Transcendence in positive characteristic

Piotr Kowalski

Instytut Matematyczny
Uniwersytetu Wrocławskiego

May 22, 2010
Definable transcendence

Definable conditions

⇓

Algebraic independence
Ax-Schanuel situation

- K: a field (possibly with extra structure),
- C: a (type-)definable subfield,
- A, B: algebraic groups over C of dimension n (a positive integer n is fixed in this talk),
- $\Gamma < A(K) \times B(K)$: a (type-)definable subgroup,
- $(x, y) \in \Gamma$

Ax-Schanuel type of statement

If x is linearly independent modulo C, then

$$\text{trdeg}_C(x, y) \geq n + 1.$$
Ax’s theorem

- (K, ∂): a differential field of characteristic 0,
- $C = \partial^{-1}(0)$: the field of constants,
- $A = \mathbb{G}_a^n$, $B = \mathbb{G}_m^n$,
- $\Gamma = \{(x_1, \ldots, x_n, y_1, \ldots, y_n) \mid \partial x_1 = \frac{\partial y_1}{y_1}, \ldots, \partial x_n = \frac{\partial y_n}{y_n}\}$,
- $(x, y) \in \Gamma$

Ax’s theorem

If x is linearly independent over \mathbb{Q} modulo C, then

$$\text{trdeg}_C(x, y) \geq n + 1.$$
Motivating case

- $K = C((t)), \partial = \partial_t, \text{char}(C) = 0,$
- $C = \partial^{-1}(0),$
- $x = (x_1, \ldots, x_n), x_i \in tC[[t]],$
- $y = (y_1, \ldots, y_n), y_i = \exp(x_i),$
- $\partial_t(\exp(x_i)) = \partial_t(x_i) \exp(x_i), \text{so } (x, y) \in \Gamma.$

Theorem (Power Series Schanuel’s Conjecture, Ax)

*If x_1, \ldots, x_n are linearly independent over \mathbb{Q}, then

\[\text{trdeg}_{C(t)}(x_1, \ldots, x_n, e^{x_1}, \ldots, e^{x_n}) \geq n. \]
Consider

$$l\partial : \mathbb{G}_m(K) \to \mathbb{G}_a(K), \quad l\partial(x) = \frac{\partial x}{x}.$$

This is a definable homomorphism which is called logarithmic derivative.

Clearly

$$\partial : \mathbb{G}_a(K) \to \mathbb{G}_a(K)$$

is also a definable homomorphism.
Differential equation of exp

\[
\mathcal{G}_a(K) \cdot \exp'(0) \rightarrow \mathcal{G}_a(K)
\]

\[\begin{array}{ccc}
\partial & & 1\partial \\
\uparrow & & \uparrow \\
x \in \mathcal{G}_a(K) & \rightarrow & y \in \mathcal{G}_m(K)
\end{array}\]

Since \(\exp'(0) = 1\), \(x\) and \(y\) go to the same thing in the diagram above if and only if \((x, y) \in \Gamma \) (\(n = 1\) here).
Ax’s theorem in the torus case (char=0)

- (K, ∂): a differential field of characteristic 0,
- $C = \partial^{-1}(0)$: the field of constants,
- $A = \mathbb{G}_m^n$, $B = \mathbb{G}_m^n$,
- $\alpha \in C$ such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] > n$,
- $\Gamma = \{(x_1, \ldots, x_n, y_1, \ldots, y_n) \mid \frac{\partial x_1}{x_1} = \alpha \frac{\partial y_1}{y_1}, \ldots, \frac{\partial x_n}{x_n} = \alpha \frac{\partial y_n}{y_n}\}$,
- $(x, y) \in \Gamma$.

Theorem (K.)

If x is multiplicatively independent modulo C, then

$$\text{trdeg}_C(x, y) \geq n + 1.$$
Independence conditions

The following are equivalent:

1. \(x \) is multiplicatively independent modulo \(C \), i.e. for each non-zero tuple \(k_1, \ldots, k_n \in \mathbb{Z} \) we have \(x_1^{k_1} \ldots x_n^{k_n} \notin C \).

2. For any proper subtorus \(T < \mathbb{G}_m^n \) and \(c \in \mathbb{G}_m^n(C) \) we have \(x \notin cT(K) \).

3. \(l\partial(x) \) is linearly independent over \(\mathbb{Q} \).

If \(\partial(x) = l\partial(y) \) (the Ax’s theorem case), then TFAE:

1. \(y \) is multiplicatively independent modulo \(C \).

2. \(\partial(x) \) is linearly independent over \(\mathbb{Q} \).

3. \(x \) is linearly independent over \(\mathbb{Q} \) modulo \(C \).

