Model theory of Galois actions
(joint work with Özlem Beyarslan)

Piotr Kowalski

Uniwersytet Wrocławski

Set Theory, Model Theory and Applications
(in memory of Mati Rubin)
Eilat, 22-26 April 2018.
We fix a finitely generated (marked) group:

\[\mathcal{G} = \langle \rho \rangle, \quad \rho = (\rho_1, \ldots, \rho_m). \]

By a \textit{G-field}, we mean a field together with a \textit{G-action} by field automorphisms. Similarly, we have \textit{G-field extensions}, \textit{G-rings}, etc.

We consider a \textit{G-field} as a first-order structure in the following way:

\[\mathcal{K} = (K, +, -, \cdot, \rho_1, \ldots, \rho_m). \]

Note that any \(\rho_i \) above denotes \textit{three} things at the same time:

- an element of \(\mathcal{G} \),
- a function from \(K \) to \(K \),
- a formal function symbol.
Existentially closed G-fields: definition

Let us fix a G-field (K, ρ).

Systems of G-polynomial equations

Let $x = (x_1, \ldots, x_n)$ be a tuple of variables and $\varphi(x)$ be a system of G-polynomial equations over K

$$\varphi(x) : \quad F_1(g_1(x_1), \ldots, g_n(x_n)) = 0, \ldots, F_n(g_1(x_1), \ldots, g_n(x_n)) = 0$$

for some $g_1, \ldots, g_n \in G$ and $F_1, \ldots, F_n \in K[X_1, \ldots, X_n]$.

Existentially closed G-fields

The G-field (K, ρ) is existentially closed (e.c.) if any system $\varphi(x)$ of G-polynomial equations over K which is solvable in a G-extension of (K, ρ) is already solvable in (K, ρ).
Existentially closed G-fields: first properties

- Any G-field has an e.c. G-field extension (a general property of inductive theories).

- For $G = \{1\}$, the class of e.c. G-fields coincides with the class of algebraically closed fields.

- For $G = \mathbb{Z}$, the class of e.c. G-fields coincides with the class of transformally (or difference) closed fields.

- An e.c. G-field is usually not algebraically closed.

- The complex field \mathbb{C} with the complex conjugation automorphism is not an e.c. C_2-field. (By C_n, we denote the cyclic group of order n written multiplicatively.)
Let K be an e.c. G-field, and $F := K^G$ be the fixed field.

- Both K and F are perfect.
- Both K and F are pseudo algebraically closed (PAC), hence their absolute Galois groups are projective profinite groups.
- The profinite group $\text{Gal}(F^{\text{alg}} \cap K/F)$ coincides with the profinite completion \hat{G} of G.
- The profinite group $\text{Gal}(F)$ (the absolute Galois group of F) coincides with the universal Frattini cover $\tilde{\hat{G}}$ of \hat{G}.
- The field K is algebraically closed iff \hat{G} is projective (iff $\tilde{\hat{G}} = \hat{G}$), more precisely:

$$\text{Gal}(K) \cong \ker \left(\tilde{\hat{G}} \rightarrow \hat{G} \right).$$
The theory G-TCF

Definition

If the class of existentially closed G-fields is *elementary*, then we call the resulting theory G-TCF and say that G-TCF exists.

Example

- For $G = \{1\}$, we get G-TCF = ACF.
- For $G = F_m$ (free group), we get G-TCF = ACFA$_m$.
- If G is finite, then G-TCF exists (Sjögren, independently Hoffmann-K.)
- $(\mathbb{Z} \times \mathbb{Z})$-TCF does *not* exist (Hrushovski).
We fix now a difference field \((K, \sigma)\), i.e. \((G, \rho) = (\mathbb{Z}, 1)\) (or, for technical reasons, \((G, \rho) = (\mathbb{Z}, 0, 1)\)).

- By a **variety**, we always mean an affine \(K\)-variety which is \(K\)-irreducible and \(K\)-reduced (i.e. a prime ideal of \(K[\bar{X}]\)).

- For any variety \(V\), we also have the variety \(\sigma V\) and the bijection (not a morphism!)

\[
\sigma_V : V(K) \rightarrow \sigma V(K).
\]

- A pair of varieties \((V, W)\) is called a **\(\mathbb{Z}\)-pair**, if \(W \subseteq V \times \sigma V\) and the projections \(W \rightarrow V, W \rightarrow \sigma V\) are dominant.

