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1 Introduction and preliminaries.

In this paper we record some observations around groups definable in dif-
ference fields. We were motivated by a question of Zoe Chatzidakis as to
whether any group definable in a model of ACFA is virtually definably em-
beddable in an algebraic group. We give a positive answer using routine
methods. The only possibly “new” ingredient is the (stable) group config-
uration theorem in the ∗-definable category. The embeddability result for
groups definable in ACFA of finite SU -rank was already noted in [2], more
or less by saying that the proof in [4] for groups definable in pseudofinite
fields goes through.
We also take the opportunity to give an improved treatment of the analogous
theorem for differentially closed fields (avoiding the category of ∗-definable
groups).
Finally we adapt results from [5] and [1] about the unipotence of differential
groups on affine spaces to the difference field context.
The results here have little to do with either automorphisms or derivations
and could be presented in a suitable axiomatic framework.
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As usual we work in a saturated model M̄ of a complete theory T . We work
freely in M̄ eq. We assume knowledge of stability theory, stable groups and
the more general versions for simple theories. See [7], [9]. We will also use a
result from [10]. We require also a few easy observations around stabilisers
and generics which are not explicit in the literature, so we give them now.

Definition 1.1 Assume T is simple, and G is a type-definable group over a
model M .
(i) Let H be a type-definable over M subgroup of G and X a right coset of H
in G, also defined over M . Let q(x) be a complete type over M of an element
of X. We call q(x) a generic type of X (over M) if for some realisation b of
q and some element c of X independent from b over M , tp(b.c−1/M ∪{c}) is
a generic type of H. (Intuitively q(x) is a translate of a generic type of H.)
Analogously if X is a left coset of H in G.
(ii) Let q(x), r(x) are complete types over M of elements if G. By S(q, r)
we mean the (type-definable over M) set consisting of those a ∈ G such that
for some realization b of q, independent with a over M , a.b realises r and is
independent with a over M .

Lemma 1.2 (T simple and G type-definable over M .)
(i) With the notation of (i) above, q(x) is a generic type of X if and only if
for any realization b of q and for any a ∈ H independent of b over M , a.b is
independent from a over M .
(ii) With the notation of (i) above: let X be the right coset generated by
S(q, r). Then X is type-definable over M , X is a right coset of (left) Stab(r)
and tp(a/M) is a generic type of X. Similarly, the left coset Y generated by
S(q, r) is type-definable over M , is a left coset of (left) Stab(q) and tp(a/M)
is a generic type of Y .
(iii) Suppose a, b, c are elements of G pairwise independent over M such that
a.b = c and tp(b/M) = tp(c/M) = q. Let H = (left)Stab(q). Then H.b is
type-definable over M and tp(b/M) is a generic type of H.b.

Proof. (i) is routine.
(ii) Choose d ∈ Stab(r), with d independent of a over M . Without loss of
generality, d is independent of {a, b, c} over M and moreover by the Indepen-
dence Theorem we may assume that d.c = c′ realises r and is independent
from d over M . So d.a = c.b−1 is independent from d over M . By (i),
tp(a/M) is a generic of X.
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(iii) Note that by (ii) tp(a/M) is a generic type of H. Let X = H.b. Clearly
also X = H.c. We first show that X is M -invariant, hence type-definable
over M : Let c′ realise q independently from c over M . By the Independence
Theorem there is b′ such that tp(c, b′/M) = tp(c′, b′/M) = tp(c, b/M). Hence
b′ ∈ H.c ∩ H.c′, whereby H.c = H.c′ (as H is M invariant). This is enough.
Now by definition, q is a generic type of X.

