0)). Since
V (I(V0)) is Zariski closed, it is enough to show that for any Zariski
closed W ⊆ An such that V0 ⊆ W , we have V (I(V0)) ⊆ W . There is
J P K[X̄] such that W = V (J). Hence V0 ⊆ V (J). By (3) and (1),
we have:

J ⊆ I(V (J)) ⊆ I(V0).

By Lemma 1.3(1), V (I(V0)) ⊆ V (J) = W . �

We aim to describe I(V (I)) for I P K[X̄]. We will need another
famous theorem of Hilbert. We just give an idea of the proof of this
theorem. The most natural (full) proof uses basic model theory and
will be given in my other course. This is the place, where we use the
assumption that K is algebraically closed.

Theorem 1.24 (Weak Hilbert’s Nullstellensatz). Let I P K[X̄].
If I 6= K[X̄], then V (I) 6= ∅.

Idea of the proof. Let F1, . . . , Fr ∈ I be such that I = (F1, . . . , Fr), and
let k be the subfield of K generated by the coefficients of F1, . . . , Fr.
Since I 6= K[X̄], I extends to a maximal m P K[X̄]. Let L := K[X̄]/m
and Φ : K → L denote the following composition:

K
⊆ // K[X̄] // K[X̄]/m = L.

Since Φ is a homomorphism of fields, it is an embedding. Hence we
can identify K with a subfield of L. Let

v := (X1 + m, . . . , Xn + m) ∈ Ln.

It is easy to check (but some care is necessary) that

F1(v) = 0, . . . , Fr(v) = 0.

Let l := k(v). Now, if there is an k-algebra homomorphism Ψ : l→ K,
then Ψ(v) ∈ V (I), so V (I) is non-empty. This homomorphism exists
for example if trdegkK is infinite (enough to take the transcendence
degree over the prime field). By using model theory, the (incomplete)
homomorphism argument can be replaced with an elementary extension
argument. We will not go into details here. �

There are many algebraic proofs of Weak Hilbert’s Nullstellensatz. We
will not discuss any of them here.
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Corollary 1.25 (Hilbert’s Nullstellensatz). For I P K[X̄], we

have I(V (I)) =
√
I.

Proof. By Lemma 1.23(3), we have I ⊆ I(V (I)). By 1.22, we have√
I ⊆ I(V (I)). For the opposite inclusion, let us take a non-zero

G ∈ I(V (I)) and F1, . . . , Fr ∈ I such that I = (F1, . . . , Fr). Let us
define

J := (F1, . . . , Fr, Xn+1G− 1) P K[X̄,Xn+1].

Take any (v̄, v) ∈ An+1. If for each i 6 r, we have Fi(v̄) = 0, then
v̄ ∈ V (I). Thus G(v̄) = 0, since G ∈ I(V (I)). Therefore

(Xn+1G− 1)(v̄, v) = 0− 1 6= 0.

We have obtained that V (J) = ∅. By Weak Hilbert’s Nullstellensatz,
J = K[X̄,Xn+1]. Hence there are H1, . . . , Hr+1 ∈ K[X̄,Xn+1] such
that

(1) 1 =
r∑
i=1

HiFi +Hr+1(Xn+1G− 1).

Consider the following homomorphism of K-algebras:

Ψ : K[X̄,Xn+1]→ K(X̄); Ψ(Xi) = Xi for i 6 n, Ψ(Xn+1) = G−1

(here we use G 6= 0). After applying Ψ to (the both sides of) (1) we
get the following equality in K(X̄)

(2) 1 =
r∑
i=1

Hi(X̄,G
−1)Fi(X̄).

Let N be the maximum of the degrees of Hi with respect to the variable
Xn+1. Multiplying the both sides of (2) by GN we get:

(3) GN =
r∑
i=1

GNHi(X̄,G
−1)Fi(X̄),

where for each i 6 r, we have GNHi(X̄,G
−1) ∈ K[X̄]. By (3), GN ∈ I,

therefore G ∈
√
I. �

We can prove now the algebraic characterization of irreducibility.

Proposition 1.26. Let V ⊆ An be Zariski closed. The following are
equivalent:

(1) V is irreducible,
(2) I(V ) is prime,
(3) There is a prime ideal P P K[X̄] such that V = V (P ),
(4) K[V ] is a domain.
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Proof. Since K[V ] ∼= K[X̄]/I(V ), we get the equivalence (2)⇔ (4).
For the implication (1) ⇒ (2) assume that V is irreducible and take
F,G ∈ K[X̄] such that FG ∈ I(V ). Then

V ⊆ V (FG) = V (F ) ∪ V (G).

Since V is irreducible, V ⊆ V (F ) or V ⊆ V (G). It means that F ∈
I(V ) or G ∈ I(V ), so I(V ) is prime.
For the implication (2) ⇒ (3) we take P = I(V ). Since V is Zariski
closed, we get by Lemma 1.23(4):

V (P ) = V (I(V )) = V.

For the implication (3)⇒ (1) assume that V = V (P ) for a prime ideal
P and take Zariski closed V1, V2 ⊆ An such that V = V1 ∪ V2. By
1.23(2) and Hilbert Nullstellensatz, we have

I(V1) ∩ I(V2) = I(V1 ∪ V2) = I(V (P )) =
√
P = P.

Since P is prime, P = I(V1) or P = I(V2). By Lemma 1.23(4), V = V1

or V = V2, so V is irreducible. �

Remark 1.27. For the equivalences (1) ⇔ (2) ⇔ (4) we do not need
the assumption thatK is algebraically closed. However this assumption
is necessary for the crucial equivalence with (3) (see Problem 1.6).

Clearly, I may be not prime and V (I) may be still irreducible, e.g. for
I = (X2).

Corollary 1.28. If F ∈ K[X̄] is irreducible (as an element of the ring
K[X̄]), then the hypersurface V (F ) is an affine variety.

Proof. Since K[X̄] is UFD (Gauss Theorem) and F is irreducible, F
is prime. Therefore, the ideal (F ) is prime. By 1.26(4), V (F ) is irre-
ducible. �

Problem 1.6: Find F ∈ R[X, Y ] which is irreducible such that V (F ) ∩
R2 is non-empty and not irreducible.

Example 1.29. We can finally give some examples of affine varieties
and their coordinate rings.

(1) Let V = V (Y −X2) ⊆ A2 (parabola). The polynomial Y −X2

is irreducible, so by Corollary 1.28, V is an affine variety. Since
the ideal (Y − X2) is prime, we get by Hilbert Nullstellensatz
that I(V ) = (Y −X2). Therefore

K[V ] ∼=K K[X, Y ]/(Y −X2) ∼=K K[X].



11

Note that K[V ] ∼=K K[A1] which suggests that parabola is
“isomorphic” to the affine line. We will make sense out of it
and see that it is true.

(2) Let V = V (Y X − 1) ⊆ A2 (hyperbola). Similarly as above, V
is an affine variety and K[V ] ∼=K K[X, Y ]/(XY − 1).
Problem 1.7: K[V ] is not isomorphic to K[A1].

(3) Let V = V (Y 2 −X3). Problem 1.8: K[V ] is not UFD.
In particular K[V ] is not isomorphic to K[A1]. Actually, the
fact that K[V ] is not UFD corresponds precisely to the fact that
V is singular at (0, 0) (again, we will make it precise later). This
is very typical: algebraic properties of the coordinate ring of V
reflect geometric properties of V .

Corollary 1.30. Let V ⊆ An be an affine algebraic set. There is a
bijective correspondence (inverting inclusions) between the set of radical
(resp. prime) ideals of K[V ] and the set of Zariski closed subsets (resp.
irreducible Zariski closed subsets) of V .

Proof. By Proposition 1.26 and Hilbert Nullstellensatz (and 1.3(1),
1.23(1)), we have such correspondences for V = An. For an arbi-
trary V let us concentrate on prime ideals. Since K[V ] = K[X̄]/I(V ),
the set of prime ideals of K[V ] corresponds to the set of prime ideals of
K[X̄] containing I(V ). But the latter set corresponds exactly (again
by the references above) to the set of irreducible Zariski closed subsets
of V . �

We recall a definition from ring theory.

Definition 1.31. Let R be a ring. The Krull dimension of R, de-
noted dim(R), is the supremum of k ∈ N such that there is a strictly
increasing (or decreasing) sequence of prime ideals of R:

P0 ( P1 ( . . . ( Pk.

Example 1.32. It is usually not easy to calculate the Krull dimension
of a ring. We describe it in some simple cases.

• If k is a field, then dim(k) = 0, because the 0-ideal is the unique
prime ideal in k.
• Problem 1.9: If R is PID and not a field, then dim(R) = 1.
• Nagata has constructed a Noetherian ring of infinite Krull di-

mension.

Proposition 1.33. Let V be an affine algebraic set. Then dim(V ) =
dim(K[V ])

Proof. It follows directly from the definitions and Corollary 1.30. �
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In the case of coordinate rings, there is an easier description of the
Krull dimension, but it is difficult to prove. First we need one more
definition.

Definition 1.34. Let V be an irreducible affine variety. Then K(V )
denotes the field of fractions of K[V ] (which is a domain by 1.26(4))
and it is called the field of rational functions on V .

We will not give a real proof of the following theorem (recall that R0

denotes the field of fractions of R).

Theorem 1.35. Let R be a finitely generated K-algebra which is a
domain. Then we have:

dim(R) = trdegK R0.

A very brief idea of the proof. Let us assume first that R = K[X̄] and
consider the following chain of prime ideals

(0)  (X1)  (X1, X2)  (X1, . . . , Xn).

Hence dim(K[X̄]) > n. The other inequality is more difficult and is
proved by induction on n by finding an appropriate quotient ring.
For the general case, by Noether’s Normalization Theorem there are
r1, . . . , rd ∈ R which are algebraically independent over K and such the
the ring extension K[r1, . . . , rd] ⊆ R is finite, i.e. R is a finitely gener-
ated K[r1, . . . , rd]-module. Then the field extension K(r1, . . . , rd) ⊆ R0

is also finite, hence algebraic and trdegK R0 = d.
Clearly K[r1, . . . , rd] ∼= K[X1, . . . , Xd], so dim(K[r1, . . . , rd]) = d. Now
we have to use the fact that the Krull dimension does not change in
finite extensions so dim(R) = d. �

Remark 1.36. A finitely generated algebra over a field is called an
affine domain. Theorem 1.35 holds for any affine domain (we do not
need the assumption that K is algebraically closed).

Corollary 1.37. Let V be an irreducible affine variety. Then

dim(V ) = trdegK K(V ).

Proof. The K-algebra K[V ] is finitely generated as an image of K[X̄]
and it is a domain, so we can use 1.33 and 1.35. �

The above corollary can be also proved using model theory (elimination
of quantifiers for the theory of algebraically closed fields) instead of
Theorem 1.35.

Corollary 1.38. Let V be a plane curve. Then dim(V ) = 1. (So, a
plane curve is an affine curve.)



13

Proof. Let F ∈ K[X, Y ] be irreducible such that V = V (F ). Then
K[V ] ∼= K[X, Y ]/(F ) and let us identify this two K-algebras. We
consider K[X, Y ]/(F ) as a ring extension of K. Let

t := X + (F ) ∈ K[V ] ⊆ K(V ), s := Y + (F ) ∈ K[V ] ⊆ K(V ).

Case 1 t ∈ K.
Then X − t ∈ (F ), so F |X − t in K[X, Y ]. Since F and X − t are
irreducible, (F ) = (X − t), so

K[X, Y ]/(F ) = K[X, Y ]/(X − t) ∼= K[Y ].

Then K(V ) ∼= K(Y ), so trdegK K(V ) = 1, OK.

Case 2 t /∈ K.
We will show that {t} is the transcendence basis of K(V ). Since t /∈ K
and K is algebraically closed, {t} is algebraically independent. Now
it is enough to show that K(t) ⊂ K(V ) is algebraic. Since K(V ) =
K(t, s), it is enough to show that s is algebraic over K(t). Let

G(Y ) := F (t, Y ) ∈ K(t)[Y ].

