
ALGEBRAIC CURVES: LECTURE NOTES

PIOTR KOWALSKI

0. Introduction

Lecture plan

(1) Affine varieties globally: dimension, regular functions, rational functions.
(2) Affine varieties locally: smoothness, DVR rings, multiplicities of zeros and

poles, intersection numbers.
(3) Projective varieties, Bezout’s theorem and applications, elliptic curves.

Books Fulton “Algebraic curves”, first chapter of Hartshorne’s “Algebraic geom-
etry”.

Algebraic preliminaries The word ring will always mean commutative ring with
identity. Homomorphisms of rings preserve identity. Let R be a ring and A ⊆ R.
The ideal of R generated by A is denoted by (A) or AR. We have the following
operations on I, J P R:

I + J, I ∩ J, IJ,
√
I.

An R-algebra is a (fixed) ring homomorphism R → S. We usually say “an R-
algebra S” guessing the homomorphism. If S is an R-algebra, it is also an R-
module. We have the natural notion of a homomorphism of R-algebras (ring
homomorphism which is also R-linear, equivalently certain diagram has to com-
mute). If K is a field and S is a non-zero ring, then any ring homomorphism
K → S is necessarily injective, so non-zero K-algebras may be identified with
ring extensions of K.
Let R be a domain. If A ⊂ R is a multiplicative subset, then we have the R-algebra
of fractions (with denominators from A) denoted RA. If P is a prime ideal in R,
then R \ P is a multiplicative subset and RR\P is denoted RP . The field of frac-
tions of R is R{0} which we denote by R0.
If K ⊆ L is a field extension, then trdegK L is the cardinality of (any) transcen-
dence basis of L over K. If S is a K-algebra, then by dimK S, we mean the
dimension of S considered as a K-linear space.

1. Affine varieties globally

Let K be an algebraically closed field and n ∈ N>0. By An or An(K) we mean
just Kn (the n-th Cartesian power of K), and call it affine n-space (over K).
Elements of An are called points and the notation ā, x̄ ∈ An suggests that x̄ =
(x1, . . . , xn), ā = (a1, . . . , an). Affine 1-space K is called affine line and affine
2-space K is called affine plane.
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1.1. Zariski topology. In this section we will not really use the assumption
that K is algebraically closed (just K being infinite will be used sometimes). Let
X̄ = (X1, . . . , Xn) be a tuple of variables.

Definition 1.1. For any A ⊆ K[X̄], let

V (A) := {x̄ ∈ Kn | (∀F ∈ A)(F (x̄) = 0)}.
A subset V ⊆ An is an affine algebraic set or a Zariski closed set, if there is
A ⊆ K[X̄] such that V = V (A).

Example 1.2. We have the following affine algebraic sets:

(1) Parabola (n = 2, A = {Y −X2}).
(2) Hyperbola (n = 2, A = {Y X − 1}).
(3) More generally, if F ∈ K[X̄] \K, then V (F ) is an affine algebraic set. If

F is irreducible, then:
• for n = 2, V (F ) is called plane curve;
• for n = 3, V (F ) is called surface;
• for n > 3, V (F ) is called hypersurface.

(4) Any singleton {ā} (A = {X1 − a1, . . . , Xn − an}).
(5) Empty set (A = {1}).
(6) Affine n-space (A = {0}).

Lemma 1.3. Let (Ai ⊆ K[X̄])i<κ and I, J P K[X̄]. Then:

(1) If A0 ⊆ A1, then V (A1) ⊆ V (A0);
(2) V (

⋃
Ai) =

⋂
i V (Ai);

(3) V (A0) = V ((A0)) (recall that (A0) is the ideal generated by A0);
(4) V (I ∩ J) = V (IJ) = V (I) ∪ V (J);
(5) V (I + J) = V (I) ∩ V (J).

Proof. We omit the easy proofs of (1) and (2).
For (3), we get by (1) that V ((A0)) ⊆ V (A0). Take any a ∈ V (A0) and F ∈ (A0).
Thus there are F1, . . . , Fk ∈ A0 and G1, . . . , Gk ∈ K[X̄] such that F =

∑
GiFi.

Therefore:
F (a) =

∑
Gi(a)Fi(a) = 0.

Hence a ∈ V ((A0)) and V ((A0)) = V (A0).
For (4), since IJ ⊆ I ∩ J ⊆ I, J , we get by (1) that

V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (IJ).

For the remaining inclusion take a ∈ V (IJ) and assume that a /∈ V (I). Hence
there is F ∈ I such that F (a) 6= 0. Take any G ∈ J . Then FG ∈ IJ , so
(FG)(a) = 0. Therefore, G(a) = 0 and a ∈ V (J).
For (5) we observe by (2) and (3) that:

V (I) ∩ V (J) = V (I ∪ J) = V ((I ∪ J)) = V (I + J),

since I + J = (I ∪ J). �

Corollary 1.4. Any finite subset of An is Zariski closed.

Proof. Since we know that the singletons are Zariski closed, it is enough to use
1.3(3) and 1.3(4). �
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By Lemma 1.3, Zariski closed subsets of An are indeed closed sets of a certain
topology on An. This topology is called Zariski topology. By Corollary 1.4, this
topology is T1 (points are closed). We will see soon that it is not Hausdorff (points
can not be separated by open neighborhoods).

Example 1.5. Let us look at the Zariski topology on the affine line A1 = K. A
non-zero polynomial in one variable can have only finitely many zeroes and for
any finite subset V ⊂ K, there is a polynomial F ∈ K[X] vanishing exactly on
V . Therefore, a subset V ⊂ K is Zariski closed iff V is finite or V = K. Thus the
Zariski topology on A1 is the cofinite topology, in particular it is not Hausdorff.

Remark 1.6. If K = C, then we have another topology on An coming from the
identification of C with R2 and the order topology on R. We will call the latter
(and much more natural) topology the Euclidean topology. The Zariski topology
is (much) coarser than the Euclidean one, e.g. closed boxes are not closed in
Zariski topology (see Example 1.5).

Remark 1.7. By Example 1.5, there are many subsets of A2 which are Zariski
closed, but are not closed inA2 with the product topologyA1×A1 (e.g. parabola).
Hence the Zariski topology on A2 is not the product topology (note that the
Euclidean topology on C2 is the product topology). Similarly for n > 2.

The next proposition says that for studying V (A), we can concentrate on finite
subsets A0 ⊆ A.

Proposition 1.8. For any A ⊆ K[X̄] there is a finite A0 ⊆ A such that V (A) =
V (A0).

Proof. By Hilbert’s Basissatz (Basis Theorem), the ring K[X̄] is Noetherian, in
particular the ideal (A) is finitely generated. Hence we can find a finite A0 ⊆ A
such that (A0) = (A). By 1.3(3), we have

V (A) = V ((A)) = V ((A0)) = V (A0),

which is exactly what we want. �

Definition 1.9. A topological space X is called Noetherian, if any descending
chain of closed subsets of X stabilizes.

Remark 1.10. Let X be a topological space.

(1) If X is Noetherian, then X is quasi-compact (need not be Hausdorff).
However, it is not a good intuition to think about Noetherian spaces as
compact spaces.

(2) Problem 1.1: X is Hausdorff and Noetherian iff X is finite with the discrete
topology. Hence all “infinite, nice spaces” are not Noetherian.

(3) By a subspace of X we mean a subset with the induced topology. It is easy
to see (Problem 1.0) that any subspace of a Noetherian topological space
is again Noetherian. Note that compactness is not inherited by subspaces.

(4) By the example above, we see that the affine line is Noetherian.

Proposition 1.11. An with the Zariski topology is Noetherian.
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Proof. Let us take (Vi)i∈N, a decreasing sequence of closed subsets of An. For
each i ∈ N, there is Ai ⊆ K[X̄] such that Vi = V (Ai). Let Ii := (A0 ∪ . . . ∪ Ai).
By Lemma 1.3(2,3), we have:

V (Ii) = V (A0 ∪ . . . ∪ Ai) = V (A0) ∩ . . . ∩ V (Ai) = V0 ∩ . . . ∩ Vi = Vi.

Clearly, (Ii)i∈N, is an increasing sequence of ideals of K[X̄]. By Hilbert’s Basis
Theorem, K[X̄] is a Noetherian ring, hence there is N ∈ N such that IN = IN+1 =
. . .. Therefore, VN = VN+1 = . . ., so the sequence (Vi)i∈N stabilizes indeed. �

For any affine algebraic set V ⊆ An, we consider V as a topological space with
the induced Zariski topology. Then the closed subsets of V are exactly those
subsets of V which are affine algebraic sets. By Problem 1.1, V is Hausdorff iff it
is finite (so usually it is not Hausdorff). By Proposition 1.11 and Remark 1.10,
V is Noetherian.

Definition 1.12. A non-empty topological space X is irreducible if it is not a
non-trivial union of its two closed subsets, i.e. for any Y1, Y2 ⊆ X closed, if
X = Y1 ∪ Y2, then X = Y1 or X = Y2.

Remark 1.13. Let X be a topological space.

(1) If X is irreducible, then X is connected (in the definition of irreducibility,
we do not require Y1 ∩ Y2 = ∅).

(2) If X is irreducible and Hausdorff, then X is a singleton (similar to Problem
1.1). So “nice spaces” are not irreducible.

(3) By the description of the topology on the affine line, we see that A1 is
Noetherian and irreducible. In the next section we will find an algebraic
criterium for irreducibility of an algebraic variety.

(4) Problem 1.2: Let Y ⊆ X. Then Y is irreducible (as a topological space
with the topology induced from X) iff the closure of Y is irreducible.

Proposition 1.14. If X is a Noetherian topological space, then:

(1) There are closed, irreducible X1, . . . , Xk ⊆ X such that X = X1 ∪ . . .∪Xk

and for all i 6= j, we have Xi * Xj.
(2) If we have X1, . . . , Xk and X ′1, . . . , X

′
k′ as above, then k = k′ and there is

σ ∈ Sym(k) such that X1 = X ′σ(1), . . . , Xk = X ′σ(k).

Proof. Proof of (1) is basically the same as the proof of the fact that any non-
invertible non-zero element of a Noetherian domain decomposes as the product of
irreducible elements. Assume X does not have a decomposition into the union of
finitely many irreducible closed subsets (in short: does not have decomposition).
Then X is not irreducible, so there are non-empty closed X1, X2  X such that
X = X1 ∪ X2. Since X does not have decomposition, either X1 does not have
decomposition or X2 does not have decomposition. Assume that X1 does not
have decomposition. Proceeding as above with X1 in place of X, we get non-
empty closed X11, X12  X1 such that X1 = X11 ∪ X12 and X11 does not have
decomposition. If we continue like this, we get a sequence of closed subsets

X ! X1 ! X11 ! X111 ! . . .

contradicting the assumption that X is Noetherian. Therefore X has decompo-
sition. By throwing away the redundant Xi’s, we may assume that Xi * Xj for
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i 6= j, so (1) is proved.
Let us take X ′1, . . . , X

′
k′ from (2) and i 6 k. Then Xi ⊆ X ′1 ∪ . . . ∪X ′k′ , so

Xi = (X ′1 ∩Xi) ∪ . . . ∪ (X ′k′ ∩Xi).

But Xi is irreducible, so there is i′ 6 k′ such that Xi = X ′i′ ∩ Xi, i.e. Xi ⊆ X ′i′ .
Proceeding similarly, we find j 6 k such that X ′i′ ⊆ Xj. But then Xi ⊆ Xj, so
i = j and we get Xi = X ′σ(i). Let σ(i) := i′. We have constructed a function

σ : {1, . . . , k} → {1, . . . , k′} such that for each i 6 k, we have Xi = X ′σ(i).

Similarly, we get a function τ : {1, . . . , k′} → {1, . . . , k} such that for each j 6 k′,
we have X ′j = Xτ(j). But then for any i 6 k, we have

Xτ(σ(i)) = X ′σ(i) = Xi,

so τ(σ(i)) = i. Similarly, for each j 6 k′, we have σ(τ(j)) = j. Hence k = k′ and
σ is a permutation. �

The closed subsets X1, . . . , Xk from Proposition 1.14 are called the irreducible
components of X.

Definition 1.15. Let V be an affine algebraic set. We call V an affine variety, if
it is irreducible as a topological space with the Zariski topology.

We can now directly apply Proposition 1.14.

Proposition 1.16. Every affine algebraic set can be expressed uniquely as a finite
union of affine varieties, no one containing another.

Example 1.17. Union of affine line and parabola, or line and points etc. But we
still do not know whether e.g. hyperbola or parabola is irreducible. In the next
section we will learn an algebraic criterium for irreducibility.

Definition 1.18. Let X be a topological space. The dimension of X, denoted
dim(X), is the supremum of k ∈ N such that there is a strictly decreasing (or
increasing) sequence of irreducible closed subsets of X:

X ⊇ X0 ) X1 ) . . . ) Xk.

(Note that the empty set is not considered to be irreducible.)

Problem 1.3: If X is Noetherian and T1 (points are closed), then dim(X) = 0 iff
X is finite.

There is a Noetherian topological space X such that dim(X) =∞.

Let V be an affine algebraic set. By the dimension of V , denoted dim(V ), we
mean the dimension of V as a Noetherian topological space (with the Zariski
topology).

Example 1.19. We can see that dim(A1) = 1, since A1 is irreducible and a
proper closed subset of A1 is irreducible iff it is a singleton.

Definition 1.20. An affine algebraic curve (or just affine curve) is an affine
algebraic variety C such that dim(C) = 1.
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We know so far that the affine line is an affine curve. In the next section we
will find algebraic criteria to decide whether an algebraic variety is a curve (in
particular to prove that hyperbola and parabola are indeed curves as they ought
to be).