Axioms for ACFA (Chatzidakis-Hrushovski)

The difference field \((K, \sigma)\) is e.c. if and only if for any **\(\mathbb{Z}\)-pair** \((V, W)\), there is \(a \in V(K)\) such that \((a, \sigma_V(a)) \in W(K)\).
Let $G = \{\rho_1, \ldots, \rho_e\} = \rho$ be a finite group and (K, ρ) be a G-field.

Definition of G-pair

A pair of varieties (V, W) is a G-pair, if:

- $W \subseteq \rho_1 V \times \ldots \times \rho_e V$;
- all projections $W \to \rho_i V$ are dominant;
- **Iterativity Condition**: for any i, we have $\rho_i W = \pi_i(W)$, where

 $$\pi_i : \rho_1 V \times \ldots \times \rho_e V \to \rho_i \rho_1 V \times \ldots \times \rho_i \rho_e V$$

 is the appropriate coordinate permutation.

Axioms for G-TCF, G finite (Hoffmann-K.)

The G-field (K, ρ) is e.c. if and only if for any G-pair (V, W), there is $a \in V(K)$ such that

$$((\rho_1)_V(a), \ldots, (\rho_e)_V(a)) \in W(K).$$
Our strategy 1

- Find a generalization of the known results (mentioned above) about free groups and finite groups.
- Natural class of groups for such a generalization: *virtually free* groups.
- For a fixed \((G, \rho)\), the general scheme of axioms should be as follows: for any \(G\)-pair \((V, W)\), there is \(a \in V(K)\) such that

\[
\rho_V(a) := ((\rho_1)_V(a), \ldots, (\rho_m)_V(a)) \in W(K).
\]

Hence one needs to find the right notion of a \(G\)-pair.

G-pairs in general (looking for this “right notion”)

A pair of varieties \((V, W)\) will be called a **\(G\)-pair**, if:

- \(W \subseteq \rho V := \rho_1 V \times \ldots \times \rho_m V\);
- all projections \(W \rightarrow \rho_i V\) are dominant;
- **Iterativity Condition** (to be found) is satisfied.
Recall that, we need to find a good Iterativity Condition for a virtually free, finitely generated group \((G, \rho)\).

- \(G\) free: trivial Iterativity Condition.
- \(G\) finite: Iterativity Condition as before.

We need a convenient procedure to obtain virtually free groups from finite groups. Luckily, such a procedure exists and gives the right Iterativity Condition.

Theorem (Karrass, Pietrowski and Solitar)

Let \(H\) be a finitely generated group. Then TFAE:

- \(H\) is virtually free;
- \(H\) is isomorphic to the **fundamental group** of a finite graph of **finite groups**.
Graph of groups (slightly simplified)

A graph of groups $G(\cdot)$ is a connected graph (V, E) together with:

- a group G_i for each vertex $i \in V$;
- a group A_{ij} for each edge $(i, j) \in E$ together with monomorphisms $A_{ij} \to G_i, A_{ij} \to G_j$.

Fundamental group

For a fixed maximal subtree T of (V, E), the fundamental group of $(G(\cdot), T)$ (denoted by $\pi_1(G(\cdot), T)$) can be obtained by successively performing:

- one free product with amalgamation for each edge in T;
- and then one HNN extension for each edge not in T.

$\pi_1(G(\cdot), T)$ does not depend on the choice of T (up to \cong).
Iterativity Condition for amalgamated products

- Let $G = G_1 * G_2$, where G_i are finite. We take $\rho = \rho_1 \cup \rho_2$, where $\rho_i = G_i$ and the neutral elements of G_i are identified in ρ. We also define the projection morphisms $p_i : \rho V \to \rho_i V$. Let $W \subseteq \rho V$ satisfy the dominance conditions.

Iterativity Condition for $G_1 * G_2$

$(V, p_i(W))$ is a G_i-pair for $i = 1, 2$ (up to Zariski closure).

- Let $G = \pi_1(G(\mathcal{G}))$, where $G(\mathcal{G})$ is a tree of groups. We take $\rho = \bigcup_{i \in \mathcal{V}} G_i$, where for $(i, j) \in \mathcal{E}$, G_i is identified with G_j along A_{ij}.

