Unlikely formal intersections

Piotr Kowalski

Instytut Matematyczny
Uniwersytetu Wrocławskiego

June 14, 2012
Ax’s theorem about formal intersections

Setting

Let us fix:

- G, an algebraic group over \mathbb{C};
- \mathcal{A}, a complex analytic subgroup of G;
- V, an irreducible algebraic subvariety of G containing 1;
- W, an analytic subvariety of \mathcal{A} and V.

Ax’s Theorem (Amer. J. Math, 1972)

If W is Zariski dense in V, then there is B, a complex analytic subgroup of G containing V and \mathcal{A} such that

$$\dim(B) \leq \dim(\mathcal{A}) + \dim(V) - \dim(W).$$
Assume that the intersection \mathcal{W} is unlikely, i.e. for some $d > 0$ we have

$$\dim(\mathcal{W}) = \dim(\mathcal{A}) + \dim(\mathcal{V}) - \dim(\mathcal{G}) + d.$$

- Ax’s theorem: there is B as above of codimension at least d.
- Inside B the intersection is not unlikely anymore.
- Ax’s theorem looks similar to CIT. A differential version of Ax’s theorem (closely related to this one) implies weak CIT.

Question

Is there a direct proof of

$$\text{Ax’s theorem } \Rightarrow \text{ weak CIT}$$

not going through a (logical) compactness argument?
Formal version

Setting (\(C \) a field of characteristic 0)

- Let \(G \) be an algebraic group over \(C \);
- Let \(A \) be a formal subgroup of \(\hat{G} \);
- Let \(V \) be an irreducible algebraic subvariety of \(G \) containing 1;
- Let \(\mathcal{W} \) be a formal subvariety of \(A \) and \(\hat{V} \).

Ax’s Theorem, formal version

If \(\mathcal{W} \) is Zariski dense in \(V \), then there is \(B \), a formal subgroup of \(\hat{G} \) containing \(\hat{V} \) and \(A \) such that

\[
\dim(B) \leq \dim(A) + \dim(V) - \dim(\mathcal{W}).
\]

Question

Is the above theorem true for \(C \) of positive characteristic?
“Formal intersection Ax” implies “Ax-Schanuel”

- Let x be an n-tuple of formal power series in several variables over C without constant terms, linearly independent over \mathbb{Q};
- Let $G = \mathbb{G}_a^n \times \mathbb{G}_m^n$;
- Let V be the algebraic locus of $(x, \exp(x))$ over C;
- Let \mathcal{A} be the graph of $\exp : \mathbb{G}_a^n \to \mathbb{G}_m^n$;
- Let \mathcal{W} be the formal locus of $(x, \exp(x))$ over C.

Formal group B given by Ax’s theorem coincides with \hat{G} here, so

$$2n \leq \dim(\mathcal{A}) + \dim(V) - \dim(\mathcal{W}) = n + \text{trdeg}_C(x, \exp(x)) - \text{rk}(J_x),$$

$$\text{trdeg}_C(x, \exp(x)) \geq n + \text{rk}(J_x).$$

The same proof works for A semi-abelian.
Let A be a semi-abelian variety of dimension n. Similarly as above, Ax’s theorem easily implies the following.

Theorem

Assume that

- $Y \subseteq A$ is an algebraic subvariety;
- $X \subseteq \mathbb{G}_a^n$ is a maximal algebraic subvariety such that $\exp(X) \subseteq Y$;
- $Y' := \exp(X)^{\text{Zar}}$.

Then Y' is an algebraic subgroup of A and $X = \text{Lie}(Y')$.

“Ax-Lindemann-Weierstrass”
Dense formal subvarieties (characteristic 0)

The above applications suggested me a more general statement which also looks better for positive characteristic generalizations.

Setting
- Let A be a commutative algebraic group over C;
- Let V be an algebraic variety over C and $v \in V(C)$;
- Let $\mathcal{F} : \hat{V} \to \hat{A}$ be a “special” formal map;
- Let \mathcal{W} be a formal subvariety of \hat{V} such that $\mathcal{F}(\mathcal{W}) = 0$.

Theorem (easily following from Ax’s proof)
If \mathcal{W} is Zariski dense in V, then there is A, a formal subgroup of \hat{A} such that $\mathcal{F}(\hat{V}) \subseteq A$ and

$$\dim(A) \leq \dim(V) - \dim(\mathcal{W}).$$
Remarks

- A continuous map between Hausdorff spaces which is constant on a dense set is constant everywhere.
- The same principle applies to an algebraic map between algebraic varieties and the Zariski topology.
- In the Ax’s theorem situation the categories are mixed: a formal map is constant on a Zariski dense set. The theorem says that the above principle can be saved at the cost of quotienting out by a subgroup of a controlled dimension.
I call a formal map \(\mathcal{F} : \hat{V} \to \hat{G} \) “special” if it has certain properties of formal homomorphisms (even when \(V \) is not a group!)

Definition

\(\mathcal{F} \) is **special** if it takes invariant differential forms on \(G \) into algebraic differential forms on \(V \).

Example

\[
\exp^* \left(\frac{dX}{X} \right) = \frac{\exp(X) dX}{\exp(X)} = dX.
\]

Formalizations of algebraic maps are special.
Formal homomorphisms are special.
Assume that $\text{char}(C) = p > 0$. There is no exponential map anymore. But there are other interesting formal homomorphisms.