If G = 0, then t is algebraic over K, a contradiction. So G 6= 0 and
G(s) = F (t, s) = 0, OK. �

Remark 1.39. The above corollary is generalized as follows:
Let F ∈ K[X̄] \K and V be an irreducible component of V (F ). Then
dim(V ) = n− 1.
To prove it, one needs to know Krull’s Principal Ideal Theorem (Haup-
tidealsatz).

To avoid usage of Theorem 1.35 in the case of curves, we can use
Problem 1.11 below.

Problem 1.10: V is a point iff trdegK K(V ) = 0.

Problem 1.11: If trdegK K(V ) = 1, then V is a curve.

1.3. The category of affine algebraic sets. Let V ⊆ An, W ⊆ Am

and Z ⊆ Ar be affine algebraic sets.

Definition 1.40. A function Φ : V → W is a morphism, if there are
f1, . . . , fm ∈ K[V ] such that for each v ∈ V we have

Φ(v) = (f1(v), . . . , fm(v)).

In other words, a morphism is a polynomial function. Note that the
set of morphism from V to A1 is exactly K[V ].
It is easy to see that if Φ : V → W and Ψ : W → Z are morphism,
then Ψ ◦ Φ : V → Z is a morphism (the composition of polynomial
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functions is a polynomial function) and such that idV is a morphism.
Therefore we obtain the category of affine algebraic sets.
As in any category, a morphism Φ : V → W is an isomorphism, if there
is a morphism Ψ : W → V such that Ψ ◦Φ = idV and Φ ◦Ψ = idW . If
there is an isomorphism between V and W , then we write V ∼= W . As
usual we have:

• V ∼= V ;
• if V ∼= W , then W ∼= V ;
• if V ∼= W and W ∼= Z, then V ∼= Z.

Example 1.41. We have noticed that parabola V = V (Y −X2) should
be isomorphic to affine line. Let

Φ : A1 → V, Φ(x) = (x, x2), Ψ : V → A1, Ψ(x, y) = x.

Then we have

Ψ(Φ(x)) = Ψ(x, x2) = x, Ψ(Φ(x, y)) = Ψ(x) = (x, x2) = (x, y).

Therefore V ∼= A1.

Example 1.42. We may be used to algebraic situations where a bi-
jective homomorphism is an isomorphism. It is not the case here! For
example, if char(K) = p > 0, then

Fr : A1 → A1, Fr(x) = xp.

The Frobenius morphism is bijective, but it is not an isomorphism,
since there is no polynomial F such that F (Xp) = X. Later, we will
also give an example in characteristic 0.

We will explain now the notion of morphism on the level of coordinate
rings.

Definition 1.43. For a morphism Φ : V → W let:

Φ∗ : K[W ]→ K[V ], Φ∗(f) = f ◦ Φ.

We know that the composition of morphisms is a morphism, so it is
well defined. Note that we invert arrows which always brings some
difficulties.
It is obvious that Φ∗ is a K-algebra homomorphism, since for v ∈ V
and f, g ∈ K[W ] we have

[Φ∗(f · g)](v) = (f · g)(Φ(v)) = f(Φ(v)) · g(Φ(v))

= [(f ◦ Φ) · (g ◦ Φ)](v) = (Φ∗(f) · Φ∗(g))(v),

and similarly for the addition and the scalar multiplication.
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Proposition 1.44. (1) If Ψ : V → W and Φ : W → Z are mor-
phism, then

(Φ ◦Ψ)∗ = Ψ∗ ◦ Φ∗, (idV )∗ = idK[V ] .

(2) The map Φ 7→ Φ∗ is a bijection between the set of morphisms
from V to W and the set of K-algebra homomorphisms from
K[W ] to K[V ].

(3) For any finitely generated K-algebra R which is reduced (i.e.
has no nilpotent elements), there is an affine algebraic set V
such that R ∼=K K[V ].

Proof. (1) is a very easy diagram chase.
For (2), let us notice first that polynomial functions separate points, i.e.
by Problem 1.5, for any w,w′ ∈ W , if w 6= w′ then there is t ∈ K[W ]
such that t(w) = 0, t(w′) = 1.
Let us take two different morphisms Φ,Ψ : V → W . Then there is
v ∈ V such that Φ(v) 6= Ψ(v). Hence we find t ∈ K[W ] such that
t(Φ(v)) = 0, t(Ψ(v)) = 1, hence Φ∗(t)(v) 6= Ψ∗(t)(v), so Φ∗ 6= Ψ∗.
Let us take a K-algebra homomorphism γ : K[W ] → K[V ]. We have
a morphism

Ψ : V → Am, Ψ = (γ(X1|W ), . . . , γ(Xm|W )).

We will check that Ψ(V ) ⊆ W and γ = Ψ∗.
To show that Ψ(V ) ⊆ W , it is enough to show that for any F ∈ I(W ),
we have F ◦ Ψ = 0. Since γ is a K-algebra homomorphism and the
restriction map is a homomorphism we have:

F ◦Ψ = F (γ(X1|W ), . . . , γ(Xm|W ))

= γ(F (X1|W , . . . , Xm|W ))

= γ(F |W )

= 0.

To show that γ = Ψ∗, we take f ∈ K[W ] and F ∈ K[X1, . . . , Xm]. By
computations as above, we have:

Ψ∗(f) = f ◦Ψ

= F ◦Ψ

= γ(F |W )

= γ(f).

For (3), let us take a finitely generated reduced K-algebra R. Then R is
isomorphic to K[X1, . . . , Xd]/I for some d ∈ N and I P K[X1, . . . , Xd].
Since R is reduced, I is radical (Problem 2.1). By Hilbert’s Nullstel-
lensatz, I = I(V (I)), so R ∼= K[V (I)]. �



16

The above proposition says that the category of affine algebraic sets is
antiequivalent or dually equivalent to the category of finitely generated
reduced K-algebras. In other words, these two categories are “the
same” after inverting arrows.

Corollary 1.45. If V,W are affine algebraic sets, then V ∼= W if and
only if K[V ] ∼=K K[W ].

2. Affine varieties locally

In this section we will be interested in the local properties of an affine
variety around a given point. Let V ⊆ An,W ⊆ Am, Y ⊆ Ar be affine
varieties.

2.1. Rational maps. We will first regard a rational function on a
variety as an actual function.

Definition 2.1. Let f ∈ K(V ). We define the domain of f , denoted
dom(f), as the set of points v ∈ V such that there are f1, f2 ∈ K[V ]
such that f = f1/f2 and f2(v) 6= 0.

If v ∈ dom(f) and f1, f2 are as above, then we define f(v) as f1(v)/f2(v).
Clearly the value f(v) does not depend on the choice of representatives
f1, f2 ∈ K[V ]. So we have a function:

f : dom(f)→ K.

Problem 2.2: dom(f) is (Zariski) open in V .

Definition 2.2. Let f ∈ K(V ) and v ∈ V . Then:

• f is regular at v, if v ∈ dom(f);
• OV,v := {f ∈ K(V ) | v ∈ dom(f)};
• f is regular, if f is regular at each v ∈ V , i.e. if dom(f) = V .

Example 2.3. Let V = A1 and f = 1/X. Then dom(f) = A1 \ {0}.

For any W ⊆ V , let

IV (W ) := {f ∈ K[V ] | f |W = 0}.
Problem 2.3: For any v ∈ V , the ideal IV (v) (= IV ({v})) is maximal.

Before the next result (the description of OV,v) let us recall that a
local ring is a ring with a unique maximal ideal. A ring is local if and
only if the set of non-invertible elements is an ideal (necessarily the
unique maximal ideal). For any domain R and prime ideal P P R, the
localization ring RP is local with the maximal ideal

PRP := {a
b
∈ R | a ∈ P, b ∈ R \ P}.
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We naturally identify RP with the following subring of R0:

{a
b
∈ R0 | a ∈ R, b ∈ R \ P}.

For any multiplicative subset S ⊂ R, we consider R as a subring of RS.

Fact 2.4. For any v ∈ V , OV,v = K[V ]IV (v).

Proof. This is just checking the definitions. For any f ∈ K(V ), we
have f ∈ K[V ]IV (v) if and only if there are a ∈ K[V ], b ∈ K[V ] \ IV (v)
such that f = a/b which happens if and only if v ∈ dom(f). �

Definition 2.5. For v ∈ V , mV,v denotes the maximal ideal of OV,v.

By Fact 2.4, mV,v = IV (v)K[V ]IV (v).

The next result says that regular functions actually coincide with the
polynomial ones.

Proposition 2.6. Let f ∈ K(V ). Then f is regular if and only if
f ∈ K[V ].

Proof. Clearly, any f ∈ K[V ] is regular. Let f ∈ K(V ) be regular. By
Proposition 2.4, f ∈

⋂
v∈V K[V ]IV (v). However, by Proposition 1.30,

the maximal ideals of K[V ] correspond to the minimal subvarieties of
V , i.e. points, so every maximal ideal m P K[V ] is of the form IV (v)
for some v ∈ V . Therefore

f ∈
⋂

m P K[V ] max

K[V ]m

However, by a known result in ring theory (Problem 2.4) this intersec-
tion coincides with K[V ]. �

We know that any morphism Ψ : V → W induces a K-algebra homo-
morphism Ψ∗ : K[W ] → K[V ] and we get a bijective correspondence.
What happens on the level of fields of rational functions? Let us first
look at an algebraic fact.

Problem 2.5: Let α : R1 → R2 be a homomorphism of domains and
S1 ⊂ R1, S2 ⊂ R2 be multiplicative subsets. Then α extends to a
homomorphism β : (R1)S1 → (R2)S2 if and only if α(S1) ⊆ S2.

Hence Ψ∗ : K[W ] → K[V ] extends to the fraction fields if and only
if Ψ∗(K[W ] \ {0}) ⊆ K[V ] \ {0} which happens if and only if Ψ∗ is a
monomorphism.

Lemma 2.7. Let Ψ : V → W be a morphism. Then Ψ∗ is a monomor-
phism if and only if Ψ is dominant, i.e. Ψ(V ) is Zariski dense in W .
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Proof. Assume that Ψ(V ) is Zariski dense in W and take f ∈ K[W ]
such that

0 = Ψ∗(f) = f ◦Ψ.

This means that Ψ(V ) ⊆ V (F ) for F ∈ K[X1, . . . , Xm] such that
f = F |W . But Ψ(V ) is Zariski dense in W and V (F ) is Zariski closed,
so W ⊆ V (F ), hence 0 = F |W = f .
Assume that Ψ(V ) is not Zariski dense in W , so there is a proper
Zariski closed W0 ⊂ W such that Ψ(V ) ⊆ W0. But then there is F ∈
K[X1, . . . , Xm] such that F |W0 = 0 and f := F |W 6= 0. Since F |W0 = 0
and Ψ(V ) ⊆ W0, we get Ψ∗(f) = 0, so Ψ∗ is not a monomorphism. �

Notation 2.8. The notation Φ : V � W means that Φ is a dominant
morphism from V to W .

Remark 2.9. The notation V � W reminds the notation for an epi-
morphism (of group or rings). Actually, the dominant morphisms are
exactly the epimorphisms in the category of affine algebraic sets and
the above lemma is true for arbitrary algebraic sets.

We see that any dominant morphism Ψ : V → W induces a K-algebra
homomorphism of fields Ψ∗ : K(W )→ K(V ). Actually, Ψ need not to
be a morphism to induce such a function.

Definition 2.10. Let U ⊆ V be a non-empty open subset. A function
Φ : U → W is called a rational function between V and W if there are
f1, . . . , fm ∈ K(V ) such that U := dom(f1)∩ . . .∩ dom(fm) and for all
v ∈ U we have

Φ(v) = (f1(v), . . . , fm(v)).

(Note that by Problem 1.12, if we have U1, . . . , Un non-empty subsets
of V , then U1 ∩ . . .∩Un is non-empty.) A rational function Φ as above
is dominant, if Φ(U) is Zariski dense in W .

