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Abstract. We show that the class of Krasner hyper�elds is not elementary.
To show this, we determine the rational rank of quotients of multiplicative
groups in �eld extensions. Our argument uses Chebotarev's density theorem.
We also discuss some related questions.

1. Introduction

The notion of a hyper�eld (hypercorps) was introduced �rst by Marc Krasner
in [12] as a tool to study valued �elds. In his later paper [13], he introduced
the quotient construction of a hyper�eld from a given �eld and a subgroup of its
multiplicative group (see Theorem 2.2).

The question whether all hyper�elds come from this quotient construction has
been an open problem until the example of Massouros, who showed in [17] that
it is not the case. Nevertheless, the class of Krasner hyper�elds (i.e., hyper�elds
obtained by this quotient construction) contains a lot of known examples of hyper-
�elds. Among them, there are the hyper�elds known as RV-sorts, which are studied
in the model theory of valued �elds. They were �rst introduced by Joseph Flenner
in his PhD thesis [7] as a tool to obtain (relative) quanti�er elimination for val-
ued �elds. Flenner proved that RV-sorts are bi-interpretable with amc-structures
(three sorted structures) introduced by Franz-Viktor Kuhlmann in [14]. Currently,
hyper�elds in the form of RV-sorts are one of the main objects used to study model
theory of valued �elds (see e.g. [2, 15, 21, 22]).

In view of the usefulness of Krasner hyper�elds for the model theory of valued
�elds discussed above, we were motivated to study model theoretical properties of
Krasner hyper�elds themselves. Since the de�nition of Krasner hyper�elds is purely
algebraical, the �rst question we faced was: �Is the class of Krasner hyper�elds
elementary?�. Based on the results of Alain Connes and Caterina Consani from [3],
we show in this paper that this class is not elementary.

The paper is organized as follows. In Section 2, we collect the necessary facts
and results about hyper�elds as well as results from �eld theory. In Section 3, we
prove our main algebraic result (Theorem 3.3) and use it to show that the class
of Krasner hyper�elds is not elementary (Corollary 3.9). In Section 4, we quickly
state and prove this algebraic result in its proper generality (Theorem 4.1) and
discuss some model-theoretical problems related with hyper�elds and the algebraic
methods used in this paper (Question 4.2 and Conjecture 4.3).
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2. Preliminaries

In this section, we introduce the necessary notions we are going to use through-
out this paper (or we cite the necessary sources). Further we will present the
results from the paper of Alain Connes and Caterina Consani [3], where (among
other things) they studied connections between Krasner hyper�elds and projective
geometries. Finally, we state the Chebotarev's density theorem which will play a
crucial role in the arguments in Section 3.

Not everything from this section is directly needed for the arguments in Section
3, e.g. Theorem 2.11, Facts 2.13, 2.14, or Remark 2.16 will not be used directly.
However, we hope that these extra results provide a greater picture and they also
show how to avoid possible �wrong paths� in the main argument.

2.1. Hyper�elds. The notion of a hyper�eld, as one could expect, generalises the
one of a �eld. The twist is that the addition is a multivalued operation, so instead
of an element it returns a nonempty set.

De�nition 2.1. A hyper�eld is a tuple pH,�, �, 0, 1q where pH, �, 1q is an abelian
group and

� : H�H Ñ PpHqztHu
satis�es the following axioms, where x, y, z P H and �, � are naturally extended to
subsets of H:

 x� y � y � x (commutativity),
 px� yq � z � x� py � zq (associativity),
 for each x P H, there is a unique �x P H such that 0 P x � p�xq (unique
inverse),

 z P x� y ñ y P z � p�xq (reversibility),
 x� 0 � txu (neutral element),
 z � px� yq � z � x� z � y (distributivity).

Note that every �eld can be viewed as a hyper�eld in the obvious way. For more
details and preliminary notions concerning hyper�elds (such as homomorphisms,
hyperideals, etc.) we direct the reader to [4, 10, 16].

We state now the theorem of Krasner which was mentioned in the introduction.

Theorem 2.2. Let K be a �eld and G a subgroup of K�. The quotient K�{G
together with an extra element 0 and �, � de�ned as:

 aG � bG :� abG,
 aG� bG :� tpx� yqG | x P aG, y P bGu

forms a hyper�eld, where 1 � G.

Notation 2.3. We will abbreviate pK�{Gq Y t0u from Theorem 2.2 as K{G.

De�nition 2.4. If a hyper�eld H is isomorphic to K{G (as in Notation 2.3), then
we call it a Krasner hyper�eld.
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2.2. Projective geometries and CC-hyper�elds. The material of this subsec-
tion comes from [3]. We introduce �rst the de�nition of CC-hyper�elds.