1.2. Coordinate rings. We want to express some properties of affine algebraic
sets in algebraic terms. The assumption that K is algebraically closed will be
needed for this.
For any set Y , let Func(Y,K) denote the set of all functions from Y to K. It
has a natural K-algebra structure (K embeds into Func(Y,K) as the subfield of
constant functions). For F ∈ K[X̄], let us denote (only for a while) by F̃ the
corresponding polynomial function from An to K. By the definition of the ring
operations in K[X̄], the map

K[X̄] 3 F 7→ F̃ ∈ Func(An, K)

is a homomorphism of K-algebras.

Problem 1.4: If F 6= G, then F̃ 6= G̃.

By Problem 1.4, we can identify K[X̄] with a K-subalgebra of Func(An, K) con-
sisting of polynomial functions, and we will not write F̃ anymore.

Definition 1.21. If V ⊆ An, then the (affine) coordinate ring of V (or ring of
polynomial functions on V ) is:

K[V ] := {f ∈ Func(V,K) | (∃F ∈ K[X̄])(F |V = f)}.

It is easy to see that K[V ] above is a K-subalgebra of Func(V,K).

Problem 1.5: If V ⊂ An is finite, then K[V ] = Func(V,K).

Therefore, K[V ] ∼=K K |V |, the Cartesian power of the field K (considered with
the coordinate-wise K-algebra structure). By Problem 1.4, K[An] = K[X̄].

We have a natural epimorphism of K-algebras:

K[X̄] 3 F 7→ F |V ∈ K[V ].

We denote its kernel by I(V ), it is the ideal of V .

Lemma 1.22. The ideal I(V ) is radical, i.e. I(V ) =
√
I(V ).

Proof. Let us take F ∈
√
I(V ). There is k ∈ N such that F k ∈ I(V ). It means

that for each v ∈ V , we have 0 = F k(v) = F (v)k. Hence for each v ∈ V , F (v) = 0,
thus F ∈ I(V ). �

Clearly
I(V ) = {F ∈ K[X̄] | (∀x̄ ∈ V )(F (x̄) = 0)},

and we have an isomorphism of K-algebras:

K[V ] ∼= K[X̄]/I(V ).

Lemma 1.23. Let (Vi ⊆ An)i<κ and J P K[X̄]. Then:

(1) If V0 ⊆ V1, then I(V1) ⊆ I(V0);
(2) I(

⋃
Vi) =

⋂
I(Vi);
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(3) J ⊆ I(V (J));
(4) V (I(V0)) is the Zariski closure (i.e. the closure in the Zariski topology) of

V0.

Proof. We omit easy proofs of (1), (2) and (3). For (4), let V̄0 be the Zariski closure
of V0. It is also easy to see that V0 ⊆ V (I(V0)). Since V (I(V0)) is Zariski closed,
it is enough to show that for any Zariski closed W ⊆ An such that V0 ⊆ W , we
have V (I(V0)) ⊆ W . There is J P K[X̄] such that W = V (J). Hence V0 ⊆ V (J).
By (3) and (1), we have:

J ⊆ I(V (J)) ⊆ I(V0).

By Lemma 1.3(1), V (I(V0)) ⊆ V (J) = W . �

We aim to describe I(V (I)) for I P K[X̄]. We will need another famous theorem
of Hilbert. We just give an idea of the proof of this theorem. The most natural
(full) proof uses basic model theory and will be given in my other course. This is
the place, where we use the assumption that K is algebraically closed.

Theorem 1.24 (Weak Hilbert’s Nullstellensatz). Let I P K[X̄]. If I 6=
K[X̄], then V (I) 6= ∅.

Idea of the proof. Let F1, . . . , Fr ∈ I be such that I = (F1, . . . , Fr), and let k be
the subfield of K generated by the coefficients of F1, . . . , Fr. Since I 6= K[X̄], I
extends to a maximal m P K[X̄]. Let L := K[X̄]/m and Φ : K → L denote the
following composition:

K
⊆ // K[X̄] // K[X̄]/m = L.

Since Φ is a homomorphism of fields, it is an embedding. Hence we can identify
K with a subfield of L. Let

v̄ := (X1 + m, . . . , Xn + m) ∈ Ln.
It is easy to check (but some care is necessary) that

F1(v̄) = 0, . . . , Fr(v̄) = 0.

Let l := k(v̄). Now, if there is an k-algebra homomorphism Ψ : l → K, then
Ψ(v̄) ∈ V (I), so V (I) is non-empty. This homomorphism exists for example
if trdegkK is infinite (enough to take the transcendence degree over the prime
field). By using model theory, the (incomplete) homomorphism argument can
be replaced with an elementary extension argument. We will not go into details
here. �

There are many algebraic proofs of Weak Hilbert’s Nullstellensatz. We will not
discuss any of them here.

Corollary 1.25 (Hilbert’s Nullstellensatz). For I P K[X̄], we have I(V (I)) =√
I.

Proof. By Lemma 1.23(3), we have I ⊆ I(V (I)). By 1.22, we have
√
I ⊆ I(V (I)).

For the opposite inclusion, let us take a non-zero G ∈ I(V (I)) and F1, . . . , Fr ∈ I
such that I = (F1, . . . , Fr). Let us define

J := (F1, . . . , Fr, Xn+1G− 1) P K[X̄,Xn+1].
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Take any (v̄, v) ∈ An+1. If for each i 6 r, we have Fi(v̄) = 0, then v̄ ∈ V (I).
Thus G(v̄) = 0, since G ∈ I(V (I)). Therefore

(Xn+1G− 1)(v̄, v) = 0− 1 6= 0.

We have obtained that V (J) = ∅. By Weak Hilbert’s Nullstellensatz, J =
K[X̄,Xn+1]. Hence there are H1, . . . , Hr+1 ∈ K[X̄,Xn+1] such that

(1) 1 =
r∑
i=1

HiFi +Hr+1(Xn+1G− 1).

Consider the following homomorphism of K-algebras:

Ψ : K[X̄,Xn+1]→ K(X̄); Ψ(Xi) = Xi for i 6 n, Ψ(Xn+1) = G−1

(here we use G 6= 0). After applying Ψ to (the both sides of) (1) we get the
following equality in K(X̄)

(2) 1 =
r∑
i=1

Hi(X̄,G
−1)Fi(X̄).

Let N be the maximum of the degrees of Hi with respect to the variable Xn+1.
Multiplying the both sides of (2) by GN we get:

(3) GN =
r∑
i=1

GNHi(X̄,G
−1)Fi(X̄),

where for each i 6 r, we have GNHi(X̄,G
−1) ∈ K[X̄]. By (3), GN ∈ I, therefore

G ∈
√
I. �

We can prove now the algebraic characterization of irreducibility.

Proposition 1.26. Let V ⊆ An be Zariski closed. The following are equivalent:

(1) V is irreducible,
(2) I(V ) is prime,
(3) There is a prime ideal P P K[X̄] such that V = V (P ),
(4) K[V ] is a domain.

Proof. Since K[V ] ∼= K[X̄]/I(V ), we get the equivalence (2)⇔ (4).
For the implication (1)⇒ (2) assume that V is irreducible and take F,G ∈ K[X̄]
such that FG ∈ I(V ). Then

V ⊆ V (FG) = V (F ) ∪ V (G).

Since V is irreducible, V ⊆ V (F ) or V ⊆ V (G). It means that F ∈ I(V ) or
G ∈ I(V ), so I(V ) is prime.
For the implication (2) ⇒ (3) we take P = I(V ). Since V is Zariski closed, we
get by Lemma 1.23(4):

V (P ) = V (I(V )) = V.

For the implication (3) ⇒ (1) assume that V = V (P ) for a prime ideal P and
take Zariski closed V1, V2 ⊆ An such that V = V1 ∪ V2. By 1.23(2) and Hilbert
Nullstellensatz, we have

I(V1) ∩ I(V2) = I(V1 ∪ V2) = I(V (P )) =
√
P = P.
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Since P is prime, P = I(V1) or P = I(V2). By Lemma 1.23(4), V = V1 or V = V2,
so V is irreducible. �

Remark 1.27. For the equivalences (1)⇔ (2)⇔ (4) we do not need the assump-
tion that K is algebraically closed. However this assumption is necessary for the
crucial equivalence with (3) (see Problem 1.6).

Clearly, I may be not prime and V (I) may be still irreducible, e.g. for I = (X2).

Corollary 1.28. If F ∈ K[X̄] is irreducible (as an element of the ring K[X̄]),
then the hypersurface V (F ) is an affine variety.

Proof. Since K[X̄] is UFD (Gauss Theorem) and F is irreducible, F is prime.
Therefore, the ideal (F ) is prime. By 1.26(4), V (F ) is irreducible. �

Problem 1.6: Find F ∈ R[X, Y ] which is irreducible such that V (F ) ∩ R2 is
non-empty and not irreducible.

Example 1.29. We can finally give some examples of affine varieties and their
coordinate rings.

(1) Let V = V (Y − X2) ⊆ A2 (parabola). The polynomial Y − X2 is ir-
reducible, so by Corollary 1.28, V is an affine variety. Since the ideal
(Y −X2) is prime, we get by Hilbert Nullstellensatz that I(V ) = (Y −X2).
Therefore

K[V ] ∼=K K[X, Y ]/(Y −X2) ∼=K K[X].

Note that K[V ] ∼=K K[A1] which suggests that parabola is “isomorphic”
to the affine line. We will make sense out of it and see that it is true.

(2) Let V = V (Y X − 1) ⊆ A2 (hyperbola). Similarly as above, V is an affine
variety and K[V ] ∼=K K[X, Y ]/(XY − 1).
Problem 1.7: K[V ] is not isomorphic to K[A1].

(3) Let V = V (Y 2 −X3). Problem 1.8: K[V ] is not UFD.
In particular K[V ] is not isomorphic to K[A1]. Actually, the fact that
K[V ] is not UFD is related to the fact that V is singular at (0, 0) (again,
we will make it precise later). This is very typical: algebraic properties of
the coordinate ring of V reflect geometric properties of V .

Corollary 1.30. Let V ⊆ An be an affine algebraic set. There is a bijective
correspondence (inverting inclusions) between the set of radical (resp. prime)
ideals of K[V ] and the set of Zariski closed subsets (resp. irreducible Zariski
closed subsets) of V .

Proof. By Proposition 1.26 and Hilbert Nullstellensatz (and 1.3(1), 1.23(1)), we
have such correspondences for V = An. For an arbitrary V let us concentrate
on prime ideals. Since K[V ] = K[X̄]/I(V ), the set of prime ideals of K[V ]
corresponds to the set of prime ideals of K[X̄] containing I(V ). But the latter
set corresponds exactly (again by the references above) to the set of irreducible
Zariski closed subsets of V . �

We recall a definition from ring theory.



10 P. KOWALSKI

Definition 1.31. Let R be a ring. The Krull dimension of R, denoted dim(R),
is the supremum of k ∈ N such that there is a strictly increasing (or decreasing)
sequence of prime ideals of R:

P0 ( P1 ( . . . ( Pk.

Example 1.32. It is usually not easy to calculate the Krull dimension of a ring.
We describe it in some simple cases.

• If k is a field, then dim(k) = 0, because the 0-ideal is a unique prime ideal
of k.
• Problem 1.9: If R is PID and not a field, then dim(R) = 1.
• Nagata has constructed a Noetherian ring of infinite Krull dimension.

Proposition 1.33. Let V be an affine algebraic set. Then dim(V ) = dim(K[V ])

Proof. It follows directly from the definitions and Corollary 1.30. �

In the case of coordinate rings, there is an easier description of the Krull dimen-
sion, but it is difficult to prove. First we need one more definition.

Definition 1.34. Let V be an irreducible affine variety. Then K(V ) denotes the
field of fractions of K[V ] (which is a domain by 1.26(4)) and it is called the field
of rational functions on V .

We will not give a real proof of the following theorem (recall that R0 denotes the
field of fractions of R).

Theorem 1.35. Let R be a finitely generated K-algebra which is a domain. Then
we have:

dim(R) = trdegK R0.

A very brief idea of the proof. Let us assume first that R = K[X̄] and consider
the following chain of prime ideals

(0)  (X1)  (X1, X2)  (X1, . . . , Xn).

Hence dim(K[X̄]) > n. The other inequality is more difficult and is proved by
induction on n by finding an appropriate quotient ring.
For the general case, by Noether’s Normalization Theorem there are r1, . . . , rd ∈
R which are algebraically independent over K and such the the ring extension
K[r1, . . . , rd] ⊆ R is finite, i.e. R is a finitely generated K[r1, . . . , rd]-module.
Then the field extension K(r1, . . . , rd) ⊆ R0 is also finite, hence algebraic and
trdegK R0 = d.
Clearly K[r1, . . . , rd] ∼= K[X1, . . . , Xd], so dim(K[r1, . . . , rd]) = d. Now we have
to use the fact that the Krull dimension does not change in finite extensions so
dim(R) = d. �

Remark 1.36. A finitely generated algebra over a field is called an affine domain.
Theorem 1.35 holds for any affine domain (we do not need the assumption that
K is algebraically closed).

Corollary 1.37. Let V be an affine variety. Then

dim(V ) = trdegK K(V ).
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Proof. The K-algebra K[V ] is finitely generated as an image of K[X̄] and it is a
domain, so we can use 1.33 and 1.35. �

Corollary 1.38. Let V be a plane curve. Then dim(V ) = 1. (So, a plane curve
is an affine curve.)

Proof. Let F ∈ K[X, Y ] be irreducible such that V = V (F ). Then K[V ] ∼=
K[X, Y ]/(F ) and let us identify this two K-algebras. We consider K[X, Y ]/(F )
as a ring extension of K. Let

t := X + (F ) ∈ K[V ] ⊆ K(V ), s := Y + (F ) ∈ K[V ] ⊆ K(V ).

Case 1 t ∈ K.
Then X − t ∈ (F ), so F |X − t in K[X, Y ]. Since F and X − t are irreducible,
(F ) = (X − t), so

K[X, Y ]/(F ) = K[X, Y ]/(X − t) ∼= K[Y ].

Then K(V ) ∼= K(Y ), so trdegK K(V ) = 1, OK.