Example

- **Additive power series.**
 \[
 \mathcal{F} : \hat{G}_a \rightarrow \hat{G}_a, \quad \mathcal{F} = \sum c_i X^{p^i}.
 \]

- **Multiplicative power series.** For $\gamma = \sum a_i p^i \in \mathbb{Z}_p$
 \[
 \mathcal{F} : \hat{G}_m \rightarrow \hat{G}_m, \quad \mathcal{F} = X^\gamma.
 \]

 \mathcal{F} corresponds to $\prod (X^{p^i} + 1)^{a_i} - 1$.

- A formal isomorphism between \hat{G}_m and an ordinary elliptic curve (defined over \mathbb{C}^alg).
Towards positive characteristic Ax

Setting

Let us fix:

- C, a perfect field of characteristic $p > 0$;
- A, a commutative algebraic group over C;
- V, an algebraic variety over C and $v \in V(C)$;
- $\mathcal{F} : \hat{V} \to \hat{A}$, a formal map;
- \mathcal{W}, a formal subvariety of \hat{V} such that $\mathcal{F}(\mathcal{W}) = 0$.

I will describe a positive characteristic variant of Ax’s theorem. Unfortunately, I have to put extra assumptions on the formal map \mathcal{F} and the algebraic group A.
Limit maps

Definition (positive characteristic)

I call a formal map $\mathcal{F} : \hat{V} \to \hat{A}$ an *A-limit* if there is a sequence of rational maps $(f_m : V \to A)_m$ such that $f_m(v) = 0$ and \mathcal{F} is the limit of $(f_m)_m$ in a certain strong sense, i.e.

$$f_{m+1} - f_m \in A((\mathcal{O}_V)_V^p)^{m+1}).$$

Example

- For $\mathcal{F} = \sum c_i X^{p^i}$, \mathcal{F} is the limit of $(\sum_{i=0}^m c_i X^{p^i})_m$.
- For $\mathcal{F} = X^\gamma$, \mathcal{F} is the limit of $(X^{\sum_{i=0}^m a_i p^i})_m$, where

$$\gamma = \sum a_i p^i \in \mathbb{Z}_p.$$
Questions about limit maps

1. Any A-limit map $\mathcal{F} : \hat{V} \to \hat{A}$ is special (in the proper sense involving higher differential forms).

2. The converse is true for A affine.

3. More generally, the converse is true for A such that

 $$\ker(H^1(K^p, A) \to H^1(K, A)) = 0,$$

 where $C \subseteq K$ is a finitely generated field extension.

4. Is the above map on cohomology always injective?

5. Formal homomorphisms are special. Are they A-limits?
Integrable groups

Definition

Let D be a 1-dimensional algebraic group. I call D **integrable** if for any $c \in \mathbb{C}$ there is an algebraic endomorphism $\varphi : D \to D$ such that φ^* (the map induced on differential forms) is the multiplication by c.

Example

The following algebraic groups are integrable:

- Any 1-dimensional D over \mathbb{F}_p.
- \mathbb{G}_a over any \mathbb{C}.
Main Theorem

Setting

Let us fix:

- D, an integrable algebraic group;
- $A := D^n$;
- V, an algebraic variety over \mathbb{C} and $v \in V(\mathbb{C})$;
- $\mathcal{F} : \hat{V} \to \hat{A}$, an A-limit map;
- W, a formal subvariety of \hat{V} such that $\mathcal{F}(W) = 0$.

Theorem (K.)

If W is Zariski dense in V, then there is A, a formal subgroup of \hat{A} such that $\mathcal{F}(\hat{V}) \subseteq A$ and

$$\dim(A) \leq \dim(V) - \dim(W).$$
For $D = \mathbb{G}_a$ or $D = \mathbb{G}_m$, we can replace “A-limit” with “special”.

In the characteristic 0 case any commutative algebraic group is isomorphic to \mathbb{G}_a^n as a formal group, so our theorem may be thought of as a generalization of Ax’s theorem to the arbitrary characteristic case. However it is not satisfactory, since it does not fully answer the original question.
Application I: Additive transcendence

We assume that:

- F is an additive power series over \mathbb{F}_p which is transcendental over the ring of additive polynomials.
- x_1, \ldots, x_n are power series over \mathbb{F}_p without a constant term.

Theorem (K.)

If x_1, \ldots, x_n are linearly independent over the ring of additive polynomials, then

$$\text{trdeg}_{\mathbb{F}_p}(x_1, F(x_1), \ldots, x_n, F(x_n)) \geq n + 1.$$
Application II: Multiplicative transcendence

We assume that:

- $\gamma \in \mathbb{Z}_p$ is transcendental over \mathbb{Q}.
- F is the multiplicative power series corresponding to γ.
- x_1, \ldots, x_n are power series over \mathbb{F}_p with constant term 1.

Theorem (K.)

If x_1, \ldots, x_n are multiplicatively independent, then

$$\text{trdeg}_{\mathbb{F}_p}(x_1, F(x_1), \ldots, x_n, F(x_n)) \geq n + 1.$$
Application III: Ax-Lindemann-Weierstrass for \(p > 0 \)

Let us fix

- \(D \), an integrable algebraic group;
- \(\gamma \), a formal endomorphism of \(D \) which is not algebraic;
- \(Y \), an algebraic subvariety of \(D^n \) containing 0;

Theorem (K. proof to be checked)

If \(X \) is an algebraic subvariety containing 0 and maximal such \(\gamma(\hat{X}) \subseteq \hat{Y} \) and \(Y' := \exp(X)^{\text{Zar}} \), then both \(X \) and \(Y' \) are algebraic subgroups of \(D^n \).