De�nition 2.5. We call a hyper�eld pH,�, �, 0, 1q a CC-hyper�eld, if

@x P H x� x � tx, 0u.

Remark 2.6. The name �CC-hyper�eld� does not appear anywhere except this
paper. In particular, it was not used in [3] where hyper�elds with this property were
studied. However, the name used in [3] is quite technical (�hyper�eld extensions of
the Krasner hyper�eld K�) and, for simplicity, we decided to refer to this class of
hyper�elds as CC-hyper�elds.

There is the following nice description of Krasner CC-hyper�elds.

Proposition 2.7 (Proposition 2.7 in [3]). Let K be a �eld and G be a subgroup
of K�. Assume that G � t1u. Then the hyper�eld K{G is a CC-hyper�eld if and
only if t0u YG is a sub�eld of K.

The class of CC-hyper�elds is also closely related to projective geometries (in
the sense of incidence geometry, for the necessary notions see e.g. [1]).

Proposition 2.8 ([3] Proposition 3.1). If H is a CC-hyper�eld, then there is a
unique projective geometry on Hzt0u such that for distinct x, y P Hzt0u, the unique
line through x and y coincides with tx, yu Y x� y.

Notation 2.9. We will denote the above projective geometry by PH.

Remark 2.10. If H is a Krasner CC-hyper�eld, then the corresponding projective
geometry PH is the classical one, which we will see below. By Proposition 2.8,
H � L{K�, where K is a sub�eld of L. Then we can view L as a vector space over
K and consider the classical projective geometry associated to this vector space.
This geometry happens to be exactly the projective geometry associated to the CC-
hyper�eld L{K�. In particular, such a projective geometry is always Desarguesian
and we have

dim pPHq � 1 � rL : Ks.

We �nish this subsection with a result from [3] which will tell us later that we need
to focus on Krasner CC-hyper�elds of dimension one, where by the dimension of a
CC-hyper�eld, we always mean the dimension of its associated projective geometry.

Theorem 2.11 ([3] Theorem 3.8). Let H be a CC hyper�eld. Assume that the
projective geometry PH is Desarguesian and of dimension at least 2. Then there
exists a unique pair pL,Kq where L is a �eld, and K is its sub�eld such that

H � L{K�.

2.3. Model theory. In this subsection, we specify the model-theoretical set-up
which is needed to work with hyper�elds. We also show several reduction results.

We start with specifying the �rst-order language of hyper�elds.

De�nition 2.12. Let us set the language of hyper�elds as the tuple p`,a,d,�1 , 0, 1q,
where:

 d is a binary function symbol interpreted as a multiplication,
 �1 is unary function symbol interpreted as a multiplicative inverse,
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 ` is a ternary relation symbol encoding the hyperaddition (so, in a hyper-
�eld we will have: `px, y, zq if and only if z P x� y),

 a is a unary function symbol encoding the additive inverse (so, `px,ax, 0q
holds in a hyper�eld),

 1 and 0 are constant symbols corresponding to the neutral elements of the
multiplication and the hyperaddition respectively.

Clearly, the class of hyper�elds can be �rst-order axiomatized in the language
above. Let us state the following well-known result.

Fact 2.13. The class C of structures (in a �xed language) is elementary if and only
if C is closed under elementary equivalence and under ultraproducts.

As a simple consequence of �o±'s theorem, one obtains the following.

Fact 2.14. The class of Krasner factor hyper�elds is closed under ultraproducts.

Therefore, we will aim to show that the class of Krasner hyper�elds is not closed
under elementary equivalence. We see below that we can restrict ourselves to the
class of Krasner CC-hyper�elds.

Lemma 2.15. If the class of Krasner hyper�elds is elementary, then the class of
Krasner CC-hyper�elds is elementary.

Proof. It is obvious, since the condition p@xqpx � x � t0uq is clearly de�nable in
the language from De�nition 2.12. �

Remark 2.16. All the assumptions from Theorem 2.11 can be expressed as �rst-
order sentences in the language of hyper�elds introduced above (using the explicit
de�nition of the associated projective geometry from Proposition 2.8). Hence, we
obtain that the class of Krasner CC-hyper�elds of dimension at least 2 is elemen-
tary.

Because of Remark 2.16, we need to focus on one-dimensional Krasner CC-
hyper�elds. For convenience, we give names to the following two classes.

Notation 2.17. (1) Let K denote the class of Krasner CC-hyper�elds of di-
mension one.