2 Groups in stable theories and simple theo-

ries

By a ∗-tuple we mean simply a possibly infinite tuple (ai)i∈I of elements
of M̄ eq (where the index set I has cardinality less than that of M̄). By a
∗-definable (over A) set we mean a collection of ∗-tuples (each tuple being
indexed by some fixed I), which is the set of realizations of a partial type
Σ(xi)i∈I over a set A of parameters. By a ∗-definable (over A) group we mean
a group G such that both G and the graph of multiplication are ∗-definable
(over A) sets. We have similarly the notion of a ∗-definable homogeneous
space (G,S). If the underlying set of G consists of finite tuples, we will say
that G is finitary. A finitary ∗-definable group is what is usually called a
type-definable group. If T is stable the theory of generic types etc., passes
over to ∗-definable groups. Moreover Hrushovski proves in [3] that (for T
stable) any ∗-definable group (homogeneous space) is ∗-definably isomorphic
to a projective limit of finitary ∗-definable groups (homogeneous spaces). In
the totally transcendental case, this becomes a projective limit of definable
groups (homogeneous spaces). Our first general result is the group configu-
ration theorem (as stated in Theorem 4.5 of [7]) generalized to ∗-definability.
This must be well-known to anybody who has thought about it. There is
only one delicate point that has to be take care of which we will point out
below. As a matter of notation when we say, for example, that a ∗-tuple
c = (ci)i∈I is contained in acl(A), we mean that each ci ∈ acl(A).

Proposition 2.1 Let M be a saturated model of the stable theory T . Let
a, b, c, x, y, z be ∗-tuples of length strictly less than the cardinality of M . Sup-
pose that the following are true:
(i) acl(M,a, b) = acl(M, a, c) = acl(M, b, c),
(ii) acl(M, a, x) = acl(M,a, y) and Cb(stp(x, y/M, a)) is interalgebraic with
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a over M .
(iii) As in (ii) with b, z, y in place of a, x, y.
(iv) As in (ii) with c, z, x in place of a, x, y.
(v) Other than {a, b, c}, {a, x, y}, {b, z, y} and {c, z, x}, any 3-element subset
of {a, b, c, x, y, z} is M-independent.
Then there is a ∗-definable (over M) homogeneous space (G,S) and generic
(over M) elements a′, b′, c′ of G and x′, y′, z′ of S such that a′ · x′ = y′,
b′ · y′ = z′, and c′ · x′ = z′ (so a′ · b′ = c′) such that each nonprimed element
is interalgebraic over M with the corresponding primed element.

Proof. The proof goes exactly as in the proof of the Theorem referred to
above in [7]. The only possibly problematic step is the first one:

Lemma 2.2 There are ∗-tuples a1, b1, c1, x1, y1, z1 such that a1 interalgebraic
over M with a etc., and such that moreover y1 ∈ dcl(M, b1, z1) and z1 ∈
dcl(M, b1, y1).

Proof of Lemma. b is first replaced by b1 and y by y1 in such a way that
b is interalgebraic with b1 over M , y is interalgebraic with y1 over M , and
moreover whenever tp(z′/M, b1, y1) = tp(z/M, b1, y1) then z and z1 are inter-
algebraic over M . In the finitary case, z is then replaced by the finite set z1

of its M, b1, y1-conjugates, another imaginary element, interalgebraic with a
over M and in dcl(M, b1, y1). In the ∗-situation, the (in general infinite) set
X of (M, b1, y1)-conjugates of z is not on the face of it another ∗-tuple. How-
ever, as pointed out in [6], X can be identified with a ∗-tuple: let z = (zi)i∈I

say. For each finite J ⊂ I, let z′J be the (finite) set of M, b1, y1-conjugates
of the J-tuple (zj)j∈J , a single imaginary. Let z1 be the ∗-tuple (z′J)J . Then
z1 is interdefinable with X (an automorphism fixes the ∗-tuple z1 iff it fixes
setwise the set X of ∗-tuples). In particular z1 is as required. The rest of the
proof of the lemma proceeds in this way.

Proposition 2.3 Let M̄ be a saturated model of a simple theory T . Suppose
that G,H are groups type-definable over a small model M and that there are
elements a, b, c of G and a′, b′, c′ of H such that
(i) a, b are generic independent over M .
(ii) a.b = c and a′.b′ = c′,
(iii) a is interalgebraic with a′ over M , and similarly for b, b′ and c, c′.
Then there is a type-definable over M subgroup G1 of bounded index in G
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and a type-definable over M subgroup H1 of H, and a type-definable over
M isomorphism f between G1/K1 and H1/L1 where K1 is a finite normal
subgroup of G1, and L1 is a finite normal subgroup of H1.