We want now to compose rational functions. Let us see some examples
first.

Example 2.11. Let V = W = Y = A2, Φ be a rational function
between V and W , and Ψ be a rational function between W and Y .

(1) Let Φ be given by (X,X2) (so it is even a morphism) and Ψ
be given by (0, 1/(Y −X2)). Then we can not compose Ψ and
Φ, since the image of Ψ has the empty intersection with the
domain of Φ.

(2) Let Φ be given by (1/X, Y 2) and Ψ be given by arbitrary ra-
tional functions (F1/G1, F2/G2) (so G1, G2 6= 0). Then the
rational functions G1(1/X, Y 2), G2(1/X, Y 2) are non-zero (e.g.
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since Φ is dominant), so we can define the rational function
Ψ ◦ Φ as (

F1(1/X, Y 2)

G1(1/X, Y 2)
,
F2(1/X, Y 2)

G2(1/X, Y 2)

)
.

We can generalize the second example above to the case of arbitrary
rational functions. Let Φ be a rational function between V and W
which is dominant and Ψ be a rational function between W and Y . Let
Φ be given by (f1, . . . , fm) where f1, . . . , fm ∈ K(V ) and Φ be given by
(g1, . . . , gr) where g1, . . . , gr ∈ K(W ). Take F1, . . . , Fr ∈ K[X1, . . . , Xr]
and G1, . . . , Gr ∈ K[X1, . . . , Xr] such that for each j we have Gj|W 6= 0
and

gj =
Fj|W
Gj|W

.

Define Φ ◦Ψ by the following sequence:(
F1(f1, . . . , fm)

G1(f1, . . . , fm)
, . . . ,

Fr(f1, . . . , fm)

Gr(f1, . . . , fm)

)
.

As in Example 2.11(2), each Gj(f1, . . . , fm) 6= 0, since Gj|W 6= 0 and
Φ is dominant. Hence we can compose such rational functions.
Note that K(V ) corresponds to rational functions from V to A1. If we
have any f ∈ K(W ), then f ◦Ψ is a rational function from V to A1 so
an element of K(V ). Therefore we have a function:

Ψ∗ : K(W )→ K(V ), Ψ∗(f) = f ◦Ψ.

We can check (as in the case of morphisms) that Ψ∗ is a K-algebra
homomorphism.

Notation 2.12. The notation Φ : V 99K W means that Φ is a domi-
nant rational function V to W .

We will state without a proof a result similar to Proposition 1.44 (the
proof is similar as well).

Proposition 2.13. (1) If Ψ : V 99K W and Φ : W 99K Z, then

(Φ ◦Ψ)∗ = Ψ∗ ◦ Φ∗, (idW )∗ = idK(V ) .

(2) The map Φ 7→ Φ∗ is a bijection between the set of dominant
rational functions from V to W and the set of K-algebra homo-
morphisms between K(W ) and K(V ).

(3) For any field extension K ⊆ L such that L is finitely generated
(as a field) over K, there is an affine variety V such that

L ∼=K K(V ).
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The above proposition says that the category of affine varieties and
dominant rational maps is antiequivalent or dually equivalent to the
category of finitely generated field extensions of K.

2.2. Smoothness. We will give an algebraic definition of smoothness.
First we need the notion of a partial derivative in a polynomial ring.

Definition 2.14. Let R be a ring and ∂ : R → R. The map ∂ is a
derivation on R if for all a, b ∈ R we have:

∂(a+ b) = ∂(a) + ∂(b), ∂(ab) = b∂(a) + a∂(b).

Example 2.15. (1) For R = C∞(R) we have the standard deriva-
tion ∂ = ∂

∂X
on R. As we know, we can identify R[X] with a

subring of R and then ∂|R[X] is a derivation on R[X].

(2) Let T be an arbitrary ring. We can define a derivation ∂ = ∂
∂X

on T [X] by coping the formula for ∂|R[X] from (1), i.e.

∂(a0+a1X+a2X
2+. . .+amX

m) := a1+2a2X+. . .+(m−1)am−1X
m−1.

It can be easily checked that ∂ is a derivation.

Remark 2.16. Note that if char(T ) = p > 0, then there are non-
constant polynomials on which ∂ vanishes, e.g. ∂(Xp) = 0.

Definition 2.17. For each i ∈ {1, . . . , n}, we have the derivation ∂
∂Xi

on K[X̄] coming from the identification

K[X̄] = K[X1, . . . , Xi−1, Xi+1, . . . , Xn][Xi].

Example 2.18. Let us consider again V = V (Y 2 − X3) ⊆ A2. We
intuitively know that (0, 0) is (a unique) singular point of V . How to
see it algebraically? Consider the pair of polynomials(

∂(Y 2 −X3)

∂X
,
∂(Y 2 −X3)

∂Y

)
= (−3X2, 2Y ).

We can see that for (a, b) ∈ V , this pair of polynomials vanishes on
(a, b) if and only if (a, b) = (0, 0).

One can wonder what does the condition from the example above has
to do with smoothness. To explain this, we will go for a while into the
world of differential geometry.

Example 2.19. Let f : R2 → R be a C1-function, V := f−1(0) and
(a, b) ∈ V . If ∂f

∂Y
(a, b) 6= 0, then by the Implicit Function Theorem,

there are open neighborhoods

a ∈ Ua ⊆ R, b ∈ Ub ⊆ R
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and a C1-function g : Ua → Ub such that

U ∩ V = Γg,

where U = Ua × Ub and Γg is the graph of g. Then U ∩ V is a smooth
submanifold of R2 (as the graph of a smooth function), so (a, b) is a
smooth point of V . By the Analytic Implicit Function Theorem, the
above works for an analytic function f : C2 → C, in particular for
polynomial functions. Hence for V = V (Y 2 − X3) ⊆ A2(C), we see
that (0, 0) is the unique singular (i.e. non-smooth) point of V .

The above examples will motivate the definition of a smooth point on
an affine variety. First, we need one more definition.

Definition 2.20. Let F1, . . . , Fm ∈ K[X̄]. The Jacobian matrix of
F̄ = (F1, . . . , Fm) is

JF̄ :=

(
∂Fi
∂Xj

)
i,j

∈Mm,n(K[X̄]).

If v ∈ An, then JF̄ (v) ∈Mm,n(K).

Problem 2.7: If G1, . . . , Gk ∈ (F1, . . . , Fm) and v ∈ V (F1, . . . , Fm), then
the rows of JḠ(v) are K-linear combinations of the rows of JF̄ (v).

Recall that for A ∈ Mm,n(K) the rank of A, denoted rk(A), is the
dimension of the image of A considered as a K-linear map Kn → Km.
It coincides with the maximal number of independent rows of A (and
also with the maximal number of independent columns of A).
From Problem 2.7 we immediately get the following fact.

Fact 2.21. If (G1, . . . , Gk) = I = (F1, . . . , Fm) P K[X̄] and v ∈ V (I),
then

rk(JḠ(v)) = rk(JF̄ (v)).

Therefore, the rank of such a Jacobian does not depend on the choice
of generators.

Now we can finally state the main definition.

Definition 2.22. Let V ⊆ An be an algebraic set, F1, . . . , Fm ∈ I(V )
be such that I(V ) = (F1, . . . , Fm) and a ∈ V . Let F̄ denote the tuple
of polynomials F1, . . . , Fm. We say that a is a non-singular or a smooth
point of V if

rk(JF̄ (a)) = n− dim(V ).

We say that V is a non-singular variety or a smooth variety, if V is
irreducible and all the points of V are smooth.
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Note that by Fact 2.21, this definition makes sense, i.e. does not de-
pend on the choice of F1, . . . , Fm. To explain the equality used in the
above definition, for a smooth a ∈ V , intuitively, “V around a should
infinitesimally look like JF̄ (a)−1(0)” and we have

dim(JF̄ (a)−1(0)) = n− rk(JF̄ (a)),

so the rank condition in the above definition makes sense. Also this
definition coincides with Example 2.18 and we have the following gen-
eralization.

Example 2.23. Let V = V (F ) be a plane curve and (t, s) ∈ V . Then
dim(V ) = 1, so (t, s) is smooth if and only if rk(JF (t, s)) = 1 which
happens if and only if ∂f

∂X
(t, s) 6= 0 or ∂f

∂Y
(t, s) 6= 0.

Remark 2.24. Assume that K = C and V ⊆ An is a smooth affine
variety. Then it can be proved that V is a complex analytic submanifold
of Cn. Thus the analytic and algebraic notions of smoothness coincide.

Fact 2.25. Let F ∈ K[X, Y ] and V = V (F ) ⊆ A2. Then:

(1) If F /∈ K, then V is infinite.

(2) If V (F, ∂F
∂X
, ∂F
∂Y

) is finite, then
√

(F ) = (F ) and I(V ) = (F ).

(3) If V (F, ∂F
∂X
, ∂F
∂Y

) is empty, then V is smooth.

We will prove a characterization of smoothness in terms of local rings
which will be very important in the sequel. Before the statement let
us notice that any ideals I, J P K[V ] are also K-vector spaces and
if I ⊆ J , the quotient J/I is a K-vector space as well (and also a
K[V ]-module). First we prove:

Proposition 2.26. A point a ∈ V is smooth if and only if

dimK(IV (a)/(IV (a))2) = dim(V ).

Proof. By applying the translation by a, we can assume that a = 0 =
(0, . . . , 0). Let us consider the following map:

Ψ : K[X̄]→ Kn, Ψ(F ) :=

(
∂F

∂X1

(0), . . . ,
∂F

∂Xn

(0)

)
.

It is clearly K-linear. Let I := I(0) P K[X̄]. It is easy to check that
ker(Ψ) ∩ I = I2 (do at home!). Let {e1, . . . , en} be the standard basis
of Kn and pick i ∈ {1, . . . , n}. Then Ψ(Xi) = ei, so Ψ(I) = Kn.
Therefore

(1) I/I2 ∼= Kn

(as K-vector spaces).
Let us take F1, . . . , Fm ∈ I(V ) such that I(V ) = (F1, . . . , Fm) and any
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F =
∑
αiFi ∈ I(V ). Since 0 ∈ V , for each j ∈ {1, . . . , n} we get by

Leibnitz’s Rule:
∂(αiFi)

∂Xj

(0) = αi(0)
∂Fi
∂Xj

(0).

We obtain:

Ψ(F ) = Ψ(
∑

(αiFi)) =
∑

αi(0)Ψ(Fi).

Since for each i, Ψ(Fi) is the i-th row of JF̄ (0), we get:

(2) rk(JF̄ (0)) = dimK Ψ(I(V )).

By (1), we get Ψ(I(V )) ∼= (I(V ) + I2)/I2, so by (2) we have:

(3) rk(JF̄ (0)) = dimK(I(V ) + I2)/I2.

Consider now the restriction epimorphism π : K[X̄] → K[V ]. Clearly
ker(π) = I(V ). We have:

IV (0)/IV (0)2 ∼= π−1(IV (0))/π−1(IV (0)2).

But π−1(IV (0)) = I and π−1(IV (0)2) = I2 + I(V ) (check at home!).
Hence we get:

(4) IV (0)/IV (0)2 ∼= I/(I2 + I(V )) ∼=
I/I2

(I2 + I(V ))/I2
.

By (1), (3) and (4) we get

n = dimK(IV (0)/(IV (0))2) + rk(JF̄ (0)).

Therefore dimK IV (0)/(IV (0))2 = dim(V ) if and only if 0 is a smooth
point of V . �

Our statement will follow from the above proposition and the following
lemma.

Lemma 2.27. If V is an affine variety and a ∈ V then we have:

IV (a)/(IV (a))2 ∼=K mV,a/(mV,a)
2.

Proof. Problem 3.3(c) says that for any domain R and any maximal
ideal P , we have

P/P 2 ∼=R/P PRP/(PRP )2.