(2) Let K� denote the class of groups which are of the form L�{K�, where
K � L is a �eld extension of degree 2.

The next observation explains why the class of groups from Notation 2.17(2) is
important for us.

Fact 2.18. Let H P K. Then we have the following.

(1) H is isomorphic to L{K� where L is a �eld, K is its sub�eld and rL : Ks �
2.

(2) The hyperaddition in H is given by the following formula:

x� y � Hzt0u for x � y � 0,

x� x � tx, 0u,

x� 0 � 0� x � txu,

so it is de�nable in the language t0u (just one constant symbol).
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Proof. Item (1) follows from Remark 2.10, since dimpPHq � 1 if and only if H
comes from a �eld extension of degree 2.

Item (2) follows again from Remark 2.10 (and Proposition 2.8), since dimpPHq �
1 implies that there is only one line in the projective geometry PH and this line is
the whole space. �

We need one more result from [3] saying that some hyper�elds are de�nable just
from their multiplicative structure. Such a phenomenon is impossible for �elds and
this is the base of our proof of the main result of this paper (Corollary 3.9).

Fact 2.19 (Proposition 3.6 in [3]). Let pG, �q be a commutative group (written
multiplicatively) of order at least 4. We de�ne HG as G Y t0u, where 0 is a new
symbol and extend the group operation on G to the commutative monoid structure
on HG by setting x � 0 � 0 � 0 � x. If we de�ne the hyperaddition � on HG as in
Fact 2.18(2), then pHG,�, �q P K (see Notation 2.17(1)).

As a consequence, we directly obtain the following.

Lemma 2.20. If the class of Krasner CC-hyper�elds is elementary, then the class
K is elementary.

Proof. By Facts 2.18 and 2.19, if H is a Krasner CC-hyper�elds, then H P K if and
only if the hyperaddition in K is given by the formula as in Fact 2.18(2), which is
clearly a �rst-order condition. �

The following easy results outline the further connections between the classes K
and K�.

Lemma 2.21. Let G and H be commutative groups and HG,HH be the correspond-
ing hyper�elds as in Fact 2.19. If G and H are elementarily equivalent (as groups),
then HG and HH are elementarily equivalent (as hyper�elds).

Proof. Assume that pG, �q � pH, �q. By the uniform de�nition of the monoid opera-
tion in HG,HH , we get that pHG, �q � pHH , �q. Since the hyperaddition in HG,HH

is de�ned by the same formula in the monoid language (we actually only need the
extra constant as in Fact 2.18), we get that pHG,�, �q � pHH ,�, �q. �

Lemma 2.22. If the class K is elementary, then the class K� is closed under
elementary equivalence.

Proof. Assume that the class K is elementary. Let us take G P K�, so there is
a hyper�eld H P K such that G is the multiplicative group of H. By Facts 2.18
and 2.19, we get that H � HG (as hyper�elds). We also take a group H such
that G � H. By Lemma 2.21, we get that HH � HG � H. Since the class K
is elementary, we obtain that HH P K. Therefore, H P K�, which we needed to
show. �

With those results at hand, it is enough to show that the class K� is not closed
under elementary equivalence, which we will do in Section 3. In the next subsection,
we will describe the necessary algebraic tools to obtain this result.
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2.4. Chebotarev's density theorem. We will use one classical result which is a
consequence of Chebotarev's density theorem. We need some terminology �rst (see
[8, Chapter 6]).

Assume that K � L is a �nite Galois extension, where K is either a number
�eld or the �eld of rational functions FqpXq over a �nite �eld. Let OK ,OL be
the integral closures of Z or FqrXs in K and L respectively. Then OK and OL

are Dedekind rings, hence each non-zero ideal decomposes uniquely into a �nite
product of maximal ideals. It is also well-known that if P is a maximal ideal of
OK , then we have POL � Q1 � . . . � Qk, where Qi are maximal ideals of OL and
k ¤ rL : Ks. If k ¡ 1 and the ideals Q1, . . . , Qk are pairwise distinct, then we
say that P splits in L. If P splits in L, and if k � rL : Ks, then we say that P
splits completely in L. In the case of a degree two extension, which is the situation
corresponding to the class K from Notation 2.17(1), the notions of splitting and
splitting completely coincide.

We need the following consequence of Chebotarev's density theorem.

Theorem 2.23. Let K � L be a �nite Galois extension as above. Then there are
in�nitely many maximal ideals in OK which split completely in L.

Proof. This directly follows from [8, Exercise 5(a), page 129] together with [8,
Theorem 6.3.1] (Chebotarev's density theorem) and its interpretation stated in the
paragraph before it (the sets of density 0 are �nite). �

3. Rational rank

In this section, we prove the main results of this paper (Theorem 3.3 and Corol-
lary 3.9).