The field \(\mathbb{Q} \) appears here as fractions of \(\mathbb{Z} = \text{End}_{\text{alg}}(\mathbb{G}_m) \).
Differential equation of raising to power α

\[G_a(K) \cdot (X^\alpha)'(1) \to G_a(K) \]

Since $(X^\alpha)'(1) = \alpha$, x and y go to the same thing in the diagram above if and only if $(x, y) \in \Gamma$.
Non-algebraicity of α

- Taking e.g. $\alpha = 1$ clearly does not yield any transcendence.
- There is always a counterexample to the “torus-Ax” if $[\mathbb{Q}(\alpha) : \mathbb{Q}] \leq n$.
- To see the analogy with the positive characteristic cases (coming soon), notice that if we think of α as $X^\alpha \in \text{End}_{\text{formal}}(\mathbb{G}_m)$, then the non-algebraicity of α over \mathbb{Q} corresponds to the non-algebraicity of X^α over $\text{End}_{\text{alg}}(\mathbb{G}_m)$.
Additive case

- K: a field of characteristic $p > 0$ (no derivation),
- $C = K^p\infty$: a type definable subfield,
- $A = \mathbb{G}_a^n, B = \mathbb{G}_a^n$,
- $\Gamma < A(K) \times B(K)$: a type-definable subgroup,
- linear independence comes from $C[\text{Fr}] = \text{End}_{\text{alg}}(\mathbb{G}_a)$, the ring of additive polynomials (with composition),
- $C[\text{Fr}]$ is isomorphic to the Frobenius skew-polynomial ring, so it is commutative if and only if $C = \mathbb{F}_p$.
What is Γ?

Let

$$F = \sum_{m=0}^{\infty} c_m X^{p^m} \in C[Fr].$$

Take $(x, y) \in A(K) \times B(K)$. Then $(x, y) \in \Gamma$ if and only if:

$$y_i - c_0 x_i \in K^p,$$

$$y_i - c_0 x_i - c_1 x_i^p \in K^{p^2},$$

$$\ldots$$

$$y_i - c_0 x_i - c_1 x_i^p - \ldots - c_m x_i^{p^m} \in K^{p^{m+1}},$$

$$\ldots$$
Additive Ax’s theorem

We assume that:

- F is sufficiently non-algebraic (to be explained later) over $C[Fr]$ (as α before in the characteristic 0 torus case),
- $(x, y) \in \Gamma$.

Theorem (K.)

If x is linearly independent over $C[Fr]$ modulo C, then

$$\text{trdeg}_C(x, y) \geq n + 1.$$
Non-algebraicity of F

Characteristic 0 torus: the condition for α

We have $\alpha \in C = \text{End}_{\text{formal}}(\mathbb{G}_m)$ which should have algebraic degree greater than n over $\mathbb{Z} = \text{End}_{\text{alg}}(\mathbb{G}_m)$.

Characteristic p additive group: the condition for F

We have $F \in C[\text{Fr}] = \text{End}_{\text{formal}}(\mathbb{G}_a)$ which should have “algebraic degree” greater than n over $C[\text{Fr}] = \text{End}_{\text{alg}}(\mathbb{G}_a)$.

- It makes proper sense if $C = \mathbb{F}_p$, so $C[\text{Fr}]$ is commutative.
- Complicated for $C \neq \mathbb{F}_p$, something as

 $$\alpha_{0,n}^{\pm 1} \circ F \circ \alpha_{1,n}^{\pm 1} \circ F \circ \ldots \circ F \circ \alpha_{n,n}^{\pm 1} + \ldots + \alpha_{0,1}^{\pm 1} \circ F \circ \alpha_{1,1}^{\pm 1} + \alpha_{0,0}^{\pm 1} \neq 0.$$

- Still treatable for C finite.
The main case is:

Theorem

Assume $x_1, \ldots, x_n \in t \mathbb{F}_p[t]$ are linearly independent over $\mathbb{F}_p[Fr]$. Then

$$\text{trdeg}_{\mathbb{F}_p(t)}(x_1, \ldots, x_n, F(x_1), \ldots, F(x_n)) \geq n.$$
Carlitz exponential

Transcendence statements of similar forms were already obtained starting from Carlitz's work (1935).