In our case it is enough to take R = K[V ] and P = IV (a), since
mV,a = IV (a)K[V ]IV (a) and K[V ]/IV (a) ∼=K K. �

Theorem 2.28. If V is an affine variety and a ∈ V then a is smooth
if and only if

dimK(mV,a/(mV,a)
2) = dim(V ).

Proof. By Proposition 2.26 and Lemma 2.27. �
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Remark 2.29. A Noetherian local ring (R,m) is called regular, if
dim(R) = dimR/m(m/m2). It can be show that for any a ∈ V , we
have dim(OV,a) = dim(V ). Hence a is a smooth point if and only
if OV,a is regular, so regularity is the exact algebraic counterpart of
smoothness.

Remark 2.30. TheK-vector space mV,a/(mV,a)
2 is called the cotangent

space (of V at a) and the dual vector space is called the tangent space
(of V at a). I will tell more about it later in the case of curves.

2.3. Discrete valuation rings and multiplicities. In this section
we look closer at the local ring of a smooth point of a curve. First we
need several algebraic notions.

Definition 2.31. A local ring (R,m) is a discrete valuation ring (DVR),
if:

• R is a Noetherian domain,
• R is not a field,
• m is principal.

We will need two theorems about local rings, which we leave without
proof.

Theorem 2.32 (Nakayama’s Lemma). Let (R,m) be a local ring and
M a finitely generated R-module such that mM = M . Then M = {0}.
Theorem 2.33. Let (R,m) be a local Noetherian ring. Then

∞⋂
n=1

mn = {0}.

Remark 2.34. Krull’s Intersection Theorem is a vast generalization
of the above intersection statement. It says that for any Noetherian
domain R and any I P R, if I 6= R then

∞⋂
n=1

In = {0}.

Theorem 2.35. Any DVR is PID.

Proof. Let (R,m) be DVR and take any I P R. Let t ∈ m such that
(t) = m. For any r ∈ R let

Ar := {n ∈ N : tn|r}.
If Ar is infinite, then r ∈

⋂∞
n=1 m

n. By Theorem 2.33,
⋂∞
n=1 m

n = {0},
so r = 0. Hence for any r ∈ R \ {0}, there is nr := max(Ar). Let us
take

n := min{nr | r ∈ I \ {0}}.
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We will prove that I = (tn). Take any r ∈ I. If r = 0, then r ∈ (tn),
so we may assume r 6= 0. Since nr > n, tn divides r, so r ∈ (tn). For
the opposite inclusion, take r ∈ I such that nr = n. Then there is
u ∈ R such that r = tnu. Since n = nr, t does not divide u. Hence
u ∈ R \m = R∗. Therefore (r) = (tn), in particular (tn) ⊆ I. �

Remark 2.36. By the proof of Theorem 2.35, if (R,m) is DVR, then
any irreducible element (called here a uniformizing parameter) of R
generates m.

Example 2.37. The ring (KJXK, (X)) is DVR and X is a uniformizing
parameter.

Let R now be any UFD, r ∈ R be irreducible (equivalently prime) and
L = R0 be the field of fractions of R. We define a function:

vr : L∗ → Z, vr(α) = n, where α = rn
a

b
, a, b ∈ R, r - a, r - b.

The function vr is called the r-adic valuation on L.

Example 2.38. If p ∈ Z, then vp is the (usual) p-adic valuation on Q.

Fact 2.39. Let R, r, L, vr be as above. Then for all α, β ∈ L∗ we have:

(1) if α + β ∈ L∗, then vr(α + β) > min{vr(α), vr(β)},
(2) vr(αβ) = vr(α) + vr(β),
(3) vr(L

∗) = Z.

Proof. Let α = rn a
b
, β = rma′

b′
, where a, b, a′, b′ ∈ R, r - a, b, a′, b′ and

(without loss of generality) n 6 m. Then

α + β = rn
(
a

b
+ rm−n

a′

b′

)
= rn

ab′ + rm−na′b

bb′
.

Since r - bb′ and rm−n ∈ R, we get that vr(α+β) > n proving (1). The
item (2) follows immediately from the definition of vr. For (3), notice
that for any n ∈ Z, we have vr(r

n) = n. �

Remark 2.40. Notice that for any irreducible r, s ∈ R, if (r) = (s),
then vr = vs.

Definition 2.41. Let L be a field. Any function v : L∗ → Z satisfying
(1) − (3) above is called a discrete valuation on L. We will skip the
word “discrete” in the sequel. (In particular the r-adic valuation is a
valuation.) For any valuation v : L∗ → Z we define:

• Ov := {α ∈ L∗ | v(α) > 0} ∪ {0} the valuation ring of v.
• mv := {α ∈ L | v(α) > 0} ∪ {0} the valuation ideal of v.

Proposition 2.42. Let L be a field and v : L∗ → Z be a valuation on
L. Then (Ov,mv) is DVR.
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Proof. From the definition of the valuation it is easy to check that Ov
is a subring of L and that mv is an ideal of Ov. Take any α ∈ Ov \mv.
Then v(α) = 0. Since v : (L∗, ·) → (Z,+) is a group homomorphism,
v(α−1) = 0, so α ∈ (Ov)∗. Thus (Ov,mv) is a local ring. Since v is onto,
mv 6= {0}, so Ov is not a field. It is enough to check that Ov is PID.
Clearly, Ov is a domain. Take any non-zero I P Ov and r ∈ I \ {0}
with the minimal v(r). Similarly as in the proof of Theorem 2.35, it
can be checked that I = (r). �

Proposition 2.43. Let (R,m) be DVR and r, s ∈ R be uniformizing
parameters. Then vr = vs.

Proof. By Remark 2.36, (r) = m = (s). Hence vr = vs (see Remark
2.40). �

We see that each DVR (R,m) gives a unique valuation v on L = R0.
How to describe this valuation? Theorem 2.33 says that

∞⋂
n=1

mn = {0}.

Hence for any r ∈ R, there is a unique k ∈ N such that r ∈ mk \mk+1

(we take m0 = R). Then (check at home!), v(r) = k. We give yet
another characterization of the valuation given by a DVR.

Proposition 2.44. Let (R,m) be DVR and r ∈ R. Assume that we
have a ring extension K ⊆ R such that the composition of the projection
map R→ R/m with the inclusion K ⊆ R is the identity map idK. Then
we have:

v(r) = dimR/m(R/(r)).

Proof. Note that R/m = K. Let a be a uniformizing parameter and
n = v(r). Then there is u ∈ R∗ such that r = uan. Hence (r) = (an) =
mn. We will show inductively that dimR/m(R/mn) = n. It is clear for
n = 1. Recall the notion of a short exact sequence of K-vector spaces:
the following sequence of K-linear maps of K-vector spaces

0 // W
α // V

β // Z // 0

is exact, if α is a monomorphism, β is an epimorphism and the kernel
of β coincides with the image of α.
Problem 4.1: If a sequence as above is exact, then

dimK(V ) = dimK(W ) + dimK(Z).

For any n ∈ N we have a short exact sequence of K-vector spaces:

0→ mn/mn+1 → R/mn+1 → R/mn → 0.
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Hence, it is enough (induction) to show that dimR/m(mn/mn+1) = 1. If
mn = mn+1, then (by Theorem 2.33) mn = {0} and an = 0, but R is a
domain, so mn 6= mn+1. Since mn/mn+1 is spanned by an + mn+1, we
get dimR/m(mn/mn+1) = 1. �

Theorem 2.45. Let C be an affine curve and a ∈ C. Then a is smooth
if and only if (OC,a,mC,a) is DVR.

Before the proof we will recall.

Theorem 2.46 (a simple form of Nakayama’s Lemma). Let (R,m) be
a Noetherian local ring and t1, . . . , tm ∈ m. Then t1, . . . , tm generate m
(as an ideal) if and only if t1 + m2, . . . , tm + m2 generate m/m2 (as an
R/m-vector space).

Note that the above statement follows from Nakayama’s Lemma, if one
takes

M := m/(t1, . . . , tm).

Proof of Theorem 2.45. Since K[C] is a Noetherian domain, any local-
ization of it (as OC,a) is a Noetherian domain as well. Since mC,a is
non-zero, OC,a is not a field. By Theorem 2.28, a is smooth if and only

dimK(mC,a/m
2
C,a) = 1.

By a simple form of Nakayama’s Lemma above, the latter happens if
and only if mC,a is principal, i.e. exactly when (OC,a,mC,a) is DVR. �

Definition 2.47. Let C be an affine curve and a ∈ C be a smooth
point.

(1) Any uniformizing parameter f ∈ OC,a is called a local parameter
for C at a.

(2) The unique valuation on K(C) given by the DVR (OC,a,mC,a)
(note that K(C) is the fraction field of OC,a) is denoted orda.

(3) For f ∈ K(C) \ {0} and n ∈ N>0:
• if orda(f) = n, we say that f has a zero at a of order n,
• if orda(f) = −n, we say that f has a pole at a of order n.

Problem 3.6: Let C be an affine curve, a ∈ C be a smooth point and
f ∈ K(C). Then f is a local parameter for C at a if and only if f has
a zero at a of order 1.

Example 2.48. Let C = A1 and take 0 ∈ C. Then K[C] = K[X],
K(C) = K(X) and IC(0) = (X). Therefore

OC,0 = K[X](X) = {F/G | F,G ∈ K[X], G(0) 6= 0}.
The valuation ord0 on K(X) is clearly the X-adic valuation vX . Then
for any α = F/G ∈ K(X) \ {0} if F and G has no common prime
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divisors, then α has a zero at 0 of order n if and only if 0 is a root of
F of multiplicity n. Thus the notion of order generalizes (from A1 to
arbitrary affine curves) the notion of the multiplicity of a root. The
rational function α has a pole at 0 of order n if and only if 0 is a root
of G of multiplicity n.

Example 2.49. Let C = V (Y 2 − X3) and take a = (0, 0) ∈ C. We
know that a is not a smooth point of C, we will see that (OC,a,mC,a)
is not DVR. Firstly, notice that

K[C] ∼= K[X, Y ]/(Y 2 −X3) ∼= K[X2, X3].

Then we have

OC,a = {F/G | F,G ∈ K[X2, X3], G(a) 6= 0}.
mC,a = {F/G | F,G ∈ K[X2, X3], G(a) 6= 0, F (a) = 0}.

Then mC,a = (X2, X3), but it can be shown that mC,a is not principal.
So (OC,a,mC,a) is not DVR.

Let C be an affine curve, a ∈ C a smooth point and f ∈ K[C].
By 2.44, we know that orda(f) = dimK(OC,a/fOC,a). One can won-
der what happens when we skip the localization and just compute
dimK(K[C]/fK[C]). But if we take e.g. C = A1 and f = F ∈ K[X],
then we have

dimK(K[X]/(F )) = deg(F ),

which is not much related to the order of F at a point of A1. There
is a relation though which we will explore in the sequel (it may be
considered as a baby version of Bezout’s Theorem):

dimK(K[X]/(F )) =
∑

a∈V (F )

orda(F ).

Let us look at one more example.

Example 2.50. Consider two plane curves:

C1 := V (Y ), C2 := V (Y −X3 −X2)

and the point 0 ∈ C1 ∩ C2. It is easy to see that

ord0(Y |C2) = 2 = ord0((Y −X3 −X2)|C1).

Can this quantity be expressed in a way independent of the choice of
the local ring OC1,0 or OC2,0? We need an algebraic fact.

Problem 4.2: Let R be a domain and P ⊆ I ⊆ Q a chain of ideals of
R such that P and Q are prime. Then we have:

RQ

IRQ

∼=
(R/P )Q/P

I/P (R/P )Q/P
.
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Applying to R = K[X, Y ], P = (Y ), I = (Y, Y −X3−X2), Q = (X, Y )
we get

OC1,0/((Y −X3 −X2)|C1)
∼= K[X, Y ](X,Y )/(Y, Y −X3 −X2).

Similarly for R,Q, I as above and P = (Y −X3 −X2) we get

OC2,0/(Y |C2)
∼= K[X, Y ](X,Y )/(Y, Y −X3 −X2).