Proof. Let p = tp(a, a′/M), q = tp(b, b′/M) and r = tp(c, c′/M). Then
(a, a′) ∈ S(q, r). By Lemma 1.2 S(q, r) generates a type-definable over M
right coset X say of Stab(r). The projection of Stab(r) on G is G0

M . By 1.2
(a, a′) is a generic point of X over M . By definition, there is (e, e′) ∈ G×H,
independent with (a, a′) over M such that (d, d′) = (a, a′)(c, c′)−1 is a generic
point of Stab(r) over M ∪ {e, e′)}. As a and a′ are interalgebraic over M
it follows that d and d′ are interalgebraic over M . Thus both Ker(Stab(q))
= {g ∈ G : (g, 1) ∈ Stab(q)} and Coker(Stab(q)) = {h ∈ H : (1, h) ∈
Stab(q))} are finite normal subgroups of G0 and π2(Stab(q)). This yields the
proposition.

Remark 2.4 Suppose in the above that T is supersimple and that G,H are
definable. Then by [10] G1 can be chosen to be a definable subgroup of G of
finite index and f can be chosen to be definable.

3 Groups in difference fields

We will prove:

Theorem 3.1 Let M̄ = (K, +, ., σ) be a model of ACFA. Let G be a group
definable in M̄ . Then there is a group H definable in (K, +, .) (i.e. an
algebraic group) a definable subgroup G1 of G of finite index, a definable
finite normal subgroup N1 of G1 and a definable isomorphism of G/N1 with
H1/N2 where H1 is a definable (in M̄) subgroup of G and N2 a finite normal
subgroup of H1.

Proof. We assume that M̄ is saturated and work over a model M over which
G is defined. Let a, b, y be M -generic M -independent elements of G. Let
x = a.y, z = b−1.y and c = a.b. Then c.z = x. Let ā be the ∗-tuple
(σi(a) : i ∈ Z) and similarly for b̄, c̄, x̄, ȳ and z̄. Then working in the field
reduct (K, +, .), (ā, b̄, c̄, x̄, ȳ, z̄) satisfy conditions (i) to (v) of Proposition 2.1.
By that proposition there is in (K, +, .) a ∗-definable group over M , say H
with generic independent (over M) elements a∗, b∗, with c∗ = a∗ · b∗ and such
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that, in (K, +, .), a∗ is interalgebraic with ā over M , etc. By [3], H is an
inverse limit of groups Hi (i ∈ ω), each which is definable (in (K, +, .)), over
M . Let πi be the canonical surjective homomorphism from H to Hi. Let
ai = πi(a

∗) and similarly for bi, ci. So in (K, +, .), a∗ is interdefinable with
(ai : i ∈ ω) over M , and likewise for b∗ and c∗. In particular, in the structure
M̄ , a is interalgebraic with (ai : i ∈ ω), and similarly for b, c. As a, b, c are
each finite tuples (and for j < i, aj ∈ dcl(M, ai)), there is some i ∈ ω such
that a is interalgebraic with ai, b with bi and c with ci ( all over M). Now
apply Proposition 2.3 and Remark 2.4.

Remark 3.2 The proof of Theorem 3.1 can be modified to show that the
group configuration theorem (Proposition 2.1) holds for the theory ACFA
(namely for any completion of ACFA). We prove a special case (Lemma 3.3)
below. It is still unkown whether the group configuration theorem holds in
arbitrary simple theories.

Lemma 3.3 Work in a saturated model M̄ of ACFA, and let M be a rea-
sonably saturated submodel. Let a, b, c, x, y, z be finite tuples from M̄ such
that (i), (iv), (v) from 2.1 hold, as well as
(ii)’ acl(M,a, x) = acl(M, a, y) = acl(M,x, y), and
(iii)’ acl(M, b, z) = acl(M, b, y) = acl(M, z, y).
Then there is an M-definable group G and M-generic M-independent ele-
ments a′, b′ of G, such that a is interalgebraic with a′ over M , b is interalge-
braic with b′ over M and c is interalgebraic with a′.b′ over M .

Proof. The proof of Theorem 3.1 yields an M -definable group H, and ele-
ments a′, b′, c′ of H such that a′.b′ = c′, a is interalgebraic with a′ over M , b
is interalgebraic with b′ over M and c is interalgebraic with c′ over M . All
we have do it is show that we can rechoose a′, b′ so as to be generic inde-
pendent elements of some M -definable subgroup G of H. Let p = tp(a′/M),
q = tp(b′/M) and r = tp(c′/M). Then a′ ∈ St(q, r). By Lemma 1.2 (ii) p is a
generic type of a left coset X of Stab(q). Choose a1 realizing p, independent
from {a′, b′, c′} over M such that tp(a1, c/M) = tp(a, c/M). Let d = a−1