Case 2 t /∈ K.
We will show that {t} is the transcendence basis of K(V ). Since t /∈ K and K is
algebraically closed, {t} is algebraically independent. Now it is enough to show
that K(t) ⊂ K(V ) is algebraic. Since K(V ) = K(t, s), it is enough to show that
s is algebraic over K(t). Let

G(Y ) := F (t, Y ) ∈ K(t)[Y ].

If G = 0, then t is algebraic over K, a contradiction. So G 6= 0 and G(s) =
F (t, s) = 0, OK. �

Remark 1.39. The above corollary is generalized as follows:
Let F ∈ K[X̄] \K and V be an irreducible component of V (F ). Then dim(V ) =
n− 1.
To prove it, one needs to know Krull’s Principal Ideal Theorem (Hauptidealsatz).

To avoid usage of Theorem 1.35 in the case of curves, we can use Problem 1.11
below.

Problem 1.10: V is a point iff trdegK K(V ) = 0.

Problem 1.11: If trdegK K(V ) = 1, then V is a curve.

1.3. The category of affine algebraic sets. Let V ⊆ An, W ⊆ Am and
Z ⊆ Ar be affine algebraic sets.

Definition 1.40. A function Φ : V → W is a morphism, if there are f1, . . . , fm ∈
K[V ] such that for each v ∈ V we have

Φ(v) = (f1(v), . . . , fm(v)).

In other words, a morphism is a polynomial function. Note that the set of mor-
phism from V to A1 is exactly K[V ].
It is easy to see that if Φ : V → W and Ψ : W → Z are morphism, then
Ψ ◦ Φ : V → Z is a morphism (the composition of polynomial functions is a
polynomial function) and such that idV is a morphism. Therefore we obtain the
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category of affine algebraic sets.
As in any category, a morphism Φ : V → W is an isomorphism, if there is a
morphism Ψ : W → V such that Ψ ◦ Φ = idV and Φ ◦ Ψ = idW . If there is an
isomorphism between V and W , then we write V ∼= W . As usual we have:

• V ∼= V ;
• if V ∼= W , then W ∼= V ;
• if V ∼= W and W ∼= Z, then V ∼= Z.

Example 1.41. We have noticed that parabola V = V (Y − X2) should be iso-
morphic to affine line. Let

Φ : A1 → V, Φ(x) = (x, x2), Ψ : V → A1, Ψ(x, y) = x.

Then we have

Ψ(Φ(x)) = Ψ(x, x2) = x, Φ(Ψ(x, y)) = Φ(x) = (x, x2) = (x, y).

Therefore V ∼= A1.

Example 1.42. We may be used to algebraic situations where a bijective homo-
morphism is an isomorphism. It is not the case here! For example, if char(K) =
p > 0, then

Fr : A1 → A1, Fr(x) = xp.

The Frobenius morphism is bijective, but it is not an isomorphism, since there is
no polynomial F such that F (Xp) = X. Later, we will also give an example in
characteristic 0.

We will explain now the notion of morphism on the level of coordinate rings.

Definition 1.43. For a morphism Φ : V → W let:

Φ∗ : K[W ]→ K[V ], Φ∗(f) = f ◦ Φ.

We know that the composition of morphisms is a morphism, so it is well defined.
Note that we invert arrows which always brings some difficulties.
It is obvious that Φ∗ is a K-algebra homomorphism, since for v ∈ V and f, g ∈
K[W ] we have

[Φ∗(f · g)](v) = (f · g)(Φ(v)) = f(Φ(v)) · g(Φ(v))

= [(f ◦ Φ) · (g ◦ Φ)](v) = (Φ∗(f) · Φ∗(g))(v),

and similarly for the addition and the scalar multiplication.

Proposition 1.44. (1) If Ψ : V → W and Φ : W → Z are morphism, then

(Φ ◦Ψ)∗ = Ψ∗ ◦ Φ∗, (idV )∗ = idK[V ] .

(2) The map Ψ 7→ Ψ∗ is a bijection between the set of morphisms from V to
W and the set of K-algebra homomorphisms from K[W ] to K[V ].

(3) For any finitely generated K-algebra R which is reduced (i.e. has no
nilpotent elements), there is an affine algebraic set V such that R ∼=K

K[V ].
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Proof. (1) is a very easy diagram chase.
For (2), let us notice first that polynomial functions separate points, i.e. by
Problem 1.5, for any w,w′ ∈ W , if w 6= w′ then there is t ∈ K[W ] such that
t(w) = 0, t(w′) = 1.
Let us take two different morphisms Φ,Ψ : V → W . Then there is v ∈ V such
that Φ(v) 6= Ψ(v). Hence we find t ∈ K[W ] such that t(Φ(v)) = 0, t(Ψ(v)) = 1,
hence Φ∗(t)(v) 6= Ψ∗(t)(v), so Φ∗ 6= Ψ∗.
Let us take a K-algebra homomorphism γ : K[W ]→ K[V ]. We have a morphism

Ψ : V → Am, Ψ = (γ(X1|W ), . . . , γ(Xm|W )).

We will check that Ψ(V ) ⊆ W and γ = Ψ∗.
To show that Ψ(V ) ⊆ W , it is enough to show that for any F ∈ I(W ), we have
F ◦ Ψ = 0. Since γ is a K-algebra homomorphism and the restriction map is a
homomorphism we have:

F ◦Ψ = F (γ(X1|W ), . . . , γ(Xm|W ))

= γ(F (X1|W , . . . , Xm|W ))

= γ(F |W )

= 0.

To show that γ = Ψ∗, we take f ∈ K[W ] and F ∈ K[X1, . . . , Xm] such that
F |W = f . By computations as above, we have:

Ψ∗(f) = f ◦Ψ

= F ◦Ψ

= γ(F |W )

= γ(f).

For (3), let us take a finitely generated reducedK-algebraR. ThenR is isomorphic
to K[X1, . . . , Xd]/I for some d ∈ N and I P K[X1, . . . , Xd]. Since R is reduced,
I is radical (Problem 2.1). By Hilbert’s Nullstellensatz, I = I(V (I)), so R ∼=
K[V (I)]. �

The above proposition says that the category of affine algebraic sets is antiequiva-
lent or dually equivalent to the category of finitely generated reduced K-algebras.
In other words, these two categories are “the same” after inverting arrows.

Corollary 1.45. If V,W are affine algebraic sets, then V ∼= W if and only if
K[V ] ∼=K K[W ].

2. Affine varieties locally

In this section we will be interested in the local properties of an affine variety
around a given point. Let V ⊆ An,W ⊆ Am, Y ⊆ Ar be affine varieties.

2.1. Rational maps. We will first regard a rational function on a variety as an
actual function.

Definition 2.1. Let f ∈ K(V ). We define the domain of f , denoted dom(f), as
the set of points v ∈ V such that there are f1, f2 ∈ K[V ] such that f = f1/f2 and
f2(v) 6= 0.



14 P. KOWALSKI

If v ∈ dom(f) and f1, f2 are as above, then we define f(v) as f1(v)/f2(v). Clearly
the value f(v) does not depend on the choice of representatives f1, f2 ∈ K[V ]. So
we have a function:

f : dom(f)→ K.

Problem 2.2: dom(f) is (Zariski) open in V .

Definition 2.2. Let f ∈ K(V ) and v ∈ V . Then:

• f is regular at v, if v ∈ dom(f);
• OV,v := {f ∈ K(V ) | v ∈ dom(f)};
• f is regular, if f is regular at each v ∈ V , i.e. if dom(f) = V .

Example 2.3. Let V = A1 and f = 1/X. Then dom(f) = A1 \ {0}.
For any W ⊆ V , let

IV (W ) := {f ∈ K[V ] | f |W = 0}.
Problem 2.3: For any v ∈ V , the ideal IV (v) (= IV ({v})) is maximal.

Before the next result (the description of OV,v) let us recall that a local ring is
a ring with a unique maximal ideal. A ring is local if and only if the set of
non-invertible elements is an ideal (necessarily the unique maximal ideal). For
any domain R and prime ideal P P R, the localization ring RP is local with the
maximal ideal

PRP :=
{a
b
∈ R | a ∈ P, b ∈ R \ P

}
.

We naturally identify RP with the following subring of R0:{a
b
∈ R0 | a ∈ R, b ∈ R \ P

}
.

For any multiplicative subset S ⊂ R, we consider R as a subring of RS.

Fact 2.4. For any v ∈ V , OV,v = K[V ]IV (v).

Proof. This is just checking the definitions. For any f ∈ K(V ), we have f ∈
K[V ]IV (v) if and only if there are a ∈ K[V ], b ∈ K[V ] \ IV (v) such that f = a/b
which happens if and only if v ∈ dom(f). �

Definition 2.5. For v ∈ V , mV,v denotes the maximal ideal of OV,v.
By Fact 2.4, mV,v = IV (v)K[V ]IV (v).

The next result says that regular functions actually coincide with the polynomial
ones.

Proposition 2.6. Let f ∈ K(V ). Then f is regular if and only if f ∈ K[V ].

Proof. Clearly, any f ∈ K[V ] is regular. Let f ∈ K(V ) be regular. By Fact 2.4,
f ∈

⋂
v∈V K[V ]IV (v). However, by Proposition 1.30, the maximal ideals of K[V ]

correspond to the minimal subvarieties of V , i.e. points, so every maximal ideal
m P K[V ] is of the form IV (v) for some v ∈ V . Therefore

f ∈
⋂

m P K[V ] max

K[V ]m

However, by a known result in ring theory (Problem 2.4) this intersection coincides
with K[V ]. �
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We know that any morphism Ψ : V → W induces a K-algebra homomorphism
Ψ∗ : K[W ]→ K[V ] and we get a bijective correspondence. What happens on the
level of fields of rational functions? Let us first look at an algebraic fact.

Problem 2.5: Let α : R1 → R2 be a homomorphism of domains and S1 ⊂ R1, S2 ⊂
R2 be multiplicative subsets. Then α extends to a homomorphism β : (R1)S1 →
(R2)S2 if and only if α(S1) ⊆ S2.

Hence Ψ∗ : K[W ]→ K[V ] extends to the fraction fields if and only if Ψ∗(K[W ] \
{0}) ⊆ K[V ] \ {0} which happens if and only if Ψ∗ is a monomorphism.

Lemma 2.7. Let Ψ : V → W be a morphism. Then Ψ∗ is a monomorphism if
and only if Ψ is dominant, i.e. Ψ(V ) is Zariski dense in W .

Proof. Assume that Ψ(V ) is Zariski dense in W and take f ∈ K[W ] such that

0 = Ψ∗(f) = f ◦Ψ.

This means that Ψ(V ) ⊆ V (F ) for F ∈ K[X1, . . . , Xm] such that f = F |W . But
Ψ(V ) is Zariski dense in W and V (F ) is Zariski closed, so W ⊆ V (F ), hence
0 = F |W = f .
Assume that Ψ(V ) is not Zariski dense in W , so there is a proper Zariski closed
W0 ⊂ W such that Ψ(V ) ⊆ W0. But then there is F ∈ K[X1, . . . , Xm] such that
F |W0 = 0 and f := F |W 6= 0. Since F |W0 = 0 and Ψ(V ) ⊆ W0, we get Ψ∗(f) = 0,
so Ψ∗ is not a monomorphism. �

Notation 2.8. The notation Φ : V � W means that Φ is a dominant morphism
from V to W .

Remark 2.9. The notation V � W reminds the notation for an epimorphism (of
group or rings). Actually, the dominant morphisms are exactly the epimorphisms
in the category of affine algebraic sets and the above lemma is true for arbitrary
algebraic sets.

We see that any dominant morphism Ψ : V → W induces a K-algebra homomor-
phism of fields Ψ∗ : K(W ) → K(V ). Actually, Ψ need not to be a morphism to
induce such a function.

Definition 2.10. Let U ⊆ V be a non-empty open subset. A function Φ : U → W
is called a rational function between V and W if there are f1, . . . , fm ∈ K(V ) such
that

U = dom(f1) ∩ . . . ∩ dom(fm),

and for all v ∈ U we have

Φ(v) = (f1(v), . . . , fm(v)).

(Note that by Problem 1.12, if we have U1, . . . , Un non-empty subsets of V , then
U1 ∩ . . . ∩ Un is non-empty.) A rational function Φ as above is dominant, if Φ(U)
is Zariski dense in W .

We want now to compose rational functions. Let us see some examples first.

Example 2.11. Let V = W = Y = A2, Φ be a rational function between V and
W , and Ψ be a rational function between W and Y .
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(1) Let Φ be given by (X,X2) (so it is even a morphism) and Ψ be given by
(0, 1/(Y − X2)). Then we can not compose Ψ and Φ, since the image of
Ψ has the empty intersection with the domain of Φ.

(2) Let Φ be given by (1/X, Y 2) and Ψ be given by arbitrary rational functions
(F1/G1, F2/G2) (so G1, G2 6= 0). Then the following rational functions:

G1

(
1/X, Y 2

)
, G2

(
1/X, Y 2

)
are non-zero (e.g. since Φ is dominant), so we can define the rational
function Ψ ◦ Φ as(

F1 (1/X, Y 2)

G1 (1/X, Y 2)
,
F2 (1/X, Y 2)

G2 (1/X, Y 2)

)
.

We can generalize the second example above to the case of arbitrary rational
functions. Let Φ be a rational function between V and W which is dominant and
Ψ be a rational function between W and Y . Let Φ be given by (f1, . . . , fm) where
f1, . . . , fm ∈ K(V ) and Φ be given by (g1, . . . , gr) where g1, . . . , gr ∈ K(W ). Take
F1, . . . , Fr ∈ K[X1, . . . , Xr] and G1, . . . , Gr ∈ K[X1, . . . , Xr] such that for each j
we have Gj|W 6= 0 and

gj =
Fj|W
Gj|W

.

Define Φ ◦Ψ by the following sequence:(
F1(f1, . . . , fm)

G1(f1, . . . , fm)
, . . . ,

Fr(f1, . . . , fm)

Gr(f1, . . . , fm)

)
.