We will study the numbers of the form

dimK(K[X, Y ](X,Y )/(Y, Y −X3 −X2)).

Let us fix F,G ∈ K[X, Y ] and a = (x, y) ∈ A2 and define

O := K[X, Y ](X−x,Y−y) = K[X, Y ]I(a) = OA2,a.

Definition 2.51. We define the intersection number of F and G at a
as

I(a, F ∩G) := dimK(O/(F,G)O).

Before calculating intersection numbers we need several properties of
them.

(1) It is easy to see that the intersection number I(a, F∩G) depends
only on the ideals (F ), (G). Therefore for plane curves C1, C2

we can define the intersection number of C1 and C2 at a as

I(a, C1 ∩ C2) := I(a, F ∩G)

for any F,G such that (F ) = I(C1) and (G) = I(C2). It is im-
portant that in the general definition of the intersection num-
ber we can go beyond the case of affine curves (i.e. irreducible
polynomials) to include also possible “multiplicities” of plane
curves.

(2) Directly from the definition it follows that

I(a, F ∩G) = I(a,G ∩ F ).

(3) Since (F,G)O 6= O if and only if (F,G) ⊆ I(a) which happens
if and only if F (a) = 0 = G(a), we get

I(a, F ∩G) > 0 ⇔ a ∈ V (F,G).

(4) The notion of the intersection number is reasonable only if this
number is finite. It is easy to find examples when it is not, e.g.
I(0, X ∩ X) = ∞. In this example the intersection (of V (X)
with V (X)) itself is infinite. It turns out it is always the reason
of the infinite intersection number, since we have the following
property.

|V (F,G)| <∞ ⇒ I(a, F ∩G) <∞.
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Proof. Let V (F,G) = {a1, . . . , ak}, where a = a1. By Hilbert’s
Nullstellensatz (and Chinese Remainder Theorem), we have the
equality of ideals in K[X, Y ]:√

(F,G) = I({a1, . . . , ak}) = I(a1) ∩ . . . ∩ I(ak) = I(a1) · . . . · I(ak).

By Problem 4.3, there is m ∈ N such that

(F,G) ⊇ (I(a1) · . . . · I(ak))
m = I(a1)m · . . . · I(ak)

m.

Therefore there is an epimorphism:

R :=
O

(I(a1)m . . . I(ak)m)O
→ O

(F,G)O
,

so it is enough to show that dimK(R) is finite. However, for
all i > 1 we have I(ai)O = O. Assume for convenience that
a1 = (0, 0). Then we have

O/(I(a1)m . . . I(ak)
m) = O/(I((0, 0))m)O = O/(I((0, 0))O)m.

Similarly, as in Problem 3.3(c) we have:

O/(I((0, 0))O)m ∼= K[X, Y ]/(X, Y )m

and it is easy to compute that

dimK(K[X, Y ]/(X, Y )m) =
m(m+ 1)

2
<∞,

which finishes the proof. �

From now we will assume (explicitly or implicitly) that V (F,G)
is finite.

(5) If F is irreducible and a ∈ V (F ) is smooth then (see Example
2.50)

I(a, F ∩G) = orda(G|V (F )).

Proof. We have

I(a, F ∩G) = dimK(K[X, Y ]I(a)/(F,G)K[X, Y ]I(a)).

By 2.44, we have

orda(G|V (F )) = dimK(OV (F ),a/G|V (F )OV (F ),a).

If we apply Problem 4.2 for R = K[X, Y ], P = (F ), I = (F,G)
and Q = I(a) we get an isomorphism

K[X, Y ]I(a)/(F,G)K[X, Y ]I(a)
∼= OV (F ),a/G|V (F )OV (F ),a,

similarly as in Example 2.50. �
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Example 2.52. Let

LX := V (Y ), LY := V (X), C1 := V (Y 2 −X3), C2 := V (Y −X3).

Using Property (5) above we compute:

I(0, LX ∩ C1) = ord0((Y 2 −X3)|LX
) = 3,

I(0, LY ∩ C1) = ord0((Y 2 −X3)|LY
) = 2,

I(0, LX ∩ C2) = ord0((Y −X3)|LX
) = 3,

I(0, LY ∩ C2) = ord0((Y −X3)|LY
) = 1.

We see that in the examples above, a line is tangent to a curve if and
only if the intersection number is greater than 1. We take it as the
definition.

Definition 2.53. Let C be a plane curve and a ∈ A2.

• A subset L ⊆ A2 is called a line if there are α, β, γ ∈ K such
that L = V (αX + βY + γ) and (α, β) 6= (0, 0).
• A line L ⊆ A2 is tangent to C at a if I(a, L ∩ C) > 1.
• The tangent space to C at a, denoted TaC, is the union of all

the tangent lines to C at a.

Let us assume for simplicity that a = 0 = (0, 0) ∈ C.

Problem 4.4(a) T0(C) = V
(
∂F
∂X

(0)X + ∂F
∂Y

(0)Y
)
.

As promised, we are going to see now how to understand the K-vector
space mC,0/(mC,0)2 as (T0C)∗: the cotangent space to C at 0, i.e. the
dual space to T0C (that is the space of K-linear maps from T0C to K).
We a have a K-bilinear map:

K2 ×K[X, Y ] 3 ((x, y), F ) 7→ ∂F

∂X
(0)x+

∂F

∂Y
(0)y ∈ K.

(The element ∂F
∂X

(0)x+ ∂F
∂Y

(0)y is actually the directional derivative of f
along the vector (x, y) at 0.) By Problem 4.4(a), T0C×I(C) is mapped
to 0 hence we get a K-bilinear map:

T0C ×K[C] 3 (h, f) 7→ Ψ(h, f) ∈ K.
For any F,G ∈ I(0) we have

∂(FG)

∂X
(0) = 0,

∂(FG)

∂Y
(0) = 0,

hence we get a K-bilinear map:

T0C × IC(0)/(IC(0))2 3 (h, f) 7→ Φ(h, f) ∈ K.
Problem 4.4(c) The last K-bilinear map is non-degenerate.
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Therefore we get

(T0C)∗ ∼= IC(0)/(IC(0))2.

We recall now an isomorphism of K-vector spaces (Problem 3.3(c))

IC(0)/(IC(0))2 ∼= mC,0/(mC,0)2,

which finally gives our desired isomorphism

(T0C)∗ ∼= mC,0/(mC,0)2.

Let F,G,H ∈ K[X, Y ]. We will need more properties of the intersec-
tion numbers.

(6) I(a, F ∩G) = I(a, F ∩ (G+HF )).

Proof. Clearly (F,G) = (F,G+HF ). �

(7) I(a, F ∩GH) = I(a, F ∩G) + I(a, F ∩H).

Proof. We have a short exact sequence of K-vector spaces

0→ (F,G)/(F,GH)→ O/(F,GH)→ O/(F,G)→ 0.

We will show that there is an isomorphism of K-vector spaces

O/(F,H) ∼= (F,G)/(F,GH),

which will be enough by Problem 4.1 and the definition of in-
tersection number.
For z ∈ O let z̄ denote the coset of z in the appropriate quotient
ring which will be clear from the context. We define

α : O/(F,H)→ (F,G)/(F,GH), α(z̄) := zG.

It is easy to check that α is well-defined and K-linear (do at
home!). It is also onto, since for any f, g ∈ O we have clearly

fF + gG ≡ gG mod (F,GH).

It remains to check (the most difficult part) that α is a monomor-
phism.
Take z ∈ O such that Gz = 0. We aim to show that z̄ = 0, i.e.
we need to find b, d ∈ O such that z = bH + dF . Since Gz = 0,
there are u, v ∈ O such that we have the following equality in
the ring O:

Gz = uF + vGH.

Take S ∈ K[X, Y ] such that S(a) 6= 0 and all the

A := Su, B := Sv, C := Sz
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belong to K[X, Y ] (this is possible since O = K[X, Y ]I(a)).
Then we have an equality in the ring K[X, Y ]:

AF = SuF = SGz − SvGH = G(C −BH).

Since V (F,G) is finite, F and G have no common prime factors
in K[X, Y ]. But then F divides C −BH in K[X, Y ], i.e. there
is D ∈ K[X, Y ] such that C −BH = DF . Take finally

b := B/S ∈ O, d := D/S ∈ O.
We have z = bH + dF as we wanted. �

Example 2.54. We compute two intersection numbers:

I(0, (Y 2 −X3) ∩ (Y 2 −X3 −X2)) = I(0, (Y 2 −X3) ∩X2)

= 2I(0, (Y 2 −X3) ∩X)

= 4

I(0, (Y 2 −X3) ∩ (Y 4 +X4 −X2))

= I(0, (Y 2 −X3) ∩ (Y 4 +X4 −X2 − Y 2(Y 2 −X3)))

= I(0, (Y 2 −X3) ∩ (X4 −X2 + Y 2X3))

= I(0, (Y 2 −X3) ∩X2) + I(0, (Y 2 −X3) ∩ (X2 − 1 + Y 2X))

= 2I(0, (Y 2 −X3) ∩X) + 0

= 4

We usually consider the localization of a domain R with respect to
a multiplicative subset S. Not much changes if we drop the domain
assumption. One needs to be careful about the equivalence relation:

r1

s1

=
r2

s2

⇐⇒ (∃s3 ∈ S)(s3(s1r2 − s2r1) = 0).

The only difference is that the natural map R → RS need not to be
one-to-one, the kernel consists of elements r ∈ R such that for some
s ∈ S we have rs = 0. Also a generalization of Problem 4.2 holds,
where P can be taken as an arbitrary ideal.
We will need a lemma about such localizations. Recall that e ∈ R is
idempotent, if e2 = e. If e is idempotent, then the ideal eR is a ring
with the unity e.

Lemma 2.55. Assume R is a ring, P P R is prime and e ∈ R \ P
is idempotent which is divisible by each element of R \ P . Then the
natural map φ : R → RP induces an isomorphism of rings eR ∼= RP

(preserving the unit elements).
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Before the proof, let us see what happens when e = 1. Then the
assumption says that any element of R \ P divides 1, i.e. R \ P = R∗.
But this exactly means that (R,P ) is local, hence R → RP is an
isomorphism.

Proof of Lemma 2.55. Since φ(e) ∈ (RP )∗ (e ∈ R \ P ) and φ(e) is
idempotent, φ(e) = 1. Thus the unit elements are preserved by φ|eR.
Take any r ∈ R and assume that φ(re) = 0. Thus there is s ∈ R \ P
such that res = 0. But s divides e, so there is s′ ∈ R such that ss′ = e.
We have:

re = ree = ress′ = 0.

Hence the kernel of φ|eR is trivial.
Take any f/g ∈ RP and g′ ∈ R such that gg′ = e. Then we have

φ(efg′) = φ(e)φ(fg′) = φ(fg′) =
fg′

1
=
f

g
,

so φ|eR is onto. �

We will use this lemma to prove a generalization of the “baby version
of Bezout’s Theorem”:

dimK(K[X]/(F )) =
∑

a∈V (F )

orda(F ),

which will be very important in the proof of the actual Bezout’s The-
orem.

Proposition 2.56. Assume that V := V (F,G) is finite. Then:

dimK(K[X, Y ]/(F,G)) =
∑
a∈V

I(a, F ∩G).

Proof. It will follow from a more general fact. Assume I P K[X̄] is
such that V (I) = {a1, . . . , am} is finite. We will show

(∗) K[X̄]/I ∼=K K[X̄]I(a1)/IK[X̄]I(a1) × . . .×K[X̄]I(am)/IK[X̄]I(am)

Note that:

I(a, F ∩G) := dimK(K[X, Y ]I(a)/(F,G)K[X, Y ]I(a)).