Example

The Carlitz exponential is

\[\exp_C = X + \sum_{i=1}^{\infty} \frac{X^{p^i}}{(t^{p^i} - t)(t^{p^i} - t^p) \ldots (t^{p^i} - t^{p^i-1})} \]

- Denis obtained some Schanuel-type results for \(\exp_C \).
- Papanikolas proved a Carlitz version of the (still open) conjecture on algebraic independence of logarithms of algebraic numbers.
Our case vs Drinfeld modules

- The series \exp_C is the simplest case of the Drinfeld exponential function (related to a Drinfeld module).
- The power series I consider do not fit in the Drinfeld modules framework, since they have constant coefficients, i.e. there is no transcendental element present.
- The Carlitz exponential \exp_C is “algebraic” in our terminology since it satisfies the following functional equation:
 \[
 \exp_C \circ \theta X = \theta X \circ \exp_C + X^p \circ \exp_C .
 \]
- The Drinfeld (or even Carlitz) version of Schanuel’s conjecture is open.
HS-derivation version

- (K, ∂): a field of characteristic $p > 0$ with a Hasse-Schmidt derivation,
- Assume $K^{p^\infty} = \bigcap_{m>0} \ker(\partial_m)$,
- F induces a pro-algebraic homomorphism $U_F : \mathbb{G}_a^\infty \to \mathbb{G}_a^\infty$ corresponding to $(F', F(p), F(p^2), \ldots)(0)$.
- Γ is now also described by the following diagram:

\[
\begin{array}{ccc}
\mathbb{G}_a^\infty(K) & \xrightarrow{U_F} & \mathbb{G}_a^\infty(K) \\
\uparrow \partial & & \uparrow \partial \\
\mathbb{G}_a(K) & & \mathbb{G}_a(K) \\
\end{array}
\]

$\chi \in \mathbb{G}_a(K)$ \quad \quad $\gamma \in \mathbb{G}_a(K)$
Let K be a field of characteristic $p > 0$,

- $A = \mathbb{G}_m^n$, $B = \mathbb{G}_m^n$,
- Let $\gamma = \sum c_i p^i \in \mathbb{Z}_p$,
- $\Gamma < A(K) \times B(K)$ is defined by:

\[
\begin{align*}
 yx^{-c_0} & \in K^p, \\
yx^{-c_0-c_1p} & \in K^{p^2}, \\
\ldots & \\
yx^{-c_0-c_1p-\ldots-c_mp^m} & \in K^{p^{m+1}}, \\
\ldots
\end{align*}
\]
Assume:

- $K^p = \mathbb{F}_p$ (specified constants),
- $[\mathbb{Q}(\gamma) : \mathbb{Q}] > n$ (non-algebraicity condition),
- $(x, y) \in \Gamma$.

Theorem (K.)

If x is multiplicatively independent modulo \mathbb{F}_p, then

$$\text{trdeg}_{\mathbb{F}_p}(x, y) \geq n + 1.$$
Formal endomorphisms of \mathbb{G}_m

- $\text{End}_{\text{alg}}(\mathbb{G}_m) = \mathbb{Z}$ as in the characteristic 0 case.
- But $\text{End}_{\text{formal}}(\mathbb{G}_m) = \mathbb{Z}_p$ (p-adic integers).
- Why? We can go to the limit with powers of Frobenius and $\text{Fr} \in \text{End}_{\text{alg}}(\mathbb{G}_m)$ corresponds to $p \in \mathbb{Z}$, so

 $$\text{End}_{\text{formal}}(\mathbb{G}_m) = \widehat{(\mathbb{Z}, p)} = \mathbb{Z}_p.$$

- Similarly in the additive case

 $$\text{End}_{\text{formal}}(\mathbb{G}_a) = (\mathbb{C}[\text{Fr}], \text{Fr}) = \mathbb{C}[\text{Fr}].$$

- The non-algebraicity condition for $\gamma \in \mathbb{Z}_p$ is exactly the same as before: a formal endomorphism should be non-algebraic enough over the algebraic ones.
HS-derivation version for torus

- \((K, \partial):\) a field of characteristic \(p > 0\) with an HS-derivation.
- The logarithmic derivative is now a homomorphism:

 \[
 \log \partial(x) = \left(\frac{\partial_1 x}{x}, \frac{\partial_2 x}{x}, \ldots \right)
 \]

 \[
 \log \partial : \mathbb{G}_m(K) \to \mathbb{G}_a(W(K)).
 \]

- Note that \(\mathbb{Z}_p = W(\mathbb{F}_p)\). \(\Gamma\) is given by:

```latex
\begin{commutative_diagram}
  \mathbb{G}_a(W(K)) & \xrightarrow{\cdot \gamma} & \mathbb{G}_a(W(K)) \\
  \downarrow{\log} & \downarrow{\log} & \downarrow{\log} \\
  x \in \mathbb{G}_m(K) & & y \in \mathbb{G}_m(K)
\end{commutative_diagram}
```
Originally, I wanted to establish an Ax-Schanuel statement for a formal isomorphism between an ordinary elliptic curve and the multiplicative group. So far, I think, I can only do it when this isomorphism is defined over \mathbb{F}_p which is probably never the case.