As in Example 2.11(2), each Gj(f1, . . . , fm) 6= 0, since Gj|W 6= 0 and Φ is domi-
nant. Hence we can compose such rational functions.
Note that K(V ) corresponds to rational functions from V to A1. If we have any
f ∈ K(W ), then f ◦Ψ is a rational function from V to A1 so an element of K(V ).
Therefore we have a function:

Ψ∗ : K(W )→ K(V ), Ψ∗(f) = f ◦Ψ.

We can check (as in the case of morphisms) that Ψ∗ is aK-algebra homomorphism.

Notation 2.12. The notation Φ : V 99K W means that Φ is a dominant rational
function V to W .

We will state without a proof a result similar to Proposition 1.44 (the proof is
similar as well).

Proposition 2.13. (1) If Ψ : V 99K W and Φ : W 99K Z, then

(Φ ◦Ψ)∗ = Ψ∗ ◦ Φ∗, (idV )∗ = idK(V ) .

(2) The map Ψ 7→ Ψ∗ is a bijection between the set of dominant rational
functions from V to W and the set of K-algebra homomorphisms between
K(W ) and K(V ).

(3) For any field extension K ⊆ L such that L is finitely generated (as a field)
over K, there is an affine variety V such that

L ∼=K K(V ).
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The above proposition says that the category of affine varieties and dominant
rational maps is antiequivalent or dually equivalent to the category of finitely
generated field extensions of K.

2.2. Smoothness. We will give an algebraic definition of smoothness. First we
need the notion of a partial derivative in a polynomial ring.

Definition 2.14. Let R be a ring and ∂ : R→ R. The map ∂ is a derivation on
R if for all a, b ∈ R we have:

∂(a+ b) = ∂(a) + ∂(b), ∂(ab) = b∂(a) + a∂(b).

Example 2.15. (1) For R = C∞(R) we have the standard derivation ∂ = ∂
∂X

on R. As we know, we can identify R[X] with a subring of R and then
∂|R[X] is a derivation on R[X].

(2) Let T be an arbitrary ring. We can define a derivation ∂ = ∂
∂X

on T [X]
by coping the formula for ∂|R[X] from (1), i.e.

∂(a0 + a1X + a2X
2 + . . .+ amX

m) := a1 + 2a2X + . . .+ (m− 1)am−1X
m−1.

It can be easily checked that ∂ is a derivation.

Remark 2.16. Note that if char(T ) = p > 0, then there are non-constant poly-
nomials on which ∂ vanishes, e.g. ∂(Xp) = 0.

Definition 2.17. For each i ∈ {1, . . . , n}, we have the derivation ∂
∂Xi

on K[X̄]
coming from the identification

K[X̄] = K[X1, . . . , Xi−1, Xi+1, . . . , Xn][Xi].

Example 2.18. Let us consider again V = V (Y 2 − X3) ⊆ A2. We intuitively
know that (0, 0) is a (unique) singular point of V . How to see it algebraically?
Consider the pair of polynomials(

∂(Y 2 −X3)

∂X
,
∂(Y 2 −X3)

∂Y

)
= (−3X2, 2Y ).

We can see that for (a, b) ∈ V , this pair of polynomials vanishes on (a, b) if and
only if (a, b) = (0, 0).

One can wonder what does the condition from the example above has to do with
smoothness. To explain this, we will go for a while into the world of differential
geometry.

Example 2.19. Let f : R2 → R be a C1-function, V := f−1(0) and (a, b) ∈ V .
If ∂f

∂Y
(a, b) 6= 0, then by the Implicit Function Theorem, there are open neighbor-

hoods
a ∈ Ua ⊆ R, b ∈ Ub ⊆ R

and a C1-function g : Ua → Ub such that

U ∩ V = Γg,

where U = Ua×Ub and Γg is the graph of g. Then U ∩V is a smooth submanifold
of R2 (as the graph of a smooth function), so (a, b) is a smooth point of V . By
the Analytic Implicit Function Theorem, the above works for an analytic function
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f : C2 → C, in particular for polynomial functions. Hence for V = V (Y 2−X3) ⊆
A2(C), we see that (0, 0) is the unique singular (i.e. non-smooth) point of V .

The above examples will motivate the definition of a smooth point on an affine
variety. First, we need one more definition.

Definition 2.20. Let F1, . . . , Fm ∈ K[X̄]. The Jacobian matrix of F̄ = (F1, . . . , Fm)
is

JF̄ :=

(
∂Fi
∂Xj

)
i,j

∈Mm,n(K[X̄]).

If v ∈ An, then JF̄ (v) ∈Mm,n(K).

Problem 2.7: If G1, . . . , Gk ∈ (F1, . . . , Fm) and v ∈ V (F1, . . . , Fm), then the rows
of JḠ(v) are K-linear combinations of the rows of JF̄ (v).

Recall that for A ∈ Mm,n(K) the rank of A, denoted rk(A), is the dimension of
the image of A considered as a K-linear map Kn → Km. It coincides with the
maximal number of independent rows of A (and also with the maximal number
of independent columns of A).
From Problem 2.7 we immediately get the following fact.

Fact 2.21. If (G1, . . . , Gk) = I = (F1, . . . , Fm) P K[X̄] and v ∈ V (I), then

rk(JḠ(v)) = rk(JF̄ (v)).

Therefore, the rank of such a Jacobian does not depend on the choice of generators.

Now we can finally state the main definition.

Definition 2.22. Let V ⊆ An be an algebraic set, F1, . . . , Fm ∈ I(V ) be such
that I(V ) = (F1, . . . , Fm) and a ∈ V . Let F̄ denote the tuple of polynomials
F1, . . . , Fm. We say that a is a non-singular or a smooth point of V if

rk(JF̄ (a)) = n− dim(V ).

We say that V is a non-singular variety or a smooth variety, if V is irreducible
and all the points of V are smooth.

Note that by Fact 2.21, this definition makes sense, i.e. does not depend on
the choice of F1, . . . , Fm. To explain the equality used in the above definition,
for a smooth a ∈ V , intuitively, “V around a should infinitesimally look like
JF̄ (a)−1(0)” and we have

dim(JF̄ (a)−1(0)) = n− rk(JF̄ (a)),

so the rank condition in the above definition makes sense. Also this definition
coincides with Example 2.18 and we have the following generalization.

Example 2.23. Let V = V (F ) be a plane curve and (t, s) ∈ V . Then dim(V ) = 1,
so (t, s) is smooth if and only if rk(JF (t, s)) = 1 which happens if and only if
∂f
∂X

(t, s) 6= 0 or ∂f
∂Y

(t, s) 6= 0.

Remark 2.24. Assume that K = C and V ⊆ An is a smooth affine variety.
Then it can be proved that V is a complex analytic submanifold of Cn. Thus the
analytic and algebraic notions of smoothness coincide.
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Fact 2.25. Let F ∈ K[X, Y ] and V = V (F ) ⊆ A2. Then:

(1) If F /∈ K, then V is infinite.

(2) If V (F, ∂F
∂X
, ∂F
∂Y

) is finite, then
√

(F ) = (F ) and I(V ) = (F ).

(3) If V (F, ∂F
∂X
, ∂F
∂Y

) is empty, then V is smooth.

We will prove a characterization of smoothness in terms of local rings which will
be very important in the sequel. Before the statement let us notice that any ideals
I, J P K[V ] are also K-vector spaces and if I ⊆ J , the quotient J/I is a K-vector
space as well (and also a K[V ]-module). First we prove:

Proposition 2.26. A point a ∈ V is smooth if and only if

dimK(IV (a)/(IV (a))2) = dim(V ).

Proof. By applying the translation by a, we can assume that a = 0 = (0, . . . , 0).
Let us consider the following map:

Ψ : K[X̄]→ Kn, Ψ(F ) :=

(
∂F

∂X1

(0), . . . ,
∂F

∂Xn

(0)

)
.

It is clearly K-linear. Let I := I(0) P K[X̄]. It is easy to check that ker(Ψ) ∩
I = I2 (do at home!). Let {e1, . . . , en} be the standard basis of Kn and pick
i ∈ {1, . . . , n}. Then Ψ(Xi) = ei, so Ψ(I) = Kn. Therefore

(1) I/I2 ∼= Kn

(as K-vector spaces).
Let us take F1, . . . , Fm ∈ I(V ) such that I(V ) = (F1, . . . , Fm) and any F =∑
αiFi ∈ I(V ). Since 0 ∈ V , for each j ∈ {1, . . . , n} we get by Leibnitz’s Rule:

∂(αiFi)

∂Xj

(0) = αi(0)
∂Fi
∂Xj

(0).

We obtain:
Ψ(F ) = Ψ(

∑
(αiFi)) =

∑
αi(0)Ψ(Fi).

Since for each i, Ψ(Fi) is the i-th row of JF̄ (0), we get:

(2) rk(JF̄ (0)) = dimK Ψ(I(V )).

By (1), we get Ψ(I(V )) ∼= (I(V ) + I2)/I2, so by (2) we have:

(3) rk(JF̄ (0)) = dimK

(
(I(V ) + I2)/I2

)
.

Consider now the restriction epimorphism π : K[X̄] → K[V ]. Clearly ker(π) =
I(V ). We have:

IV (0)/IV (0)2 ∼= π−1(IV (0))/π−1(IV (0)2).

But π−1(IV (0)) = I and π−1(IV (0)2) = I2 +I(V ) (check at home!). Hence we get:

(4) IV (0)/IV (0)2 ∼= I/(I2 + I(V )) ∼=
I/I2

(I2 + I(V ))/I2
.

By (1), (3) and (4) we get

n = dimK(IV (0)/(IV (0))2) + rk(JF̄ (0)).

Therefore dimK IV (0)/(IV (0))2 = dim(V ) if and only if 0 is a smooth point of
V . �
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Our statement will follow from the above proposition and the following lemma.

Lemma 2.27. If V is an affine variety and a ∈ V then we have:

IV (a)/(IV (a))2 ∼=K mV,a/(mV,a)
2.

Proof. Problem 3.3(c) says that for any domain R and any maximal ideal P , we
have

P/P 2 ∼=R/P PRP/(PRP )2.

In our case it is enough to take R = K[V ] and P = IV (a), since mV,a =
IV (a)K[V ]IV (a) and K[V ]/IV (a) ∼=K K. �

Theorem 2.28. If V is an affine variety and a ∈ V then a is smooth if and only
if

dimK(mV,a/(mV,a)
2) = dim(V ).

Proof. By Proposition 2.26 and Lemma 2.27. �

Remark 2.29. A Noetherian local ring (R,m) is called regular, if dim(R) =
dimR/m(m/m2). It can be show that for any a ∈ V , we have dim(OV,a) = dim(V ).
Hence a is a smooth point if and only if OV,a is regular, so regularity is the exact
algebraic counterpart of smoothness.

Remark 2.30. The K-vector space mV,a/(mV,a)
2 is called the cotangent space (of

V at a) and the dual vector space is called the tangent space (of V at a). I will
tell more about it later in the case of curves.

2.3. Discrete valuation rings and multiplicities. In this section we look
closer at the local ring of a smooth point of a curve. First we need several algebraic
notions.

Definition 2.31. A local ring (R,m) is a discrete valuation ring (DVR), if:

• R is a Noetherian domain,
• R is not a field,
• m is principal.

We will need two theorems about local rings, which we leave without proof.

Theorem 2.32 (Nakayama’s Lemma). Let (R,m) be a local ring and M a finitely
generated R-module such that mM = M . Then M = {0}.

Theorem 2.33. Let (R,m) be a local Noetherian ring. Then
∞⋂
n=1

mn = {0}.

Remark 2.34. Krull’s Intersection Theorem is a vast generalization of the above
intersection statement. It says that for any Noetherian domain R and any I P R,
if I 6= R then

∞⋂
n=1

In = {0}.

Theorem 2.35. Any DVR is PID.
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Proof. Let (R,m) be DVR and take any I P R. Let t ∈ m such that (t) = m. For
any r ∈ R let

Ar := {n ∈ N : tn|r}.
If Ar is infinite, then r ∈

⋂∞
n=1 m

n. By Theorem 2.33,
⋂∞
n=1 m

n = {0}, so r = 0.
Hence for any r ∈ R \ {0}, there is nr := max(Ar). Let us take

n := min{nr | r ∈ I \ {0}}.
We will prove that I = (tn). Take any r ∈ I. If r = 0, then r ∈ (tn), so we may
assume r 6= 0. Since nr > n, tn divides r, so r ∈ (tn). For the opposite inclusion,
take r ∈ I such that nr = n. Then there is u ∈ R such that r = tnu. Since
n = nr, t does not divide u. Hence u ∈ R \ m = R∗. Therefore (r) = (tn), in
particular (tn) ⊆ I. �

Remark 2.36. By the proof of Theorem 2.35, if (R,m) is DVR, then any irre-
ducible element (called here a uniformizing parameter) of R generates m.

Example 2.37. The ring (KJXK, (X)) is DVR and X is a uniformizing parame-
ter.

Let R now be any UFD, r ∈ R be irreducible (equivalently prime) and L = R0

be the field of fractions of R. We define a function:

vr : L∗ → Z, vr(α) = n, where α = rn
a

b
, a, b ∈ R, r - a, r - b.

The function vr is called the r-adic valuation on L.

Example 2.38. If p ∈ Z, then vp is the (usual) p-adic valuation on Q.

Fact 2.39. Let R, r, L, vr be as above. Then for all α, β ∈ L∗ we have:

(1) if α + β ∈ L∗, then vr(α + β) > min{vr(α), vr(β)},
(2) vr(αβ) = vr(α) + vr(β),
(3) vr(L

∗) = Z.

Proof. Let α = rn a
b
, β = rma′

b′
, where a, b, a′, b′ ∈ R, r - a, b, a′, b′ and (without loss

of generality) n 6 m. Then

α + β = rn
(
a

b
+ rm−n

a′

b′

)
= rn

ab′ + rm−na′b

bb′
.