Hence indeed proving (∗) is enough (taking I = (F,G) and X̄ =
(X, Y )).
Let R := K[X̄]/I and mi := I(ai)/I P R. Then (by the more general
version of Problem 4.2 for P = I and Q = I(ai)) the right-hand side
in (∗) is isomorphic to

Rm1 × . . .×Rmm ,
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and we have to show that this product ring is isomorphic to R.
For each i ∈ {1, . . . ,m}, we will find an idempotent ei ∈ R such that∑
ei = 1 and ei satisfies Lemma 2.55 for P = mi. It will be enough,

since by a general result about product rings we have then:

R ∼= e1R× . . .× emR.
and by Lemma 2.55, eiR ∼= Rmi

.

By Hilbert’s Nullstellensatz,
√
I = I(a1) . . . I(am) and by Problem 4.3,

there is d ∈ N such that

I(a1)d . . . I(am)d ⊆ I.

For any i, take Fi ∈ K[X̄] such that Fi(ai) = 1 and for j 6= i, Fi(aj) = 0.
We define

Ei := 1− (1− F d
i )d, ei := Ei + I.

This is a good choice, we skip a computational argument, which can
be found on pages 56-57 of Fulton.
Add from lecture notes!! �

3. Projective varieties

Let us take F,G ∈ K[X, Y ]. Bezout’s theorem should say that if the
number of the intersection points of V (F ) and V (G) is finite, then
this number (counted with multiplicities) equals the product of the
degrees of F and G. Such a statement clearly fails inside A2, since two
disjoint parallel lines do not intersect. Therefore we have to improve
the ambient space A2. It turns out that we just need to make sure that
all the lines intersect.

3.1. Projective space. The projective plane should coincide with the
affine plane expanded by the set of extra points where parallel lines
would intersect. We call them “points at infinity”. We just add one
such a point for each equivalence class of parallel lines. Clearly, each
such a class has a natural representative: the line going through zero.
Thus our first approximation of projective plane is affine plane enlarged
with the set of all 1-dimensional K-linear subspaces of K2.

Definition 3.1. Let n ∈ N. Projective n-th space over K, denoted
Pn(K) or Pn, is defined as the set of all 1-dimensional K-subspaces
(i.e. lines passing through zero) of Kn+1.

We will see that for n = 2 this definition coincides with the intuitive
description above. We need to check whether “P2 = A2 ·∪P1”, since the
points at infinity correspond now exactly to P1. To do that we need
to understand how to consider A2 as a subset of P2 and P1 as a subset
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of P2. Let L ∈ Pn. For each a ∈ L \ {0}, we have L = spanK(a). For
any (a1, . . . , an+1) ∈ An+1 \ {(0, . . . , 0)} we define:

[a1 : . . . : an+1] := spanK{(a1, . . . , an+1)} ∈ Pn.
If x = [a1 : . . . : an+1] ∈ Pn, then a1, . . . , an+1 are called the projective
or homogenous coordinates of x. For any

(a1, . . . , an+1), (b1, . . . , bn+1) ∈ An+1 \ {(0, . . . , 0)},
we clearly have

(∗) [a1 : . . . : an+1] = [b1 : . . . : bn+1] ⇔ ∃λ ∈ K ∀i 6 n+ 1 λai = bi

Let i ∈ {1, . . . , n+ 1}. We define:

ψi : An → Pn, ψi(a1, . . . , an) := [a1 : . . . : ai−1 : 1 : ai : . . . : an].

Let Ui ⊆ Pn denote the image of ψi. By (∗) we have:

Ui = {[a1 : . . . : an+1] ∈ Pn | ai = 1} = {[a1 : . . . : an+1] ∈ Pn | ai 6= 0}.
Again by (∗), ψi is a bijection between An and Ui, allowing us to regard
An as a subset of Pn.
For n > 0, we have also a one-to-one function

πi : Pn−1 → Pn, πi ([a1 : . . . : an]) := [a1 : . . . : ai−1 : 0 : ai : . . . : an]

(note that by (∗), πi is well defined and indeed one-to-one). It is easy
to see that

πi(P
n−1) = Pn \ Ui,

hence we get our desired equality “Pn = An ·∪Pn−1”.
We usually concentrate on i = n+1 and write An ⊂ Pn identifying An

with Un+1. Using this convention, for W ⊆ Pn we often write W ∩An

and denote

H∞ := πn+1(Pn−1) ⊂ Pn

(the “hyperplane at infinity”).

Example 3.2. (1) P0 is just a point.
(2) P1 = {[x : 1] | x ∈ K} ∪ {[1 : 0]} and H∞ = {[1 : 0]} (just one

point at infinity).
(3) P2 = {[x : y : 1] | x ∈ K} ∪ {[x : y : 0] | (x, y) ∈ A2 \ {0}} (the

projective line at infinity).

Remark 3.3. We know that P1 = U1 ∪ U2, and that

ψ1 : A1 → U1, ψ2 : A1 → U2

are bijections. Hence P1 may be understood as two copies ofA1 “glued”
along certain subsets of A1. Let us first see these subsets and then the
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gluing map.
These subsets are ψ−1

i (U1 ∩ U2) for i = 1, 2. Clearly

U1 ∩ U2 = {[a : b] ∈ P1 | a 6= 0, b 6= 0}.

Then we have

ψ−1
1 (U1 ∩ U2) = A1 \ {0} = ψ−1

2 (U1 ∩ U2).

For a, b ∈ A1\{0}, we “glue” a with b if and only if ψ1(a) = ψ2(b). The
latter happens if and only if [1 : a] = [b : 1], which is equivalent (by
the formula (∗) above) to b = a−1. Therefore, P1 may be understood
as two copies of A1 “glued” along A1 \ {0} and the gluing map is

A1 \ {0} 3 a 7→ a−1 ∈ A1 \ {0}.

Note that this map is a rational map on A1.
In a similar way, Pn may be understood as n + 1 copies of An glued
along certain open subsets of An using certain rational maps on An.
Such a gluing process leads to the general definition of an algebraic
variety, but we do not go into this direction here.

We want to do algebraic geometry inside projective space in a similar
way as we were doing it inside affine space. In particular, we need the
notion of a projective algebraic set. The problem is that for x ∈ Pn
and F ∈ K[X1, . . . , Xn+1], we can not apply F to x in a meaningful
way. We need to consider a special type of polynomials.

Definition 3.4. Let d, k, d1, . . . , dk ∈ N, a ∈ K andH ∈ K[X1, . . . , Xk].

• If H = aXd1
1 · . . . ·X

dk
k is a monomial, then the degree of H is

d1 + . . .+ dk.
• We call H a homogenous polynomial of degree d if H is a sum

of monomials of degree d.

Problem 5.3: A non-zero polynomial H is homogenous of degree d if
and only if for all λ ∈ K we have

H(λX1, . . . , λXk) = λdH

(equality of polynomials).

By Problem 5.3, if F ∈ K[X1, . . . , Xn+1] is a homogenous polynomial of
degree d, then for any a ∈ An+1 and λ ∈ K we have F (λa) = λdF (a).
We still can not apply F to x ∈ Pn, but we can at least define what does
it mean “F (x) = 0”, since F (a) = 0 if and only if for any λ ∈ K \ {0},
we have F (λa) = 0.
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Definition 3.5. A subset V ⊆ Pn is called a projective algebraic set, if
there are homogenous polynomials F1, . . . , Fk ∈ K[X1, . . . , Xn+1] such
that

V = {x ∈ Pn | F1(x) = 0, . . . , Fk(x) = 0}.

Definition 3.6. A subset V ⊆ P2 is called a line in P2 if there is
(α, β, γ) ∈ K3 \ {(0, 0, 0)} such that

V = {[a : b : c] ∈ P2 | αa+ βb+ γc = 0}.

Problem 5.2: Any two lines in P2 have non-empty intersection.

Example 3.7. Let V = V (F ) ⊆ A2, where F = Y 2−X3−X. Let us
consider the homogenous polynomial F ∗ = Y 2Z −X3 −XZ2 and the
projective algebraic set

V ∗ := {x ∈ P2 | F ∗(x) = 0}.

It is easy to see that for any a ∈ A2, we have a ∈ V if and only if
ψ3(a) ∈ V ∗. Therefore we have (recall our convention):

V = V ∗ ∩A2.

Let us see the “points at infinity” of V , i.e. the intersection of V ∗ with
the line at infinity H∞. For any x ∈ H∞, we have F ∗(x) = 0 if and
only if x = [0 : 1 : 0]. Therefore

V ∗ = V ∪ {[0 : 1 : 0]},

and [0 : 1 : 0] is the unique point at infinity of V .

For any F ∈ K[X1, . . . , Xn], we want to find an appropriate homoge-
nous polynomial F ∗ ∈ K[X1, . . . , Xn+1] as in the example above. In-
tuitively, we need to make F homogenous using the variable Xn+1

in the most economic way. There is a unique d ∈ N and unique
F0, . . . , Fd ∈ K[X1, . . . , Xn] such that F = F0 + . . . + Fd, Fd 6= 0 and
for each i 6 d, Fi is a homogenous polynomial of degree i or Fi = 0.
Define

F ∗ :=
d∑
i=0

Xd−i
n+1Fi.

Clearly, F ∗ is a homogenous polynomial of degree d called the homog-
enization of F (with respect to Xn+1).

Problem 5.4: For F and d as above, we have:

F ∗ = Xd
n+1F

(
X1

Xn+1

, . . . ,
Xn

Xn+1

)
.
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Note that we can homogenize F with respect to any variable, the sim-
plest way is to change a bit the formula from Problem 5.4. The ho-
mogenization of F with respect to Xi is

Xd
i F

(
X1

Xi

, . . . ,
Xi−1

Xi

,
Xi+1

Xi

, . . . ,
Xn+1

Xi

)
.

Let us fix n ∈ N and i ∈ {1, . . . , n + 1}. We list several facts without
proofs:

(1) Projective algebraic subsets of Pn are closed sets of certain
topology on Pn called again the Zariski topology.

(2) The set Pn together with the Zariski topology is again a Noe-
therian topological space. By the general definitions and results
about Noetherian topological spaces from Section 1, we get the
notions of dimension of projective algebraic set and irreducible
components of projective algebraic sets.

(3) Take any homogenous polynomials F1, . . . , Fk ∈ K[X1, . . . , Xn+1]
and let

V := {x ∈ Pn | F1(x) = 0, . . . , Fk(x) = 0}.
Then we have:

ψ−1
i (V ) = V (F1|Xi=1, . . . , Fk|Xi=1),

where for any H ∈ K[X1, . . . , Xn+1], we define H|Xi=1 as the
polynomial in n variables obtained from H by plugging Xi = 1.
Such a polynomial is called the dehomogenization of H with
respect to Xi.
In particular, the set ψ−1(V ) is Zariski closed in An, hence the
function ψi is continuous.

(4) Take any H1, . . . , Hl ∈ K[X1, . . . , Xn] and let

W = V (H1, . . . , Hl) ⊆ An.

For each j 6 l, let H̃j be the homogenization of Hj with respect
to Xi and define:

V := {x ∈ Pn | H̃1(x) = 0, . . . , H̃l(x) = 0}.
If i = n + 1, then we denote V by W ∗ and call W ∗ ∩ H∞ the
set of points at infinity of W . We have

V ∩ Ui = ψi(W )

In particular (using also (3) above), ψi is a homeomorphism
between An and Ui. Thus Pn has an open cover of n + 1 sets
such that each such set is homeomorphic to An.

(5) Assume V ⊆ An is Zariski closed. We have:
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• V ∗ coincides with the Zariski closure of V in Pn;
• dim(V ) = dim(V ∗);
• V is irreducible if and only if V ∗ is irreducible (Problem

1.2).
(6) IfW ⊆ Pn is an irreducible projective algebraic set andW∩Ui is

non-empty, then W coincides with the Zariski closure of W ∩Ui
in Pn.

Example 3.8. Consider the projective Fermat curve

V := {[a : b : c] ∈ P 3 | a3 + b3 + c3 = 0},
and let F := X3+Y 3+Z3. Then V ∩A2 (remember our convention!) is
given by the dehomogenization of F with respect to Z (see (3) above),
i.e.

V ∩A2 = V (X3 + Y 3 + 1) ⊆ A2.