We need the following notion (see [6, Section 3.4]).

De�nition 3.1. The rational rank of a commutative group A is the cardinality of
a maximal Z-linearly independent subset of A. Following [6], we denote it by rrpAq.

Remark 3.2. Let A be a commutative group.

(1) It is easy to see that we have (see [6, Section 3.4]):

rrpAq � dimQ pAbZ Qq .

(2) If A0 ¤ A, then we have (see [6, Section 3.4]):

rrpAq � rrpA0q � rr pA{A0q .

(3) Other names as �rank� or �Prüfer rank� or �torsion-free rank� are sometimes
used in this context as well.

Our main algebraic result is the following (see Notation 2.17).

Theorem 3.3. The rational rank of any A P K� is either 0 or in�nite.

Remark 3.4. This result will be generalized in Theorem 4.1 to a much wider class
of commutative groups coming from multiplicative groups of �elds.

We proceed to the proof of Theorem 3.3. We start with a warm-up example
which will be also used in the main proof.
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Example 3.5. We will show here two particular cases of Theorem 3.3. For the
proof of the �rst one, we will use a well-known algebraic fact that is also a direct
consequence of Chebotarev's theorem. In the proof of the second one, Chebotarev's
theorem will not be needed.

(1) We have

rrpQris�{Q�q � ℵ0.

Proof. Let us recall that a prime number p P Z splits (equivalently in this
case: splits completely) in Zris if and only if p � 1pmod 4q and that there
are in�nitely many such primes (this is a very special case of Theorem 2.23).
Let us take an in�nite sequence p1, p2, . . . of prime numbers which split in
Zris.

We have pi � riri, where ri is a prime element of Zris and ri is the
complex conjugate of ri. Then r1, r1, r2, r2, . . . is a sequence of pairwise non-
associated prime elements ofZris. We will show that the cosets r1Q

�, r2Q
�, . . .

are Z-independent in Qris�{Q�.
Assume not, so there is a non-zero tuple pn1, n2, ..., nkq P Zk such

that rn1
1 rn2

2 . . . rnk

k P Q� (witnessing that r1Q
�, r2Q

�, .., rkQ
� are not Z-

independent in Qris�{Q�). We have:

rn1
1 rn2

2 ...rnk

k � r1
n1r2

n2 ...rk
nk ,

which contradicts the unique factorization in Zris (after rearranging the
displayed equation in such a way that all the exponents are positive). �

(2) We have

rrpQpXq�{QpX2q�q � ℵ0.

Proof. The proof here is analogous to the proof in item p1q. We take pair-
wise distinct rational numbers a1, a2, . . . and substitute:

Zù QrX2s, Zrisù QrXs, più X2 � a2i , riù X � ai,

where the map QpXq Q f ÞÑ fp�Xq P QpXq plays the role of the complex
conjugation. �

We will prove now several technical results which will be used in the proof of
Theorem 3.3.

Lemma 3.6. Let F � K be a �eld extension of degree 2. Suppose that F is
algebraic over a �nite �eld or the extension F � K is not Galois. Then we have:

rr
�
K�{F�

�
� 0.

Proof. If F is algebraic over a �nite �eld, then K� is torsion. Therefore, K�{F�

is torsion as well and rr pK�{F�q � 0.
Assume that the extension F � K is not Galois. Then charpF q � 2 and the

extension F � K is purely inseparable (since rK : F s � 2). Therefore, K2 � F
(using again that rK : F s � 2), hence the group K�{F� is torsion again. �

For the proof of Theorem 3.3, it is enough now to show the following:

Proposition 3.7. Let F � K be a Galois �eld extension of degree 2 such that F
is not algebraic over a �nite �eld. Then the rational rank of K�{F� is in�nite.
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The next result allows as to reduce the proof of Proposition 3.7 to several special
cases.

Lemma 3.8. Let K � L be a �eld extension satisfying the assumption of Proposi-
tion 3.7. Then either

(1) QpXq�{QpX2q�, or
(2) F�{E�, where E � F is a number �eld extension of degree 2, or
(3) FppXq

�{FppX
2q� for p � 2, or

(4) F2pXq
�{F2pX

2 �Xq�,

embeds into L�{K�.

Proof. We consider several cases.

Case I charpKq � 0.