Since r - bb′ and rm−n ∈ R, we get that vr(α + β) > n proving (1). The item (2)
follows immediately from the definition of vr. For (3), notice that for any n ∈ Z,
we have vr(r

n) = n. �

Remark 2.40. Notice that for any irreducible r, s ∈ R, if (r) = (s), then vr = vs.

Definition 2.41. Let L be a field. Any function v : L∗ → Z satisfying (1)− (3)
above is called a discrete valuation on L. We will skip the word “discrete” in
the sequel. (In particular the r-adic valuation is a valuation.) For any valuation
v : L∗ → Z we define:

• Ov := {α ∈ L∗ | v(α) > 0} ∪ {0} the valuation ring of v.
• mv := {α ∈ L∗ | v(α) > 0} ∪ {0} the valuation ideal of v.

Proposition 2.42. Let L be a field and v : L∗ → Z be a valuation on L. Then
(Ov,mv) is DVR.
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Proof. From the definition of the valuation it is easy to check that Ov is a subring
of L and that mv is an ideal of Ov. Take any α ∈ Ov \mv. Then v(α) = 0. Since
v : (L∗, ·) → (Z,+) is a group homomorphism, v(α−1) = 0, so α ∈ (Ov)∗. Thus
(Ov,mv) is a local ring. Since v is onto, mv 6= {0}, so Ov is not a field. It is enough
to check that Ov is PID. Clearly, Ov is a domain. Take any non-zero I P Ov and
r ∈ I \ {0} with the minimal v(r). Similarly as in the proof of Theorem 2.35, it
can be checked that I = (r). �

Proposition 2.43. Let (R,m) be DVR and r, s ∈ R be uniformizing parameters.
Then vr = vs.

Proof. By Remark 2.36, (r) = m = (s). Hence vr = vs (see Remark 2.40). �

We see that each DVR (R,m) gives a unique valuation v on L = R0. How to
describe this valuation? Theorem 2.33 says that

∞⋂
n=1

mn = {0}.

Hence for any r ∈ R, there is a unique k ∈ N such that r ∈ mk \ mk+1 (we take
m0 = R). Then (check at home!), v(r) = k. We give yet another characterization
of the valuation given by a DVR.

Proposition 2.44. Let (R,m) be DVR and r ∈ R. Assume that we have a ring
extension K ⊆ R such that the composition of the projection map R→ R/m with
the inclusion K ⊆ R is the identity map idK. Then we have:

v(r) = dimR/m(R/(r)).

Proof. Note that R/m = K. Let a be a uniformizing parameter and n = v(r).
Then there is u ∈ R∗ such that r = uan. Hence (r) = (an) = mn. We will show
inductively that dimR/m(R/mn) = n. It is clear for n = 1. Recall the notion of a
short exact sequence of K-vector spaces: the following sequence of K-linear maps
of K-vector spaces

0 // W
α // V

β // Z // 0

is exact, if α is a monomorphism, β is an epimorphism and the kernel of β coincides
with the image of α.
Problem 4.1: If a sequence as above is exact, then

dimK(V ) = dimK(W ) + dimK(Z).

For any n ∈ N we have a short exact sequence of K-vector spaces:

0→ mn/mn+1 → R/mn+1 → R/mn → 0.

Hence, it is enough (induction) to show that dimR/m(mn/mn+1) = 1. If mn = mn+1,
then (by Theorem 2.33) mn = {0} and an = 0, but R is a domain, so mn 6= mn+1.
Since mn/mn+1 is spanned by an + mn+1, we get dimR/m(mn/mn+1) = 1. �

Theorem 2.45. Let C be an affine curve and a ∈ C. Then a is smooth if and
only if (OC,a,mC,a) is DVR.

Before the proof we will recall.
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Theorem 2.46 (a simple form of Nakayama’s Lemma). Let (R,m) be a Noether-
ian local ring and t1, . . . , tm ∈ m. Then t1, . . . , tm generate m (as an ideal) if and
only if t1 + m2, . . . , tm + m2 generate m/m2 (as an R/m-vector space).

Note that the above statement follows from Nakayama’s Lemma, if one takes

M := m/(t1, . . . , tm).

Proof of Theorem 2.45. Since K[C] is a Noetherian domain, any localization of it
(as OC,a) is a Noetherian domain as well. Since mC,a is non-zero, OC,a is not a
field. By Theorem 2.28, a is smooth if and only

dimK(mC,a/m
2
C,a) = 1.

By a simple form of Nakayama’s Lemma above, the latter happens if and only if
mC,a is principal, i.e. exactly when (OC,a,mC,a) is DVR. �

Definition 2.47. Let C be an affine curve and a ∈ C be a smooth point.

(1) Any uniformizing parameter f ∈ OC,a is called a local parameter for C at
a.

(2) The unique valuation on K(C) given by the DVR (OC,a,mC,a) (note that
K(C) is the fraction field of OC,a) is denoted orda.

(3) For f ∈ K(C) \ {0} and n ∈ N>0:
• if orda(f) = n, we say that f has a zero at a of order n,
• if orda(f) = −n, we say that f has a pole at a of order n.

Problem 3.6: Let C be an affine curve, a ∈ C be a smooth point and f ∈ K(C).
Then f is a local parameter for C at a if and only if f has a zero at a of order 1.

Example 2.48. Let C = A1 and take 0 ∈ C. Then K[C] = K[X], K(C) = K(X)
and IC(0) = (X). Therefore

OC,0 = K[X](X) = {F/G | F,G ∈ K[X], G(0) 6= 0}.

The valuation ord0 on K(X) is clearly the X-adic valuation vX . Then for any
α = F/G ∈ K(X) \ {0} if F and G has no common prime divisors, then α has
a zero at 0 of order n if and only if 0 is a root of F of multiplicity n. Thus the
notion of order generalizes (from A1 to arbitrary affine curves) the notion of the
multiplicity of a root. The rational function α has a pole at 0 of order n if and
only if 0 is a root of G of multiplicity n.

Example 2.49. Let C = V (Y 2 − X3) and take a = (0, 0) ∈ C. We know that
a is not a smooth point of C, we will see that (OC,a,mC,a) is not DVR. Firstly,
notice that

K[C] ∼= K[X, Y ]/(Y 2 −X3) ∼= K[X2, X3].

Then we have

OC,a = {F/G | F,G ∈ K[X2, X3], G(a) 6= 0}.

mC,a = {F/G | F,G ∈ K[X2, X3], G(a) 6= 0, F (a) = 0}.
Then mC,a = (X2, X3), but it can be shown that mC,a is not principal. So
(OC,a,mC,a) is not DVR.
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Let C be an affine curve, a ∈ C a smooth point and f ∈ K[C]. By 2.44, we
know that orda(f) = dimK(OC,a/fOC,a). One can wonder what happens when
we skip the localization and just compute dimK(K[C]/fK[C]). But if we take
e.g. C = A1 and f = F ∈ K[X], then we have

dimK(K[X]/(F )) = deg(F ),

which is not much related to the order of F at a point of A1. There is a relation
though which we will explore in the sequel (it may be considered as a baby version
of Bézout’s Theorem):

dimK(K[X]/(F )) =
∑

a∈V (F )

orda(F ).

Let us look at one more example.

Example 2.50. Consider two plane curves:

C1 := V (Y ), C2 := V (Y −X3 −X2)

and the point 0 ∈ C1 ∩ C2. It is easy to see that

ord0(Y |C2) = 2 = ord0((Y −X3 −X2)|C1).

Can this quantity be expressed in a way independent of the choice of the local
ring OC1,0 or OC2,0? We need an algebraic fact.

Problem 4.2: Let R be a domain and P ⊆ I ⊆ Q a chain of ideals of R such that
P and Q are prime. Then we have:

RQ

IRQ

∼=
(R/P )Q/P

I/P (R/P )Q/P
.

Applying to R = K[X, Y ], P = (Y ), I = (Y, Y −X3 −X2), Q = (X, Y ) we get

OC1,0/((Y −X3 −X2)|C1)
∼= K[X, Y ](X,Y )/(Y, Y −X3 −X2).

Similarly for R,Q, I as above and P = (Y −X3 −X2) we get

OC2,0/(Y |C2)
∼= K[X, Y ](X,Y )/(Y, Y −X3 −X2).

We will study the numbers of the form

dimK(K[X, Y ](X,Y )/(Y, Y −X3 −X2)).

Let us fix F,G ∈ K[X, Y ] and a = (x, y) ∈ A2 and define

O := K[X, Y ](X−x,Y−y) = K[X, Y ]I(a) = OA2,a.

Definition 2.51. We define the intersection number of F and G at a as

I(a, F ∩G) := dimK(O/(F,G)O).

Before calculating intersection numbers we need several properties of them.

(1) It is easy to see that the intersection number I(a, F ∩G) depends only on
the ideals (F ), (G). Therefore for plane curves C1, C2 we can define the
intersection number of C1 and C2 at a as

I(a, C1 ∩ C2) := I(a, F ∩G)
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for any F,G such that (F ) = I(C1) and (G) = I(C2). It is important that
in the general definition of the intersection number we can go beyond the
case of affine curves (i.e. irreducible polynomials) to include also possible
“multiplicities” of plane curves.

(2) Directly from the definition it follows that

I(a, F ∩G) = I(a,G ∩ F ).

(3) Since (F,G)O 6= O if and only if (F,G) ⊆ I(a) which happens if and only
if F (a) = 0 = G(a), we get

I(a, F ∩G) > 0 ⇔ a ∈ V (F,G).

(4) The notion of the intersection number is reasonable only if this number is
finite. It is easy to find examples when it is not, e.g. I(0, X ∩ X) = ∞.
In this example the intersection (of V (X) with V (X)) itself is infinite. It
turns out it is always the reason of the infinite intersection number, since
we have the following property.

|V (F,G)| <∞ ⇒ I(a, F ∩G) <∞.

Proof. Let V (F,G) = {a1, . . . , ak}, where a = a1. By Hilbert’s Nullstel-
lensatz (and Chinese Remainder Theorem), we have the equality of ideals
in K[X, Y ]:√

(F,G) = I({a1, . . . , ak}) = I(a1) ∩ . . . ∩ I(ak) = I(a1) · . . . · I(ak).

By Problem 4.3, there is m ∈ N such that

(F,G) ⊇ (I(a1) · . . . · I(ak))
m = I(a1)m · . . . · I(ak)

m.

Therefore there is an epimorphism:

R :=
O

(I(a1)m . . . I(ak)m)O
→ O

(F,G)O
,

so it is enough to show that dimK(R) is finite. However, for all i > 1 we
have I(ai)O = O. Assume for convenience that a1 = (0, 0). Then we have

O/(I(a1)m . . . I(ak)
m) = O/(I((0, 0))m)O = O/(I((0, 0))O)m.

Similarly, as in Problem 3.3(c) we have:

O/(I((0, 0))O)m ∼= K[X, Y ]/(X, Y )m

and it is easy to compute that

dimK(K[X, Y ]/(X, Y )m) =
m(m+ 1)

2
<∞,

which finishes the proof. �

From now we will assume (explicitly or implicitly) that V (F,G) is finite.
(5) If F is irreducible and a ∈ V (F ) is smooth then (see Example 2.50)

I(a, F ∩G) = orda(G|V (F )).
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Proof. We have

I(a, F ∩G) = dimK(K[X, Y ]I(a)/(F,G)K[X, Y ]I(a)).

By 2.44, we have

orda(G|V (F )) = dimK(OV (F ),a/G|V (F )OV (F ),a).

If we apply Problem 4.2 for R = K[X, Y ], P = (F ), I = (F,G) and
Q = I(a) we get an isomorphism

K[X, Y ]I(a)/(F,G)K[X, Y ]I(a)
∼= OV (F ),a/G|V (F )OV (F ),a,

similarly as in Example 2.50. �

Example 2.52. Let

LX := V (Y ), LY := V (X), C1 := V (Y 2 −X3), C2 := V (Y −X3).

Using Property (5) above we compute:

I(0, LX ∩ C1) = ord0((Y 2 −X3)|LX
) = 3,

I(0, LY ∩ C1) = ord0((Y 2 −X3)|LY
) = 2,

I(0, LX ∩ C2) = ord0((Y −X3)|LX
) = 3,

I(0, LY ∩ C2) = ord0((Y −X3)|LY
) = 1.

We see that in the examples above, a line is tangent to a curve if and only if the
intersection number is greater than 1. We take it as the definition.

Definition 2.53. Let C be a plane curve and a ∈ A2.

• A subset L ⊆ A2 is called a line if there are α, β, γ ∈ K such that L =
V (αX + βY + γ) and (α, β) 6= (0, 0).
• A line L ⊆ A2 is tangent to C at a if I(a, L ∩ C) > 1.
• The tangent space to C at a, denoted TaC, is the union of all the tangent

lines to C at a.

Let us assume for simplicity that a = 0 = (0, 0) ∈ C.

Problem 4.4(a) T0(C) = V
(
∂F
∂X

(0)X + ∂F
∂Y

(0)Y
)
.

As promised, we are going to see now how to understand the K-vector space
mC,0/(mC,0)2 as (T0C)∗: the cotangent space to C at 0, i.e. the dual space to T0C
(that is the space of K-linear maps from T0C to K).
We a have a K-bilinear map:

K2 ×K[X, Y ] 3 ((x, y), F ) 7→ ∂F

∂X
(0)x+

∂F

∂Y
(0)y ∈ K.

(The element ∂F
∂X

(0)x+ ∂F
∂Y

(0)y is actually the directional derivative of f along the
vector (x, y) at 0.) By Problem 4.4(a), T0C × I(C) is mapped to 0 hence we get
a K-bilinear map:

T0C ×K[C] 3 (h, f) 7→ Ψ(h, f) ∈ K.
For any F,G ∈ I(0) we have

∂(FG)

∂X
(0) = 0,

∂(FG)

∂Y
(0) = 0,
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hence we get a K-bilinear map:

T0C × IC(0)/(IC(0))2 3 (h, f) 7→ Φ(h, f) ∈ K.
Problem 4.4(c) The last K-bilinear map is non-degenerate.