Definition 3.9. • A projective variety is an irreducible projec-
tive algebraic set.
• A projective curve is a projective variety of dimension 1.
• A projective plane curve is a projective curve, which is a subset

of P2.

Remark 3.10. Let V be a projective plane curve. It can be shown
that

• There is an irreducible homogenous polynomial F ∈ K[X, Y, Z]
such that

V = {x ∈ P2 | F (x) = 0}.
• For any F1, F2 as above (i.e. giving the same projective plane

curve V ), there is λ ∈ K \ {0} such that F2 = λF1.

Hence we can define the degree of V as the degree of F as above.

Definition 3.11. Let V ⊆ Pn be a projective variety and x ∈ V .

• The point x is a smooth point of V , if there is i 6 n + 1 such
that x ∈ Ui and ψ−1

i (x) is a smooth point of the affine variety
ψ−1
i (V ).

• The point x is a singular point of V , if v is not a smooth point
of V .
• The projective variety V is smooth if for all x ∈ V , x is a smooth

point of V .

Remark 3.12. It can be shown that in the above definition “there is
i” can be replaced with “for all i”.
There is also an equivalent definition of smoothness not using the em-
beddings ψi, but an appropriately defined local ring OV,x.
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Example 3.13. Let W = V (Y −X2) ⊆ A2. We will check whether W ∗

is smooth. Since W is smooth, it is enough to check whether the points
at infinity of W are smooth, i.e. whether “W is smooth at infinity”.
Let us take [a : b : 0] ∈ H∞, a point at infinity of A2. We will check
when [a : b : 0] is a point at infinity of W .
The homogenization of Y −X2 is Y Z −X2, so [a : b : 0] is a point at
infinity of W if and only if

b · 0− a2 = 0.

Thus [0 : 1 : 0] is a unique point at infinity ofW . Clearly [0 : 1 : 0] ∈ U2.
To see whether [0 : 1 : 0] is a smooth point of W ∗, we should check
whether ψ−1

2 ([0 : 1 : 0]) is a smooth point of the affine variety ψ−1
2 (W ∗).

Clearly, ψ−1
2 ([0 : 1 : 0]) = (0, 0). By the property (4) above, ψ−1

2 (W ∗)
is the set of zeroes of the dehomogenization of Y Z −X2 with respect
to Y (the second variable). Hence

ψ−1
2 (W ∗) = V (Z −X2) ⊆ A2.

We get a parabola again which is smooth, so [0 : 1 : 0] is a smooth
point of W ∗, and W ∗ is smooth (i.e. W is “smooth at infinity”).

Example 3.14. Let W = V (Y −X3) ⊆ A2. We will check whether W ∗

is smooth. Again, since W is smooth, we just need to check whether W
is smooth at infinity. The homogenization of Y −X3 is Y Z2−X3. By
a similar computation as in the previous example, [0 : 1 : 0] is a unique
point at infinity of W . Again, ψ−1

2 ([0 : 1 : 0]) = (0, 0) and ψ−1
2 (W ∗) is

the set of zeroes of the dehomogenization of Y Z2−X3 with respect to
Y . Hence

ψ−1
2 (W ∗) = V (Z2 −X3).

However, we know that (0, 0) is a singular point of V (Z2 −X3), hence
W is not smooth at infinity (W is singular at infinity).

3.2. Bezout’s Theorem. We need to define the intersection number
of two “curves with possible multiplicities” in P2. As in the affine case,
we will define the intersection number of two polynomials (in this case
homogenous ones) at a point of projective plane.

Definition 3.15. Let x ∈ P2 and F,H,G ∈ K[X1, X2, X3] be homoge-
nous polynomials.

• Let i ∈ {1, 2, 3} be such that x ∈ Ui. We define the intersection
number as

I(x, F ∩H) := I(ψ−1
i (x), (F |Xi=1) ∩ (H|Xi=1)).
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• If F and H are irreducible and V,W ⊂ P2 are projective plane
curves such that

V = {x ∈ P2 | F (x) = 0}, W = {x ∈ P2 | H(x) = 0},
then we define:

I(x, V ∩G) := I(x, F ∩G).

I(x, V ∩W ) := I(x, F ∩H).

Remark 3.16. It can (and should) be shown that the above definition
does not depend on the choice of i. By Remark 3.10, the second part
does not depend on the choice of F and H.

Example 3.17. Consider affine plane curves

C1 := V (Y 2 −X3), C2 := V (Y −X3).

We will find all the intersection points of C∗1 and C∗2 and count their
multiplicities.
We start with the intersection points of C1 and C2. Since C2 is smooth,
for any x ∈ C2 we have

I(x,C1 ∩ C2) = ordx((Y
2 −X3)|C2).

We know that K[C2] ∼= K[X] and under this isomorphism we have:

(Y 2 −X3)|C2 7→ (X3)2 −X3 = X3(X3 − 1).

Hence (we know it already) I((0, 0), C1 ∩ C2) = 3. To compute the
other intersection points, we need to consider two cases.

Case 1 char(K) 6= 3
Since char(K) 6= 3 and K is algebraically closed, there is a primitive
third root of unity in K, let us call it ε. Then we have

X3(X3 − 1) = X3(X − 1)(X − ε)(X − ε2)

and
C1 ∩ C2 = {(0, 0), (1, 1), (ε, 1), (ε2, 1)}.

Since

OC2,(1,1)
∼= K[X](X−1), OC2,(ε,1)

∼= K[X](X−ε), OC2,(ε2,1)
∼= K[X](X−ε2)

we get

I((1, 1), C1 ∩ C2) = 1, I((ε, 1), C1 ∩ C2) = 1, I((ε2, 1), C1 ∩ C2) = 1.

Case 2 char(K) = 3
We have

X3(X3 − 1) = X3(X − 1)3, C1 ∩ C2 = {(0, 0), (1, 1)}.
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Therefore we get
I((1, 1), C1 ∩ C2) = 3.

Let us look now at the intersection points at infinity. The homogeniza-
tions of our polynomials are

Y 2Z −X3, Y Z2 −X3.

Looking at their projective zero sets, we see that:

C∗1 = C1 ∪ {[0 : 1 : 0]}, C∗2 = C2 ∪ {[0 : 1 : 0]}.
To compute I([0 : 1 : 0], C∗1 ∩ C∗2), we need to take the dehomogeniza-
tions with respect to Y : Z −X3, Z2−X3. Quite accidentally, this ho-
mogenization/dehomogenization process switches the polynomials and
we get:

I([0 : 1 : 0], C∗1 ∩ C∗2) = I((0, 0), (Z −X3) ∩ (Z2 −X3)) = 3.

The total number of intersection points (counted with multiplicities)
in the above example is 9 regardless of the characteristic of K. Note
that 9 is the product of the degrees of the curves. Bezout’s theorem is
a generalization of this observation.

Theorem 3.18. Let F,H ∈ K[X, Y, Z] be homogenous polynomials
such that the set

V := {x ∈ P2 | F (x) = 0, H(x) = 0}
is finite. Then we have:∑

x∈V

I(x, F ∩H) = deg(F ) · deg(H).

We do not have enough time to give the full proof of Bezout’s Theorem.

Outline of the proof. Steps 1 and 2 reduce the problem to the affine
case. Step 3 is the most difficult one.

Step 1 There is a line L in P2 such that L ∩ V = ∅.
Let

V = {[a1 : b1 : c1], . . . , [am : bm : cm]}.
We are looking for (α, β, γ) ∈ K3 \ {0} such that for all i 6 m we have

αai + βbi + γci 6= 0.

Let Li be the line in P2 given by (a1, b1, c1). In other words, we are
looking for

[α : β : γ] ∈ P2 \ (L1 ∪ . . . ∪ Lm),

i.e. we want to show that P2 6= L1 ∪ . . . ∪ Lm. Assume that P2 =
L1∪. . .∪Lm and we will reach a contradiction. It is easy to see that the
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intersection with of a line in P2 with any A2 (remember our convention
again!) is a line in A2, so we get that A2 is a finite finite union of lines.
This is impossible over an infinite field (find an argument!).

Step 2 Without loss of generality we may assume L = H∞.

Let L be the line from Step 1. We need to apply an appropriate “pro-
jective change of coordinates” to move L to the line at infinity H∞.
The group GL3(K) acts on K3 mapping lines to lines, so this action
induces an action on P2. Since GL3(K) acts transitively on planes (i.e.
2-dimensional subspaces) in K3, it acts transitively on lines in P2. In
particular, there is φ ∈ GL3(K) such that φ(L) = H∞. Now we need to
believe that this action (“projective change of coordinates”) does not
change the intersection numbers.

Step 3 The proof is reduced to showing the following property of affine
plane curves (with possible multiplicities):

Let F∗, H∗ ∈ K[X, Y ] be the dehomogenizations of F,H with respect
to Z. By Step 2, V (F∗) and V (H∗) have no common points at infinity.
Then: ∑

x∈V (F∗,H∗)

I(x, F∗ ∩H∗) = deg(F ) · deg(H).

This is “affine Bezout’s Theorem”. Note that obvious counterexamples
(like parallel lines) do not apply here, since there is always a common
point at infinity in such a case.
By Proposition 2.56, we have∑

x∈V (F∗,H∗)

I(x, F∗ ∩H∗) = dimK K[X, Y ]/(F∗, H∗).

So we need to show

(†) dimK K[X, Y ]/(F∗, H∗) = deg(F ) · deg(H).

It is clearly a statement about polynomials F∗, H∗ in variables X, Y
only, but the proof still uses the homogenous polynomials F,H in vari-
ables X, Y, Z. This is the most difficult part of the proof, we just give
the main ingredients. Let d ∈ N and

• R := K[X, Y, Z];
• Γ := K[X, Y, Z]/(F,H);
• π : R→ Γ be the quotient map;
• Rd be the K-subspace of R consisting of homogeneous polyno-

mials of degree d;
• Γd := π(Rd);
• Γ∗ := K[X, Y ]/(F∗, H∗);
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• n := deg(F ), m := deg(H).

The aim is to show that for d > n+m we have

dimK Γ∗ = dimK Γd = mn,

which clearly gives (†). This goes again in three steps.

(1) For d > n+m, we have dimK Γd = mn.

This is computational and not very difficult. There is an exact
sequence of K-vector spaces

0→ Rd−m−n → Rd−m ×Rd−n → Rd → Γd → 0,

which gives dimK(Γd) by a kind of “exclusion-inclusion” prin-

ciple, since for any l ∈ N, we have dimK Rl = (l+1)(l+2)
2

.
(2) Define

α : Γ→ Γ, α(w) = π(Z)w.

Then α is one-to-one.

This requires also some computations and the fact that we do
not have intersection points at infinity is used here.

(3) Let us fix d > n + m and take A1, . . . , Amn ∈ Rd such that
{π(A1), . . . , π(Amn)} is a basis of Γd (Step 1). For any i 6 mn,
let Ai∗ denote the dehomogenization of Ai with respect to Z
and ai the image of Ai∗ in Γ∗. Then {a1, . . . , amn} is a basis of
Γ∗.

This is the most complicated part. From Step 2 and Step 1 we
know that for each r ∈ N, the set {π(ZrA1), . . . , π(ZrAmn)}
is a basis of Γd+r. This fact together with some computa-
tions and properties of homogenization/dehomogenization pro-
cess give that {a1, . . . , amn} is a basis of Γ∗

By (3), we get that dimK(Γ∗) = mn, which finishes the proof. �

Remark 3.19. The “projective change of coordinates” appearing in
Step 2 above make sense for any n ∈ N and gives a transitive action
of GLn+1(K) on Pn. Note that the subgroup of scalar matrices coin-
cides with the kernel of this actions. However, the subgroup of scalar
matrices is also the center of GLn+1(K) hence we get an action of

PGLn(K) := GLn+1(K)/Z(GLn+1(K))

on Pn. After an appropriate definition of a morphism between projec-
tive varieties, it can be shown that PGLn(K) is exactly the group of
automorphisms of Pn hence the name Projective General Linear group.