1 .a,
and b1 = a−1

1 .c′. Then d.b′ = b1, b1 realises q and {d, b′, b1} is pairwise inde-
pendent over M . By Lemma 1.2 (iii), q is a generic type of a right coset Y
of Stab(q). By [10], Stab(q) is the intersection of M -definable subgroups Gi.
Choose G = Gi with SU(Gi) = SU(G). Let X ′ be the unique left translate
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of G containing X, and Y ′ the unique right translate of G containing Y . Note
that X ′, Y ′ are M -definable sets, p is a generic type of X ′ and q a generic
type of Y ′. Let a′′ ∈ M ∩ X ′ and b′′ ∈ M ∩ Y ′. Then a1 = (a′′)−1.a′ and
b1 = b′.(b′′)−1 are M -generic elements of G, interdefinable with a′, b′ respec-
tively over M . Moreover c1 = a1.b1 is interdefinable with c′ over M . So G
and a1, b1 work.

Remark 3.4 Hrushovski (unpublished) has classified the Zariski-dense de-
finable subgroups of simple algebraic groups definable in models of ACFA.
So with Theorem 3.1 this yields a classification of simple groups definable in
models of ACFA.

4 The differential case revisited

The following was proved in [8].

Theorem 4.1 Let M = (K, +, ., D) be a differentially closed field of char-
acteristic 0. Let G be a connected group definable in M . Then there is a
connected group H definable in (K, +, .) and a definable (in M) embedding
of G in H.

The proof (on which the proof of Theorem 3.1 is modelled) involved embed-
ding G in a group G∞ which is ∗-definable in ACF , then appealing to the fact
that G∞ is an inverse limit of groups definable in ACF (algebraic groups)
as well as to the DCC for differential algebraic groups, so as to embed G
in an algebraic group. The use of the DCC was unnecessary. In fact the
construction of G∞ also turns out to be unnecessary, and we will here sketch
a rather more direct proof of Theorem 4.1. (However the new proof involves
the same machinery used to prove that a ∗-definable group is an inverse limit
of type-definable groups, but applied only once.)

Sketch of proof of 4.1. We may assume M is saturated. Let k be a small
model over which G is defined. Let p(x) ∈ S(k) be the generic type of G. Let
a realise p(x) and let p∗(x∗) be the complete type of a∗ = (a,D(a), D2(a), ...)
over k in the algebraically closed field (K, +, .). As definable functions in
DCF0 are differential rational, for independent realizations a, b of p(x), (a.b)∗

is contained in k(a∗, b∗), and so is of the form f(a∗, b∗) for some ∗-definable
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function over k in ACF . Note that (a.b)∗ realises p∗ and that a∗, b∗, (a, b)∗ are
pairwise independent over k in ACF . Now suppose c, d are independent over
k realizations of p∗ (in ACF ). So in ACF tp(c, d/k) = tp(a∗, b∗/k) whereby
f(c, d) is defined and also realises p∗, independently from each of c, d. We
write f(c, d) as c.d, hopefully without ambiguity. Note that for independent
c, d, e realising p∗ (in ACF ) we have (c.d).e = c.(d.e) realises p∗. We write
c.d.e for this. We also write a realization c of p∗ as (c0, c1, ..) (corresponding
to the enumeration a∗ = (a,D(a), ....)).
We now work in ACF . Define the following equivalence relation E on real-
izations of p∗: E(c, c′) if for some (any) realisations d, e of p∗ such that d and
e are generic, independent over k∪{c, c′}, (d.c.e)0 = (d.c′.e)0. By definability
of types in ACF , E is ∗-definable over k.
Claim 1. For c, d k-independent realizations of p∗, each of c/E, d/E, c.d/E
depends only on the other two.
Proof. We show that if E(c, c′) where c′ realizes p∗ and is independent from
d over k then c.d/E = c′.d/E. Choose e, f realizing p∗ independent over
everything, then e and d.f are realizations of p∗ independent of c, c′ over
k. Hence (e.c.(d.f))0 = (e.c′.(d.f))0. So (e.(c.d).f)0 = (e.(c′.d).f)0 and
c.d/E = c′.d/E. This proves that c.d/E depends on c/E and d/E. The rest
of the claim follows similarly.