Therefore we get

(T0C)∗ ∼= IC(0)/(IC(0))2.

We recall now an isomorphism of K-vector spaces (Problem 3.3(c))

IC(0)/(IC(0))2 ∼= mC,0/(mC,0)2,

which finally gives our desired isomorphism

(T0C)∗ ∼= mC,0/(mC,0)2.

Let F,G,H ∈ K[X, Y ]. We will need more properties of the intersection numbers.

(6) I(a, F ∩G) = I(a, F ∩ (G+HF )).

Proof. Clearly (F,G) = (F,G+HF ). �

(7) I(a, F ∩GH) = I(a, F ∩G) + I(a, F ∩H).

Proof. We have a short exact sequence of K-vector spaces

0→ (F,G)/(F,GH)→ O/(F,GH)→ O/(F,G)→ 0.

We will show that there is an isomorphism of K-vector spaces

O/(F,H) ∼= (F,G)/(F,GH),

which will be enough by Problem 4.1 and the definition of intersection
number.
For z ∈ O let z̄ denote the coset of z in the appropriate quotient ring
which will be clear from the context. We define

α : O/(F,H)→ (F,G)/(F,GH), α(z̄) := zG.

It is easy to check that α is well-defined and K-linear (do at home!). It is
also onto, since for any f, g ∈ O we have clearly

fF + gG ≡ gG mod (F,GH).

It remains to check (the most difficult part) that α is a monomorphism.
Take z ∈ O such that Gz = 0. We aim to show that z̄ = 0, i.e. we need
to find b, d ∈ O such that z = bH + dF . Since Gz = 0, there are u, v ∈ O
such that we have the following equality in the ring O:

Gz = uF + vGH.

Take S ∈ K[X, Y ] such that S(a) 6= 0 and all the

A := Su, B := Sv, C := Sz

belong to K[X, Y ] (this is possible since O = K[X, Y ]I(a)). Then we have
an equality in the ring K[X, Y ]:

AF = SuF = SGz − SvGH = G(C −BH).
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Since V (F,G) is finite, F and G have no common prime factors in K[X, Y ].
But then F divides C − BH in K[X, Y ], i.e. there is D ∈ K[X, Y ] such
that C −BH = DF . Take finally

b := B/S ∈ O, d := D/S ∈ O.

We have z = bH + dF as we wanted. �

Example 2.54. We compute two intersection numbers:

I(0, (Y 2 −X3) ∩ (Y 2 −X3 −X2)) = I(0, (Y 2 −X3) ∩X2)

= 2I(0, (Y 2 −X3) ∩X)

= 4

I(0, (Y 2 −X3) ∩ (Y 4 +X4 −X2))

= I(0, (Y 2 −X3) ∩ (Y 4 +X4 −X2 − Y 2(Y 2 −X3)))

= I(0, (Y 2 −X3) ∩ (X4 −X2 + Y 2X3))

= I(0, (Y 2 −X3) ∩X2) + I(0, (Y 2 −X3) ∩ (X2 − 1 + Y 2X))

= 2I(0, (Y 2 −X3) ∩X) + 0

= 4

We usually consider the localization of a domain R with respect to a multiplicative
subset S. Not much changes if we drop the domain assumption. One needs to be
careful about the equivalence relation:

r1

s1

=
r2

s2

⇐⇒ (∃s3 ∈ S)(s3(s1r2 − s2r1) = 0).

The only difference is that the natural map R → RS need not to be one-to-one,
the kernel consists of elements r ∈ R such that for some s ∈ S we have rs = 0.
Also a generalization of Problem 4.2 holds, where P can be taken as an arbitrary
ideal.
We will need a lemma about such localizations. Recall that e ∈ R is idempotent,
if e2 = e. If e is idempotent, then the ideal eR is a ring with the unity e.

Lemma 2.55. Assume R is a ring, P P R is prime and e ∈ R \P is idempotent
which is divisible by each element of R \ P . Then the natural map φ : R → RP

induces an isomorphism of rings eR ∼= RP (preserving the unit elements).

Before the proof, let us see what happens when e = 1. Then the assumption says
that any element of R \P divides 1, i.e. R \P = R∗. But this exactly means that
(R,P ) is local, hence R→ RP is an isomorphism.

Proof of Lemma 2.55. Since φ(e) ∈ (RP )∗ (e ∈ R \ P ) and φ(e) is idempotent,
φ(e) = 1. Thus the unit elements are preserved by φ|eR. Take any r ∈ R and
assume that φ(re) = 0. Thus there is s ∈ R \ P such that res = 0. But s divides
e, so there is s′ ∈ R such that ss′ = e. We have:

re = ree = ress′ = 0.
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Hence the kernel of φ|eR is trivial.
Take any f/g ∈ RP and g′ ∈ R such that gg′ = e. Then we have

φ(efg′) = φ(e)φ(fg′) = φ(fg′) =
fg′

1
=
f

g
,

so φ|eR is onto. �

We will use this lemma to prove a generalization of the “baby version of Bézout’s
Theorem”:

dimK(K[X]/(F )) =
∑

a∈V (F )

orda(F ),

which will be very important in the proof of the actual Bézout’s Theorem.

Proposition 2.56. Assume that V := V (F,G) is finite. Then:

dimK(K[X, Y ]/(F,G)) =
∑
a∈V

I(a, F ∩G).

Proof. It will follow from a more general fact. Assume I P K[X̄] is such that
V (I) = {a1, . . . , am} is finite. We will show

(∗) K[X̄]/I ∼=K K[X̄]I(a1)/IK[X̄]I(a1) × . . .×K[X̄]I(am)/IK[X̄]I(am)

Note that:

I(a, F ∩G) := dimK(K[X, Y ]I(a)/(F,G)K[X, Y ]I(a)).

Hence indeed proving (∗) is enough (taking I = (F,G) and X̄ = (X, Y )).
Let R := K[X̄]/I and mi := I(ai)/I P R. Then (by the more general version of
Problem 4.2 for P = I and Q = I(ai)) the right-hand side in (∗) is isomorphic to

Rm1 × . . .×Rmm ,

and we have to show that this product ring is isomorphic to R.
For each i ∈ {1, . . . ,m}, we will find an idempotent ei ∈ R such that

∑
ei = 1

and ei satisfies Lemma 2.55 for P = mi. It will be enough, since by a general
result about product rings we have then:

R ∼= e1R× . . .× emR.

and by Lemma 2.55, eiR ∼= Rmi
.

By Hilbert’s Nullstellensatz,
√
I = I(a1) . . . I(am) and by Problem 4.3, there is

d ∈ N such that

I(a1)d . . . I(am)d ⊆ I.

For any i, take Fi ∈ K[X̄] such that Fi(ai) = 1 and for j 6= i, Fi(aj) = 0. We
define

Ei := 1− (1− F d
i )d, ei := Ei + I.

This is a good choice, we skip a computational argument, which can be found on
pages 56-57 of Fulton.
Add from lecture notes!! �
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3. Projective varieties

Let us take F,G ∈ K[X, Y ]. Bézout’s theorem should say that if the number of
the intersection points of V (F ) and V (G) is finite, then this number (counted with
multiplicities) equals the product of the degrees of F and G. Such a statement
clearly fails inside A2, since two disjoint parallel lines do not intersect. Therefore
we have to improve the ambient space A2. It turns out that we just need to make
sure that all the lines intersect.

3.1. Projective space. The projective plane should coincide with the affine
plane expanded by the set of extra points where parallel lines would intersect.
We call them “points at infinity”. We just add one such a point for each equiva-
lence class of parallel lines. Clearly, each such a class has a natural representative:
the line going through zero. Thus our first approximation of projective plane is
affine plane enlarged with the set of all 1-dimensional K-linear subspaces of K2.

Definition 3.1. Let n ∈ N. Projective n-th space over K, denoted Pn(K) or Pn,
is defined as the set of all 1-dimensional K-subspaces (i.e. lines passing through
zero) of Kn+1.

We will see that for n = 2 this definition coincides with the intuitive description
above. We need to check whether “P2 = A2 ·∪P1”, since the points at infinity
correspond now exactly to P1. To do that we need to understand how to consider
A2 as a subset of P2 and P1 as a subset of P2. Let L ∈ Pn. For each a ∈ L \ {0},
we have L = spanK(a). For any (a1, . . . , an+1) ∈ An+1 \ {(0, . . . , 0)} we define:

[a1 : . . . : an+1] := spanK{(a1, . . . , an+1)} ∈ Pn.

If x = [a1 : . . . : an+1] ∈ Pn, then a1, . . . , an+1 are called the projective or homoge-
nous coordinates of x. For any

(a1, . . . , an+1), (b1, . . . , bn+1) ∈ An+1 \ {(0, . . . , 0)},

we clearly have

(∗) [a1 : . . . : an+1] = [b1 : . . . : bn+1] ⇔ ∃λ ∈ K ∀i 6 n+ 1 λai = bi

Let i ∈ {1, . . . , n+ 1}. We define:

ψi : An → Pn, ψi(a1, . . . , an) := [a1 : . . . : ai−1 : 1 : ai : . . . : an].

Let Ui ⊆ Pn denote the image of ψi. By (∗) we have:

Ui = {[a1 : . . . : an+1] ∈ Pn | ai = 1} = {[a1 : . . . : an+1] ∈ Pn | ai 6= 0}.

Again by (∗), ψi is a bijection between An and Ui, allowing us to regard An as a
subset of Pn.
For n > 0, we have also a one-to-one function

πi : Pn−1 → Pn, πi ([a1 : . . . : an]) := [a1 : . . . : ai−1 : 0 : ai : . . . : an]

(note that by (∗), πi is well defined and indeed one-to-one). It is easy to see that

πi(P
n−1) = Pn \ Ui,
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hence we get our desired equality “Pn = An ·∪Pn−1”.
We usually concentrate on i = n+1 and write An ⊂ Pn identifying An with Un+1.
Using this convention, for W ⊆ Pn we often write W ∩An and denote

H∞ := πn+1(Pn−1) ⊂ Pn

(the “hyperplane at infinity”).

Example 3.2. (1) P0 is just a point.
(2) P1 = {[x : 1] | x ∈ K} ∪ {[1 : 0]} and H∞ = {[1 : 0]} (just one point at

infinity).
(3) P2 = {[x : y : 1] | x ∈ K} ∪ {[x : y : 0] | (x, y) ∈ A2 \ {0}} (the projective

line at infinity).

Remark 3.3. We know that P1 = U1 ∪ U2, and that

ψ1 : A1 → U1, ψ2 : A1 → U2

are bijections. Hence P1 may be understood as two copies of A1 “glued” along
certain subsets of A1. Let us first see these subsets and then the gluing map.
These subsets are ψ−1

i (U1 ∩ U2) for i = 1, 2. Clearly

U1 ∩ U2 = {[a : b] ∈ P1 | a 6= 0, b 6= 0}.
Then we have

ψ−1
1 (U1 ∩ U2) = A1 \ {0} = ψ−1

2 (U1 ∩ U2).

For a, b ∈ A1 \ {0}, we “glue” a with b if and only if ψ1(a) = ψ2(b). The latter
happens if and only if [1 : a] = [b : 1], which is equivalent (by the formula (∗)
above) to b = a−1. Therefore, P1 may be understood as two copies of A1 “glued”
along A1 \ {0} and the gluing map is

A1 \ {0} 3 a 7→ a−1 ∈ A1 \ {0}.
Note that this map is a rational map on A1.
In a similar way, Pn may be understood as n+ 1 copies of An glued along certain
open subsets of An using certain rational maps on An. Such a gluing process
leads to the general definition of an algebraic variety, but we do not go into this
direction here.

We want to do algebraic geometry inside projective space in a similar way as we
were doing it inside affine space. In particular, we need the notion of a projective
algebraic set. The problem is that for x ∈ Pn and F ∈ K[X1, . . . , Xn+1], we can
not apply F to x in a meaningful way. We need to consider a special type of
polynomials.

Definition 3.4. Let d, k, d1, . . . , dk ∈ N, a ∈ K and H ∈ K[X1, . . . , Xk].

• If H = aXd1
1 · . . . ·X

dk
k is a monomial, then the degree of H is d1 + . . .+dk.

• We call H a homogenous polynomial of degree d if H is a sum of monomials
of degree d.

Problem 5.3: A non-zero polynomial H is homogenous of degree d if and only if
for all λ ∈ K we have

H(λX1, . . . , λXk) = λdH

(equality of polynomials).
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By Problem 5.3, if F ∈ K[X1, . . . , Xn+1] is a homogenous polynomial of degree
d, then for any a ∈ An+1 and λ ∈ K we have F (λa) = λdF (a). We still can not
apply F to x ∈ Pn, but we can at least define what does it mean “F (x) = 0”,
since F (a) = 0 if and only if for any λ ∈ K \ {0}, we have F (λa) = 0.

Definition 3.5. A subset V ⊆ Pn is called a projective algebraic set, if there are
homogenous polynomials F1, . . . , Fk ∈ K[X1, . . . , Xn+1] such that

V = {x ∈ Pn | F1(x) = 0, . . . , Fk(x) = 0}.

Definition 3.6. A subset V ⊆ P2 is called a line in P2 if there is (α, β, γ) ∈
K3 \ {(0, 0, 0)} such that

V = {[a : b : c] ∈ P2 | αa+ βb+ γc = 0}.

Problem 5.2: Any two lines in P2 have non-empty intersection.

Example 3.7. Let V = V (F ) ⊆ A2, where F = Y 2 −X3 −X. Let us consider
the homogenous polynomial F ∗ = Y 2Z −X3 −XZ2 and the projective algebraic
set

V ∗ := {x ∈ P2 | F ∗(x) = 0}.
It is easy to see that for any a ∈ A2, we have a ∈ V if and only if ψ3(a) ∈ V ∗.
Therefore we have (recall our convention):

V = V ∗ ∩A2.