Iterativity Condition for the fundamental group of tree of groups

$(V, p_i(W))$ is a G_i-pair for all $i \in \mathcal{V}$ (up to Zariski closure).
HNN extensions

Let us fix:

- a presentation $H = \langle X \mid R \rangle$ of a group H;
- two subgroups $H_1, H_2 \leq H$;
- an isomorphism $\alpha : H_1 \to H_2$.

The HNN-extension of H relative to α, denoted by $H \ast_\alpha$, is:

$$H \ast_\alpha = \langle X, t \mid R, h_1 t = t^{\alpha}(h_1); \ \forall h_1 \in H_1 \rangle.$$

H is a subgroup of $H \ast_\alpha$ (a theorem of Graham Higman, B. H. Neumann and Hanna Neumann), and α is given by an inner automorphism of $H \ast_\alpha$ in the “most free” way.

Example

- $H \ast_{\text{id}\{1\}} = H \ast \mathbb{Z}$, in particular $\mathbb{Z} = \{1\} \ast_{\text{id}}$.
- For $\alpha \in \text{Aut}(G)$, we have $H \ast_\alpha = H \rtimes_\alpha \mathbb{Z}$, e.g. $H \ast_{\text{id}} = H \rtimes \mathbb{Z}$.
Let $C_2 \times C_2 = \{1, \sigma, \tau, \gamma\}$ and consider the following:

$$\alpha : \{1, \sigma\} \cong \{1, \tau\}, \quad G := (C_2 \times C_2) * \alpha.$$

Then the crucial relation defining G is $\sigma t = t\tau$. We take:

- $\rho := (1, \sigma, \tau, \gamma, t, t\sigma, t\tau, t\gamma)$;
- $\rho_0 := (1, \sigma, \tau, \gamma)$;
- $t\rho_0 := (t, t\sigma, t\tau, t\gamma)$.

Let $W \subseteq \rho V$ satisfy the dominance conditions.

Iterativity Condition for $(C_2 \times C_2) * \alpha$

- $t (p_{\rho_0}(W)) = p_{t\rho_0}(W)$.
- $(V, p_{\rho_0}(W))$ is a $(C_2 \times C_2)$-pair.
Main Theorem

We find a complicated Iterative Condition for virtually free groups using the two previous conditions as the building blocks.

Theorem (Beyarslan-K.)

If G is finitely generated and virtually free, then G-TCF exists.

Properties of G-TCF

- If G is finite, then G-TCF is supersimple of finite rank ($= |G|$).
- If G is infinite and free, then G-TCF is simple (not supersimple, for non-cyclic G).
- As we already know (Sjögren), for any G, if (K, ρ) is an e.c. G-field then K is PAC and K^G is PAC.
- Chatzidakis: for a PAC field K, the theory $\text{Th}(K)$ is simple iff K is bounded (i.e. the profinite group $\text{Gal}(K)$ is small).
New theories are not simple

Theorem (Beyarslan-K.)

Assume that G is finitely generated, virtually free, infinite and not free. Then the following profinite group

$$\ker \left(\hat{G} \to \hat{G} \right)$$

is not small.

Corollary

Putting everything together, we get the following.

- If G is finitely generated and virtually free, then the theory $G\text{-TCF}$ is simple if and only if G is finite or G is free.
- If G is finitely generated, virtually free, infinite and not free, then the theory $G\text{-TCF}$ is not even NTP$_2$.

Kowalski (joint with Beyarslan)

Model theory of Galois actions
Neo-stability hierarchy

It looks possible that if the group G is finitely generated and virtually free, then the theory G-TCF is NSOP_1 (Nick Ramsey communicated a sketch of an argument to us).

Non-finitely generated groups

- The theory \mathbb{Q}-TCF exists (Medvedev’s \mathbb{Q}ACFA).
- After a discussion with Alice Medvedev, we seem to have an argument showing that the theory $C_p\infty$-TCF exists, where $C_p\infty$ is the Prüfer p-group.
Conjecture \((G \text{ finitely generated})\)

The theory \(G\text{-TCF}\) exists if and only if \(G\) is virtually free.

- There is a long list of equivalent conditions characterising the class of finitely generated, virtually free groups e.g.:
 - fundamental groups of finite graphs of finite groups;
 - groups that are recognized by pushdown automata;
 - groups whose Cayley graphs have finite tree width.

- It would be interesting to have one more equivalent condition (as in the conjecture above) coming from model theory!

- Main challenge for a proof of this conjecture: infinite Burnside groups (finitely generated and of bounded exponent).