Claim 2. Let c, c′ realize p∗, then E(c, c′) implies c0 = c′0.
Proof. Choose d, e generic independent over c, c′ realizations of p∗. Clearly
c = d.b.e for some realization b of p∗ independent with d, e over k, and like-
wise c′ = d.b′.e for suitable b′ realising p∗. As E(c, c′), by Claim 1 we get
E(b.e, b′.e) and again by Claim 1, b/E = b′/E. As d, e are generic indepen-
dent realizations of p∗ over b, b′ it follows that c0 = c′0 as required.

Claim 3. Let c realise p∗, then for some n < ω, c/E depends only on
(c0, .., cn).
Proof. Let d, e be independent realizations of p∗ over k, c. Then the finite
tuple (d.c.e)0 is in k(d, c, e) so in k(d0, .., dn, c0, .., cn, e0, .., en) for some n. So
clearly c/E ∈ k(c0, .., cn).

By Claim 3 let c′ be a finite tuple such that c′ is interdefinable with c/E over
k (in ACF ). Let p′(x) = tp(c′/k) in ACF . By Claim 1, the operation . on
realisations of p∗ induces an operation f(−,−) on independent realisations
of p

′
. f is definable over k in ACF and generically associative. By Weil’s
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theorem (or the more general version due to Hrushovski [3]), p′ is the generic
type of a k-definable connected group (in ACF ), H say, and f agrees with
multiplication in H. The map taking a realization a of p to (a∗)′ (definable
in DCF over k) is 1-1 by Claim 2, so extends to a definable (in DCF )
embedding of G into H.

5 Difference algebraic groups on affine spaces

In this final section we briefly point out that results from [5] and [1] pass
over to the difference context.
Let (K, +, ., σ) be a model of ACFA and let K{X1, .., Xn} be the difference
ring of difference polynomials over K in difference indeterminates X1, .., Xn.

Definition 5.1 (i) By an affine difference variety we mean a subset X of
Kn which is the zero set of a finite number of difference polynomials.
(ii) By a morphism between affine difference varieties X ⊆ Kn and Y ⊆ Km

we mean a map (f1, .., fm) from X to Y where each fi is the restriction to X
of a differential polynomial in K{X1, .., Xn}.
(iii) By an affine difference algebraic group we mean a group G such that
the underlying set of G is an affine difference variety and both multiplication
and inversion are morphisms.

Remark 5.2 It would be more appropriate to define a morphism to be some-
thing which is locally given by a difference rational function. However we will
be interested here in the case where the underlying set of G is Kn and in this
case the notions coincide.

Theorem 5.3 Suppose G is a difference algebraic group whose underlying
set is Kn. Then G is embeddable, by a morphism of difference algebraic
groups, in a linear unipotent algebraic group H over K.

Proof sketch. For a ∈ G (namely in Kn) let a∗ = (a, σ(a), σ2(a), ...). Let
Xi, Yi denote n-tuples of indeterminates. Then as in [5] there are polynomial
functions fi(X0, X1, ..., Y0, Y1, ..) and gi(X0, X1, ...) over K (i < ω) such that
(i) there is a group G∞ on infinite dimensional affine space A∞ over K, whose
multiplication is defined by (fi)i and inversion by (gi)i.
(ii) for a, b ∈ Kn, (a.b, σ(a.b), ....) = (f0(a

∗, b∗), f1(a
∗, b∗), ....), and similarly
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for inversion.
By Theorem 2 of [1], G∞ is isomorphic, as a group scheme over K to an
inverse limit (Gi)i<ω of linear unipotent connected algebraic groups over K.
Let µi be the canonical surjective homomorphism from G∞ to Gi.
The map h taking a to a∗ is an embedding of G into G∞, quantifier-free
definable in (K, +, ., σ). Composing with the µi gives quantifier-free definable
homomorphisms hi : G → Gi. The intersection of all the Ker(hi) is the
identity of G. On the other hand, each Ker(hi) is quantifier-free definable
in (K, +, .σ), so by the DCC on quantifier-free definable subgroups, some hi

is an embedding, as required.

Remark 5.4 (i) Clearly (K, +, ., σ) can be an arbitrary difference field (not
necessarily a model of ACFA) above.
(ii) What can be said about groups definable in a model (K, +, ., σ) whose
underlying set is some Kn? (Namely the group operation is definable, but
not necessarily by a difference polynomial function.)
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