Let us see the “points at infinity” of V , i.e. the intersection of V ∗ with the line
at infinity H∞. For any x ∈ H∞, we have F ∗(x) = 0 if and only if x = [0 : 1 : 0].
Therefore

V ∗ = V ∪ {[0 : 1 : 0]},
and [0 : 1 : 0] is the unique point at infinity of V .

For any F ∈ K[X1, . . . , Xn], we want to find an appropriate homogenous polyno-
mial F ∗ ∈ K[X1, . . . , Xn+1] as in the example above. Intuitively, we need to make
F homogenous using the variable Xn+1 in the most economic way. There is a
unique d ∈ N and unique F0, . . . , Fd ∈ K[X1, . . . , Xn] such that F = F0 + . . .+Fd,
Fd 6= 0 and for each i 6 d, Fi is a homogenous polynomial of degree i or Fi = 0.
Define

F ∗ :=
d∑
i=0

Xd−i
n+1Fi.

Clearly, F ∗ is a homogenous polynomial of degree d called the homogenization of
F (with respect to Xn+1).

Problem 5.4: For F and d as above, we have:

F ∗ = Xd
n+1F

(
X1

Xn+1

, . . . ,
Xn

Xn+1

)
.

Note that we can homogenize F with respect to any variable, the simplest way
is to change a bit the formula from Problem 5.4. The homogenization of F with
respect to Xi is

Xd
i F

(
X1

Xi

, . . . ,
Xi−1

Xi

,
Xi+1

Xi

, . . . ,
Xn+1

Xi

)
.
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Let us fix n ∈ N and i ∈ {1, . . . , n+ 1}. We list several facts without proofs:

(1) Projective algebraic subsets of Pn are closed sets of certain topology on
Pn called again the Zariski topology.

(2) The set Pn together with the Zariski topology is again a Noetherian topo-
logical space. By the general definitions and results about Noetherian
topological spaces from Section 1, we get the notions of dimension of pro-
jective algebraic set and irreducible components of projective algebraic
sets.

(3) Take any homogenous polynomials F1, . . . , Fk ∈ K[X1, . . . , Xn+1] and let

V := {x ∈ Pn | F1(x) = 0, . . . , Fk(x) = 0}.
Then we have:

ψ−1
i (V ) = V (F1|Xi=1, . . . , Fk|Xi=1),

where for any H ∈ K[X1, . . . , Xn+1], we define H|Xi=1 as the polynomial
in n variables obtained from H by plugging Xi = 1. Such a polynomial is
called the dehomogenization of H with respect to Xi.
In particular, the set ψ−1(V ) is Zariski closed in An, hence the function
ψi is continuous.

(4) Take any H1, . . . , Hl ∈ K[X1, . . . , Xn] and let

W = V (H1, . . . , Hl) ⊆ An.

For each j 6 l, let H̃j be the homogenization of Hj with respect to Xi and
define:

V := {x ∈ Pn | H̃1(x) = 0, . . . , H̃l(x) = 0}.
If i = n+ 1, then we denote V by W ∗ and call W ∗ ∩H∞ the set of points
at infinity of W . We have

V ∩ Ui = ψi(W )

In particular (using also (3) above), ψi is a homeomorphism between An

and Ui. Thus Pn has an open cover of n + 1 sets such that each such set
is homeomorphic to An.

(5) Assume V ⊆ An is Zariski closed. We have:
• V ∗ coincides with the Zariski closure of V in Pn;
• dim(V ) = dim(V ∗);
• V is irreducible if and only if V ∗ is irreducible (Problem 1.2).

(6) If W ⊆ Pn is an irreducible projective algebraic set and W ∩ Ui is non-
empty, then W coincides with the Zariski closure of W ∩ Ui in Pn.

Example 3.8. Consider the projective Fermat curve

V :=
{

[a : b : c] ∈ P2 | a3 + b3 + c3 = 0
}
,

and let F := X3 + Y 3 + Z3. Then V ∩A2 (remember our convention!) is given
by the dehomogenization of F with respect to Z (see (3) above), i.e.

V ∩A2 = V (X3 + Y 3 + 1) ⊆ A2.

Definition 3.9. • A projective variety is an irreducible projective algebraic
set.
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• A projective curve is a projective variety of dimension 1.
• A projective plane curve is a projective curve, which is a subset of P2.

Remark 3.10. Let V be a projective plane curve. It can be shown that

• There is an irreducible homogenous polynomial F ∈ K[X, Y, Z] such that

V = {x ∈ P2 | F (x) = 0}.
• For any F1, F2 as above (i.e. giving the same projective plane curve V ),

there is λ ∈ K \ {0} such that F2 = λF1.

Hence we can define the degree of V as the degree of F as above.

Definition 3.11. Let V ⊆ Pn be a projective variety and x ∈ V .

• The point x is a smooth point of V , if there is i 6 n+ 1 such that x ∈ Ui
and ψ−1

i (x) is a smooth point of the affine variety ψ−1
i (V ).

• The point x is a singular point of V , if v is not a smooth point of V .
• The projective variety V is smooth if for all x ∈ V , x is a smooth point of
V .

Remark 3.12. It can be shown that in the above definition “there is i” can be
replaced with “for all i”.
There is also an equivalent definition of smoothness not using the embeddings ψi,
but an appropriately defined local ring OV,x.
Example 3.13. Let W = V (Y −X2) ⊆ A2. We will check whether W ∗ is smooth.
Since W is smooth, it is enough to check whether the points at infinity of W are
smooth, i.e. whether “W is smooth at infinity”. Let us take [a : b : 0] ∈ H∞, a
point at infinity of A2. We will check when [a : b : 0] is a point at infinity of W .
The homogenization of Y −X2 is Y Z −X2, so [a : b : 0] is a point at infinity of
W if and only if

b · 0− a2 = 0.

Thus [0 : 1 : 0] is a unique point at infinity of W . Clearly [0 : 1 : 0] ∈ U2. To see
whether [0 : 1 : 0] is a smooth point of W ∗, we should check whether ψ−1

2 ([0 : 1 : 0])
is a smooth point of the affine variety ψ−1

2 (W ∗). Clearly, ψ−1
2 ([0 : 1 : 0]) = (0, 0).

By the property (4) above, ψ−1
2 (W ∗) is the set of zeroes of the dehomogenization

of Y Z −X2 with respect to Y (the second variable). Hence

ψ−1
2 (W ∗) = V (Z −X2) ⊆ A2.

We get a parabola again which is smooth, so [0 : 1 : 0] is a smooth point of W ∗,
and W ∗ is smooth (i.e. W is “smooth at infinity”).

Example 3.14. Let W = V (Y − X3) ⊆ A2. We will check whether W ∗ is
smooth. Again, since W is smooth, we just need to check whether W is smooth
at infinity. The homogenization of Y −X3 is Y Z2−X3. By a similar computation
as in the previous example, [0 : 1 : 0] is a unique point at infinity of W . Again,
ψ−1

2 ([0 : 1 : 0]) = (0, 0) and ψ−1
2 (W ∗) is the set of zeroes of the dehomogenization

of Y Z2 −X3 with respect to Y . Hence

ψ−1
2 (W ∗) = V (Z2 −X3).

However, we know that (0, 0) is a singular point of V (Z2 −X3), hence W is not
smooth at infinity (W is singular at infinity).
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3.2. Bézout’s Theorem. We need to define the intersection number of two
“curves with possible multiplicities” in P2. As in the affine case, we will de-
fine the intersection number of two polynomials (in this case homogenous ones)
at a point of projective plane.

Definition 3.15. Let x ∈ P2 and F,H,G ∈ K[X1, X2, X3] be homogenous poly-
nomials.

• Let i ∈ {1, 2, 3} be such that x ∈ Ui. We define the intersection number
as

I(x, F ∩H) := I(ψ−1
i (x), (F |Xi=1) ∩ (H|Xi=1)).

• If F and H are irreducible and V,W ⊂ P2 are projective plane curves such
that

V = {x ∈ P2 | F (x) = 0}, W = {x ∈ P2 | H(x) = 0},
then we define:

I(x, V ∩G) := I(x, F ∩G).

I(x, V ∩W ) := I(x, F ∩H).

Remark 3.16. It can (and should) be shown that the above definition does not
depend on the choice of i. By Remark 3.10, the second part does not depend on
the choice of F and H.

Example 3.17. Consider affine plane curves

C1 := V (Y 2 −X3), C2 := V (Y −X3).

We will find all the intersection points of C∗1 and C∗2 and count their multiplicities.
We start with the intersection points of C1 and C2. Since C2 is smooth, for any
x ∈ C2 we have

I(x,C1 ∩ C2) = ordx((Y
2 −X3)|C2).

We know that K[C2] ∼= K[X] and under this isomorphism we have:

(Y 2 −X3)|C2 7→ (X3)2 −X3 = X3(X3 − 1).

Hence (we know it already) I((0, 0), C1∩C2) = 3. To compute the other intersec-
tion points, we need to consider two cases.

Case 1 char(K) 6= 3
Since char(K) 6= 3 and K is algebraically closed, there is a primitive third root of
unity in K, let us call it ε. Then we have

X3(X3 − 1) = X3(X − 1)(X − ε)(X − ε2)

and

C1 ∩ C2 = {(0, 0), (1, 1), (ε, 1), (ε2, 1)}.
Since

OC2,(1,1)
∼= K[X](X−1), OC2,(ε,1)

∼= K[X](X−ε), OC2,(ε2,1)
∼= K[X](X−ε2)

we get

I((1, 1), C1 ∩ C2) = 1, I((ε, 1), C1 ∩ C2) = 1, I((ε2, 1), C1 ∩ C2) = 1.
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Case 2 char(K) = 3
We have

X3(X3 − 1) = X3(X − 1)3, C1 ∩ C2 = {(0, 0), (1, 1)}.
Therefore we get

I((1, 1), C1 ∩ C2) = 3.

Let us look now at the intersection points at infinity. The homogenizations of our
polynomials are

Y 2Z −X3, Y Z2 −X3.

Looking at their projective zero sets, we see that:

C∗1 = C1 ∪ {[0 : 1 : 0]}, C∗2 = C2 ∪ {[0 : 1 : 0]}.
To compute I([0 : 1 : 0], C∗1 ∩ C∗2), we need to take the dehomogenizations
with respect to Y : Z − X3, Z2 − X3. Quite accidentally, this homogeniza-
tion/dehomogenization process switches the polynomials and we get:

I([0 : 1 : 0], C∗1 ∩ C∗2) = I((0, 0), (Z −X3) ∩ (Z2 −X3)) = 3.

The total number of intersection points (counted with multiplicities) in the above
example is 9 regardless of the characteristic of K. Note that 9 is the product of
the degrees of the curves. Bézout’s theorem is a generalization of this observation.

Theorem 3.18. Let F,H ∈ K[X, Y, Z] be homogenous polynomials such that the
set

V := {x ∈ P2 | F (x) = 0, H(x) = 0}
is finite. Then we have:∑

x∈V

I(x, F ∩H) = deg(F ) · deg(H).

We do not have enough time to give the full proof of Bézout’s Theorem.

Outline of the proof. Steps 1 and 2 reduce the problem to the affine case. Step 3
is the most difficult one.

Step 1 There is a line L in P2 such that L ∩ V = ∅.
Let

V = {[a1 : b1 : c1], . . . , [am : bm : cm]}.
We are looking for (α, β, γ) ∈ K3 \ {0} such that for all i 6 m we have

αai + βbi + γci 6= 0.

Let Li be the line in P2 given by (a1, b1, c1). In other words, we are looking for

[α : β : γ] ∈ P2 \ (L1 ∪ . . . ∪ Lm),

i.e. we want to show that P2 6= L1 ∪ . . . ∪ Lm. Assume that P2 = L1 ∪ . . . ∪ Lm
and we will reach a contradiction. It is easy to see that the intersection with of a
line in P2 with any A2 (remember our convention again!) is a line in A2, so we
get that A2 is a finite finite union of lines. This is impossible over an infinite field
(find an argument!).

Step 2 Without loss of generality we may assume L = H∞.
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Let L be the line from Step 1. We need to apply an appropriate “projective change
of coordinates” to move L to the line at infinity H∞. The group GL3(K) acts on
K3 mapping lines to lines, so this action induces an action on P2. Since GL3(K)
acts transitively on planes (i.e. 2-dimensional subspaces) in K3, it acts transitively
on lines in P2. In particular, there is φ ∈ GL3(K) such that φ(L) = H∞. Now
we need to believe that this action (“projective change of coordinates”) does not
change the intersection numbers.

Step 3 The proof is reduced to showing the following property of affine plane
curves (with possible multiplicities):

Let F∗, H∗ ∈ K[X, Y ] be the dehomogenizations of F,H with respect to Z. By
Step 2, V (F∗) and V (H∗) have no common points at infinity. Then:∑

x∈V (F∗,H∗)

I(x, F∗ ∩H∗) = deg(F ) · deg(H).

This is “affine Bézout’s Theorem”. Note that obvious counterexamples (like par-
allel lines) do not apply here, since there is always a common point at infinity in
such a case.
By Proposition 2.56, we have∑

x∈V (F∗,H∗)

I(x, F∗ ∩H∗) = dimK K[X, Y ]/(F∗, H∗).

So we need to show

(†) dimK K[X, Y ]/(F∗, H∗) = deg(F ) · deg(H).

It is clearly a statement about polynomials F∗, H∗ in variables X, Y only, but the
proof still uses the homogenous polynomials F,H in variables X, Y, Z. This is the
most difficult part of the proof, we just give the main ingredients. Let d ∈ N and

• R := K[X, Y, Z];
• Γ := K[X, Y, Z]/(F,H);
• π : R→ Γ be the quotient map;
• Rd be the K-subspace of R consisting of homogeneous polynomials of

degree d;
• Γd := π(Rd);
• Γ∗ := K[X, Y ]/(F∗, H∗);
• n := deg(F ), m := deg(H).