Let V be a plane projective curve.
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Definition 3.20. The group of divisors on V , denoted Div(V ), is the
free Abelian group with basis V .

Let F ∈ K[X, Y, Z] a homogenous polynomial such that the set

{x ∈ V | F (x) = 0}

is finite. We define the intersection divisor as:

V · F :=
∑
x∈V

I(x, V ∩ F ) · x ∈ Div(V ).

This is a good way to formalize the intuitive notion of the “intersection
of two curves with counted multiplicities”. Again, if F is irreducible
and W = {x ∈ P2|F (x) = 0}, then we define

V ·W = V · F ∈ Div(V ).

Example 3.21. Let C1, C2 be as in Example 3.17. If char(K) 6= 3,
then we have

C∗1 · C∗2 = 3(0, 0) + 1(1, 1) + 1(ε, 1) + 1(ε2, 1) + 3[0 : 1 : 0].

If char(K) = 3, then we have

C∗1 · C∗2 = 3(0, 0) + 3(1, 1) + 3[0 : 1 : 0].

Definition 3.22. If D = n1x1 + . . .+nmxm ∈ Div(V ), then the degree
of D, denoted deg(D), is the sum:

deg(D) = n1 + . . .+ nm.

Note that in the above example deg(C∗1 ·C∗2) = 9 regardless of the char-
acteristic of K. Bezout’s Theorem implies that if V is plane projective
curve, then we have:

deg(V · F ) = deg(V ) deg(F ).

3.3. Elliptic curves. Our definition of elliptic curves is quite a re-
strictive one.

Definition 3.23. An elliptic curve is a pair (C,O) such that C is
smooth projective plane curve of degree 3 and O ∈ C.

Let us fix an elliptic curve (C,O). Our aim is to show that there
is a natural commutative group structure on C such that O becomes
the neutral element. Recall that for F ∈ K[X, Y, Z], a homogenous
polynomial such that the set

{x ∈ C | F (x) = 0}
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is finite, we define the intersection divisor as:

C · F :=
∑
x∈C

I(x,C ∩ F ) · x ∈ Div(C).

By Bezout’s theorem, we have deg(C · F ) = 3 deg(F ).
We need to collect a few facts about lines in P2. Let i ∈ {1, 2, 3}.

(1) If L is a line in P2, then ψ−1
i (L) is a line in A2 (or the empty

set).
(2) If l is a line in A2, then the Zariski closure of ψi(L) in P2 is a

line in P2.
(3) Using (1), we see that for any distinct x, y ∈ P2, there is a

unique line in P2 through x and y.
(4) Take x ∈ C ∩ ψi(A2). We define TxC, the tangent line to C at

x in P2, as the Zariski closure of ψi(Tψ−1
i (x)ψ

−1
i (C)) (as usual,

one has to show that it does not depend on the choice of i).
(5) For x ∈ C and a line L in P2, as in the affine case we have

L = TxC ⇐⇒ I(x,C ∩ L) > 1.

Lemma 3.24. For any x, y ∈ C there is a unique line L in P2 and a
unique z ∈ C such that

C · L = x+ y + z.

(Note that this is an equality in Div(C), so x, y, z need not be distinct.)

Proof. For any line L in P2, the intersection C ∩ L is finite (since C is
not a line itself), hence we can consider the intersection divisor C · L.
We consider two cases.

Case 1 x 6= y.
By (3), there is a unique line L in P2 passing through x and y. By
Property (3) of the intersection number, C ·L = x+ y+D, where D is
a positive divisor, i.e. all the integer coefficients in D are non-negative.
By Bezout’s theorem, deg(C · L) = 3. Therefore, there is a unique
z ∈ C such that D = z and C · L = x+ y + z.

Case 2 x = y.
Let L be a line in P2. By (5), there is z ∈ C such that C · L = 2x+ z
if and only if L = TxC. Hence L and z ∈ C are unique. �

Using the above lemma we can define a binary operation ϕ : C × C
such that ϕ(x, y) = z if and only if there is a line L in P2 such that

C · L = x+ y + z.

Since addition in Div(C) is commutative, we get the following.
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Lemma 3.25. For x, y, z ∈ C we have ϕ(x, y) = ϕ(y, x) and

ϕ(x, y) = z ⇐⇒ ϕ(y, z) = x ⇐⇒ ϕ(z, x) = y.

Unfortunately, ϕ is not a group operation, it is easy to see there is no
neutral element. We need to correct ϕ using our choice of O ∈ C (it
was first done by Weil in 1920’s). Let us define:

x⊕ y := ϕ(O,ϕ(x, y)).

The definition of ⊕ depends on O, but we still write ⊕ rather than ⊕O.

Theorem 3.26. The structure (C,⊕, O) is a commutative group.

Proof. By Lemma 3.25, ⊕ is commutative.
Let us take x ∈ C and y := ϕ(x,O). By Lemma 3.25, ϕ(O, y) = x.
Therefore:

x⊕O = ϕ(O,ϕ(x,O)) = ϕ(O, y) = x,

hence O is the neutral element of ⊕.
Let z := ϕ(O,O) and x′ := ϕ(x, z). By Lemma 3.25 again, we have:

x⊕ x′ = ϕ(O,ϕ(x, x′)) = ϕ(O, z) = O.

Therefore, x′ is the inverse of x.
Proving associativity of ⊕ is more difficult. We will return to it after
some preparations. �

Definition 3.27. Let D,D′ ∈ Div(C) and

D =
∑
P∈C

nPP, D′ =
∑
P∈C

n′PP.

We write D 6 D′, if for each P ∈ C, we have nP 6 n′p.

We need a theorem which is an easy consequence of Max Noether’s
(Emma Noether’s father) “AF + BG theorem”. Again, we have no
time to prove it, the proof is not very difficult.

Theorem 3.28. Let F,G ∈ K[X, Y, Z] be homogenous such that each
of them has finitely many zeroes on C and for each x ∈ C we have

I(x,C ∩ F ) > I(x,C ∩G).

Then there is a homogenous polynomial H ∈ K[X, Y, Z] such that

C · F = C ·G+ C ·H.

Remark 3.29. In terms of intersection divisors, one can write the
assumption in the above theorem as C · F > C ·G.

Lemma 3.30. For F and G as above we have:

C · (FG) = C · F + C ·G.
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Proof. Let us take x ∈ C and assume for simplicity that x ∈ A2. Let
C∗ denote C ∩A2 and for any H ∈ K[X, Y, Z], let H∗ = H|Z=1. Note
that (FG)∗ = F∗G∗. By properties of the valuation ordx we have:

I(x,C ∩ (FG)) = ordx((FG)∗|C∗)
= ordx((F∗G∗)|C∗)
= ordx((F∗|C∗)(G∗|C∗))
= ordx(F∗|C∗) + ordx(G∗|C∗)
= I(x,C ∩ F ) + I(x,C ∩G).

Hence C · (FG) = C · F + C ·G. �

Proposition 3.31. Take F,G, a homogenous polynomials as above of
degree 3, and x1, . . . , x8, y, z ∈ C such that

C · F = x1 + . . .+ x8 + y,

C ·G = x1 + . . .+ x8 + z.

Then y = z.

Proof. Let L be a line in P2 passing through y and H be the linear
homogenous polynomial defining L. Then

C · L = y + r + s

for some r, s ∈ C. By Lemma 3.30, we have

C ·(GH) = C ·G+C ·H = x1 + . . .+x8 +z+y+r+s = C ·F +z+r+s.

In particular, C · (GH) > C · F . By Theorem 3.28, there is a homoge-
nous T ∈ K[X, Y, Z] such that

C · (GH) = C · F + C · T.
Since deg(C ·(GH)) = 12 and deg(C ·F ) = 9, we get deg(C ·T ) = 3. By
Bezout’s theorem, deg(T ) = 1, so T defines a line L′ in P2. Therefore
we have

C · L = r + s+ y, C · L′ = C · T = r + s+ z.

By Lemma 3.24, y = z. �

Proof of the associativity of ⊕. Let us take

x, y, z ∈ C; lines L1, L2, L3,M1,M2,M3 in P2; s, s′, u, u′, t′, t′′ ∈ C
such that:

(1) C · L1 = x+ y + s′, C · L2 = s+ z + t′, C ·M1 = O + s+ s′

(2) C · L3 = O + u+ u′, C ·M2 = y + z + u′, C ·M3 = x+ u+ t′′
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Then (1) implies that

(x⊕ y)⊕ z = s⊕ z = ϕ(O, t′),

and (2) implies that

x⊕ (y ⊕ z) = x⊕ u = ϕ(O, t′′).

Hence it is enough to show that t′ = t′′. For any i ∈ {1, 2, 3}, let Fi
be the homogenous polynomial of degree 1 defining Li and Gi be the
homogenous polynomial of degree 1 defining Mi. Let F := F1F2F3 and
G := G1G2G3. By Lemma 3.30, we have

C · F = C · L1 +C · L2 +C · L3 = x+ y + s′ + s+ z + t′ +O + u+ u′,

C ·G = C ·M1 +C ·M2 +C ·M3 = O+ s+ s′+ y+ z+ u′+ x+ u+ t′′.

From Proposition 3.31, we get t′ = t′′. �

It can be shown that for two different choices O1, O2 ∈ C, there is an
isomorphism of groups

(C,⊕, O1) ∼= (C,⊕, O2),

which is given by rational functions. Hence the choice of O ∈ C does
not matter much. However, some choices make computations easier.
We need one more definition.

Definition 3.32. A point x ∈ C is called an inflection point, if

I(x,C ∩ TxC) > 2.

The definition above makes sense for an arbitrary plane (projective or
affine) smooth curve. In the case of the elliptic curve C, for x ∈ C the
following are equivalent:

• x is an inflection point,
• I(x,C ∩ TxC) = 3,
• ϕ(x, x) = x.

Note that if O ∈ C is an inflection point, then the procedure of finding
the inverse elements is easier, since in such a case we get:

	x = ϕ(x, ϕ(O,O)) = ϕ(x,O).

(We use the notation 	x for the inverse element to x in the elliptic
curve C.)
We state another fact without a proof.

Proposition 3.33. There are 9 inflection points on C.
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We choose O ∈ C as an inflection point. By a projective change of
coordinates in P2 (which moves C!), we can also assume that O is a
point at infinity and that the tangent line to C at O is the line at
infinity H∞. This choice implies that O is the unique point at infinity
of C, since

I(O,C ∩H∞) = I(O,C ∩ TOC) = 3.

We finish the lecture by analyzing the points of order 2 and 3 on C.
Let x ∈ C.

Points of order 2 on C
Clearly, the order of x is at most 2 if and only if

O = x⊕ x = ϕ(O,ϕ(x, x)).

The equality above holds if and only if there is a line L in P2 such that

C · L = O +O + ϕ(x, x).

Hence L as above must be the tangent line to C at O. Since O is the
inflection point, ϕ(x, x) = O. Therefore, the order of x is at most 2 if
and only if ϕ(x, x) = O. From the picture we can “see” that there are
4 such points (to be precise, if char(K) 6= 2).

Points of order 3 on C
the order of x is 1 or 3 if and only if

	x = x⊕ x = ϕ(O,ϕ(x, x)) = 	ϕ(x, x)

which happens if and only if ϕ(x, x) = x, i.e. when x is an inflection
point. We know that there are 9 such points (if char(K) 6= 3).

Remark 3.34. If K = C, then P2(C) is also a compact differential
manifold of (real) dimension 4. Then C is a smooth submanifold of
P2(C) of (real) dimension 2. Since the group operation on C is actually
given by rational functions which are smooth, C has also a structure
of a Lie group. So C is a compact commutative Lie group of (real)
dimension 2. From the classification of commutative Lie groups, we
see that C is isomorphic to S1×S1 as a Lie group. This coincides with
our computations above, since the group of 2-torsion of S1 × S1 has 4
elements and the group of 3-torsion of S1 × S1 has 9 elements.