The aim is to show that for d > n+m we have

dimK Γ∗ = dimK Γd = mn,

which clearly gives (†). This goes again in three steps.

(1) For d > n+m, we have dimK Γd = mn.

This is computational and not very difficult. There is an exact sequence
of K-vector spaces

0→ Rd−m−n → Rd−m ×Rd−n → Rd → Γd → 0,

which gives dimK(Γd) by a kind of “exclusion-inclusion” principle, since

for any l ∈ N, we have dimK Rl = (l+1)(l+2)
2

.
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(2) Define
α : Γ→ Γ, α(w) = π(Z)w.

Then α is one-to-one.

This requires also some computations and the fact that we do not have
intersection points at infinity is used here.

(3) Let us fix d > n+m and takeA1, . . . , Amn ∈ Rd such that {π(A1), . . . , π(Amn)}
is a basis of Γd (Step 1). For any i 6 mn, let Ai∗ denote the dehomog-
enization of Ai with respect to Z and ai the image of Ai∗ in Γ∗. Then
{a1, . . . , amn} is a basis of Γ∗.

This is the most complicated part. From Step 2 and Step 1 we know
that for each r ∈ N, the set {π(ZrA1), . . . , π(ZrAmn)} is a basis of Γd+r.
This fact together with some computations and properties of homogeniza-
tion/dehomogenization process give that {a1, . . . , amn} is a basis of Γ∗

By (3), we get that dimK(Γ∗) = mn, which finishes the proof. �

Remark 3.19. The “projective change of coordinates” appearing in Step 2 above
make sense for any n ∈ N and gives a transitive action of GLn+1(K) on Pn. Note
that the subgroup of scalar matrices coincides with the kernel of this actions.
However, the subgroup of scalar matrices is also the center of GLn+1(K) hence
we get an action of

PGLn+1(K) := GLn+1(K)/Z(GLn+1(K))

on Pn. After an appropriate definition of a morphism between projective varieties,
it can be shown that PGLn(K) is exactly the group of automorphisms of Pn hence
the name Projective General Linear group.

Let V be a plane projective curve.

Definition 3.20. The group of divisors on V , denoted Div(V ), is the free Abelian
group with basis V .

Let F ∈ K[X, Y, Z] a homogenous polynomial such that the set

{x ∈ V | F (x) = 0}
is finite. We define the intersection divisor as:

V · F :=
∑
x∈V

I(x, V ∩ F ) · x ∈ Div(V ).

This is a good way to formalize the intuitive notion of the “intersection of two
curves with counted multiplicities”. Again, if F is irreducible and W = {x ∈
P2|F (x) = 0}, then we define

V ·W = V · F ∈ Div(V ).

Example 3.21. Let C1, C2 be as in Example 3.17. If char(K) 6= 3, then we have

C∗1 · C∗2 = 3(0, 0) + 1(1, 1) + 1(ε, 1) + 1(ε2, 1) + 3[0 : 1 : 0].

If char(K) = 3, then we have

C∗1 · C∗2 = 3(0, 0) + 3(1, 1) + 3[0 : 1 : 0].
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Definition 3.22. If D = n1x1 + . . . + nmxm ∈ Div(V ), then the degree of D,
denoted deg(D), is the sum:

deg(D) = n1 + . . .+ nm.

Note that in the above example deg(C∗1 · C∗2) = 9 regardless of the characteristic
of K. Bézout’s Theorem implies that if V is plane projective curve, then we have:

deg(V · F ) = deg(V ) deg(F ).

3.3. Elliptic curves. Our definition of elliptic curves is quite a restrictive one.

Definition 3.23. An elliptic curve is a pair (C,O) such that C is smooth pro-
jective plane curve of degree 3 and O ∈ C.

Let us fix an elliptic curve (C,O). Our aim is to show that there is a natural
commutative group structure on C such that O becomes the neutral element.
Recall that for F ∈ K[X, Y, Z], a homogenous polynomial such that the set

{x ∈ C | F (x) = 0}
is finite, we define the intersection divisor as:

C · F :=
∑
x∈C

I(x,C ∩ F ) · x ∈ Div(C).

By Bézout’s theorem, we have deg(C · F ) = 3 deg(F ).
We need to collect a few facts about lines in P2. Let i ∈ {1, 2, 3}.

(1) If L is a line in P2, then ψ−1
i (L) is a line in A2 (or the empty set).

(2) If L is a line in A2, then the Zariski closure of ψi(L) in P2 is a line in P2.
(3) Using (1), we see that for any distinct x, y ∈ P2, there is a unique line in

P2 through x and y.
(4) Take x ∈ C ∩ψi(A2). We define TxC, the tangent line to C at x in P2, as

the Zariski closure of ψi(Tψ−1
i (x)ψ

−1
i (C)) (as usual, one has to show that it

does not depend on the choice of i).
(5) For x ∈ C and a line L in P2, as in the affine case we have

L = TxC ⇐⇒ I(x,C ∩ L) > 1.

Lemma 3.24. For any x, y ∈ C there is a unique line L in P2 and a unique
z ∈ C such that

C · L = x+ y + z.

(Note that this is an equality in Div(C), so x, y, z need not be distinct.)

Proof. For any line L in P2, the intersection C ∩ L is finite (since C is not a line
itself), hence we can consider the intersection divisor C ·L. We consider two cases.

Case 1 x 6= y.
By (3), there is a unique line L in P2 passing through x and y. By Property (3) of
the intersection number, C ·L = x+y+D, where D is a positive divisor, i.e. all the
integer coefficients in D are non-negative. By Bézout’s theorem, deg(C · L) = 3.
Therefore, there is a unique z ∈ C such that D = z and C · L = x+ y + z.
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Case 2 x = y.
Let L be a line in P2. By (5), there is z ∈ C such that C ·L = 2x+ z if and only
if L = TxC. Hence L and z ∈ C are unique. �

Using the above lemma we can define a binary operation ϕ : C × C such that
ϕ(x, y) = z if and only if there is a line L in P2 such that

C · L = x+ y + z.

Since addition in Div(C) is commutative, we get the following.

Lemma 3.25. For x, y, z ∈ C we have ϕ(x, y) = ϕ(y, x) and

ϕ(x, y) = z ⇐⇒ ϕ(y, z) = x ⇐⇒ ϕ(z, x) = y.

Unfortunately, ϕ is not a group operation, it is easy to see there is no neutral
element. We need to correct ϕ using our choice of O ∈ C (it was first done by
Weil in 1920’s). Let us define:

x⊕ y := ϕ(O,ϕ(x, y)).

The definition of ⊕ depends on O, but we still write ⊕ rather than ⊕O.

Theorem 3.26. The structure (C,⊕, O) is a commutative group.

Proof. By Lemma 3.25, ⊕ is commutative.
Let us take x ∈ C and y := ϕ(x,O). By Lemma 3.25, ϕ(O, y) = x. Therefore:

x⊕O = ϕ(O,ϕ(x,O)) = ϕ(O, y) = x,

hence O is the neutral element of ⊕.
Let z := ϕ(O,O) and x′ := ϕ(x, z). By Lemma 3.25 again, we have:

x⊕ x′ = ϕ(O,ϕ(x, x′)) = ϕ(O, z) = O.

Therefore, x′ is the inverse of x.
Proving associativity of ⊕ is more difficult. We will return to it after some prepa-
rations. �

Definition 3.27. Let D,D′ ∈ Div(C) and

D =
∑
P∈C

nPP, D′ =
∑
P∈C

n′PP.

We write D 6 D′, if for each P ∈ C, we have nP 6 n′p.

We need a theorem which is an easy consequence of Max Noether’s (Emma
Noether’s father) “AF + BG theorem”. Again, we have no time to prove it, the
proof is not very difficult.

Theorem 3.28. Let F,G ∈ K[X, Y, Z] be homogenous such that each of them
has finitely many zeroes on C and for each x ∈ C we have

I(x,C ∩ F ) > I(x,C ∩G).

Then there is a homogenous polynomial H ∈ K[X, Y, Z] such that

C · F = C ·G+ C ·H.
Remark 3.29. In terms of intersection divisors, one can write the assumption in
the above theorem as C · F > C ·G.



ALGEBRAIC CURVES: LECTURE NOTES 41

Lemma 3.30. For F and G as above we have:

C · (FG) = C · F + C ·G.

Proof. Let us take x ∈ C and assume for simplicity that x ∈ A2. Let C∗ denote
C ∩A2 and for any H ∈ K[X, Y, Z], let H∗ = H|Z=1. Note that (FG)∗ = F∗G∗.
By properties of the valuation ordx we have:

I(x,C ∩ (FG)) = ordx((FG)∗|C∗)
= ordx((F∗G∗)|C∗)
= ordx((F∗|C∗)(G∗|C∗))
= ordx(F∗|C∗) + ordx(G∗|C∗)
= I(x,C ∩ F ) + I(x,C ∩G).

Hence C · (FG) = C · F + C ·G. �

Proposition 3.31. Take homogenous polynomials F,G as above of degree 3, and
x1, . . . , x8, y, z ∈ C such that

C · F = x1 + . . .+ x8 + y,

C ·G = x1 + . . .+ x8 + z.

Then y = z.

Proof. Let L be a line in P2 passing through y and H be the linear homogenous
polynomial defining L. Then

C · L = y + r + s

for some r, s ∈ C. By Lemma 3.30, we have

C · (GH) = C ·G+ C ·H = x1 + . . .+ x8 + z + y + r + s = C · F + z + r + s.

In particular, C · (GH) > C · F . By Theorem 3.28, there is a homogenous
T ∈ K[X, Y, Z] such that

C · (GH) = C · F + C · T.
Since deg(C · (GH)) = 12 and deg(C ·F ) = 9, we get deg(C ·T ) = 3. By Bézout’s
theorem, deg(T ) = 1, so T defines a line L′ in P2. Therefore we have

C · L = r + s+ y, C · L′ = C · T = r + s+ z.

By Lemma 3.24, y = z. �

Proof of the associativity of ⊕. Let us take

x, y, z ∈ C; lines L1, L2, L3,M1,M2,M3 in P2; s, s′, u, u′, t′, t′′ ∈ C
such that:

(1) C · L1 = x+ y + s′, C · L2 = s+ z + t′, C ·M1 = O + s+ s′

(2) C · L3 = O + u+ u′, C ·M2 = y + z + u′, C ·M3 = x+ u+ t′′

Then (1) implies that

(x⊕ y)⊕ z = s⊕ z = ϕ(O, t′),
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and (2) implies that
x⊕ (y ⊕ z) = x⊕ u = ϕ(O, t′′).

Hence it is enough to show that t′ = t′′. For any i ∈ {1, 2, 3}, let Fi be the
homogenous polynomial of degree 1 defining Li and Gi be the homogenous poly-
nomial of degree 1 defining Mi. Let F := F1F2F3 and G := G1G2G3. By Lemma
3.30, we have

C · F = C · L1 + C · L2 + C · L3 = x+ y + s′ + s+ z + t′ +O + u+ u′,

C ·G = C ·M1 + C ·M2 + C ·M3 = O + s+ s′ + y + z + u′ + x+ u+ t′′.

From Proposition 3.31, we get t′ = t′′. �

It can be shown that for two different choices O1, O2 ∈ C, there is an isomorphism
of groups

(C,⊕, O1) ∼= (C,⊕, O2),

which is given by rational functions. Hence the choice of O ∈ C does not matter
much. However, some choices make computations easier. We need one more
definition.

Definition 3.32. A point x ∈ C is called an inflection point, if

I(x,C ∩ TxC) > 2.

The definition above makes sense for an arbitrary plane (projective or affine)
smooth curve. In the case of the elliptic curve C, for x ∈ C the following are
equivalent:

• x is an inflection point,
• I(x,C ∩ TxC) = 3,
• ϕ(x, x) = x.

Note that if O ∈ C is an inflection point, then the procedure of finding the inverse
elements is easier, since in such a case we get:

	x = ϕ(x, ϕ(O,O)) = ϕ(x,O).

(We use the notation 	x for the inverse element to x in the elliptic curve C.)
We state another fact without a proof.

Proposition 3.33. If char(K) 6= 3, then there are 9 inflection points on C.

We choose O ∈ C as an inflection point. By a projective change of coordinates in
P2 (which moves C!), we can also assume that O is a point at infinity and that
the tangent line to C at O is the line at infinity H∞. This choice implies that O
is the unique point at infinity of C, since

I(O,C ∩H∞) = I(O,C ∩ TOC) = 3.

We finish the lecture by analyzing the points of order 2 and 3 on C. Let x ∈ C.

Points of order 2 on C
Clearly, the order of x is at most 2 if and only if

O = x⊕ x = ϕ(O,ϕ(x, x)).

The equality above holds if and only if there is a line L in P2 such that

C · L = O +O + ϕ(x, x).
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Hence L as above must be the tangent line to C at O. Since O is the inflection
point, ϕ(x, x) = O. Therefore, the order of x is at most 2 if and only if ϕ(x, x) = O.
From the picture we can “see” that there are 4 such points (to be precise, if
char(K) 6= 2).

Points of order 3 on C
the order of x is 1 or 3 if and only if

	x = x⊕ x = ϕ(O,ϕ(x, x)) = 	ϕ(x, x)

which happens if and only if ϕ(x, x) = x, i.e. when x is an inflection point. We
know that there are 9 such points (if char(K) 6= 3).

Remark 3.34. If K = C, then P2(C) is also a compact differential manifold of
(real) dimension 4. Then C is a smooth submanifold of P2(C) of (real) dimension
2. Since the group operation on C is actually given by rational functions which are
smooth, C has also a structure of a Lie group. So C is a compact commutative Lie
group of (real) dimension 2. From the classification of commutative Lie groups,
we see that C is isomorphic to S1 × S1 as a Lie group. This coincides with our
computations above, since the group of 2-torsion of S1 × S1 has 4 elements and
the group of 3-torsion of S1 × S1 has 9 elements.