By a standard argument (which works whenever charpKq � 2), there is α P L
such that α2 P K and L � Kpαq, so K � L is a Kummer extension. Since we
are in the characteristic 0 case, we can assume that Q is a sub�eld of K. By our
choice of α, we have that Qpαq XK � Qpα2q. Therefore, Qpαq�{Qpα2q� embeds
into L�{K�. If α is transcendental over Q, then we are in the item p1q situation.
Otherwise, we are in the item p2q situation.

Case II charpKq � p ¡ 2.

As in Case I, there is α P L such that α2 P K and L � Kpαq, , so K � L is
a Kummer extension again. We can assume that Fp is a sub�eld of K. By our
assumptions, there is t P K which is transcendental over Fp. If α is algebraic over
Fp, then we replace α with tα. If α is transcendental over Fp, then we keep α as
it is. After this possible replacement, we moreover obtain that α is transcendental
over Fp. As in Case I, Fppαq

�{Fppα
2q� embeds into L�{K� and we are in the

item p3q situation.

Case III charpKq � 2.

Since the extension K � L is Galois, by Artin-Schreier theory there is α P L
such that α2 � α P K and L � Kpαq. We proceed now as in Case II, however we
(possibly) need to replace α with t� α (rather than tα). In the end, we are in the
item p4q situation. �

We are ready to show the main algebraic result of this section.

Proof of Prop. 3.7. It is clear that if a commutative group A embeds into a com-
mutative group B, then we have rrpAq ¤ rrpBq. Therefore, it is enough to consider
the four cases given by the statement of Lemma 3.8.

Case (1)
rrpQpXq�{QpX2q�q � ℵ0.

This is covered by Example 3.5(2).
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Case (2)
rrpL�{K�q � ℵ0, where K � L is a number �eld extension of degree 2.

This is a generalization of Example 3.5(1). Let OL and OK denote the rings of alge-
braic integers of L andK respectively (as in Section 2.4) and letGalpL{Kq � tid, σu.

By Theorem 2.23, there is an in�nite sequence P1, P2, . . . of prime ideals in OK

which split completely in L (as we remarked earlier, in the case of the degree 2
extension, splitting implies splitting completely). Then for each i, we have:

Pi � QiσpQiq,

where Qi is a maximal ideal of OL and all the ideals Q1, σpQ1q, Q2, σpQ2q, . . . are
pairwise distinct.

Using the Prime Avoidance Lemma (see e.g. [5, Section 3.2]), we choose a1, a2, . . . P
OL such that

 a1 P Q1zσpQ1q,
 a2 P Q2zpQ1 Y σpQ1q Y σpQ2qq,
and in general:

 ai P QizpQ1 Y . . .YQi�1 Y σpQ1q Y . . .Y σpQiqq.

Similarly as in Example 3.5(1) (although without using the unique decomposition),
we will show that the cosets a1K

�, a2K
�, . . . are Z-independent in L�{K�.

Assume not, so there is a nonzero tuple pn1, . . . , nkq P Z
k such that an1

1 . . . ank

k P
K� (witnessing that a1K

�, . . . , akK
� are not Z-independent in L�{K�). Since

the tuple pn1, . . . , nkq is nonzero, there is a smallest r ¤ k, such that nr � 0.
Without loss of generality, we can assume that nr ¡ 0.

Since anr
r . . . ank

k P K�, we get

(�) anr
r . . . ank

k � σpanr
r . . . ank

k q � σparq
nr . . . σpakq

nk .

By our choice of the sequence a1, a2, . . ., we have:

(��) ar P Qr, ar�1, . . . , ak
R Qr, σparq, . . . , σpakq R Qr.

Using p�q, p��q and doing a similar rearrangement as in Example 3.5(1), we get that
there are elements b P OL, c1, . . . , cm P OLzQr such that

(� � �) anr
r b � c1 . . . cm.

Since nr ¡ 0, ar P Qr and Qr is prime, the equality p� � �q yields a contradiction,
since its left-hand side belongs to Qr and its right-hand side does not.

Case (3)
rrpFppXq

�{FppX
2q�q � ℵ0, where p � 2.

The proof is almost the same as in Example 3.5(2), however now we substitute:

Zù FprX
2s, Zrisù FprXs.

The choice of irreducible polynomials in FprX
2s which split in FprXs is not as

straightforward as in Example 3.5(2). To obtain such a sequence, we again use
Theorem 2.23, which also covers Case (3). With such a sequence at hand, we con-
tinue the proof as in Example 3.5(2).

Case (4)
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rrpF2pXq
�{F2pX

2 �Xq�q � ℵ0.

It is almost identical to the Case (3) situation, we just use the ring F2rX
2 � Xs

instead of the ring FprX
2s. �

This concludes the proof of Proposition 3.7, and hence also the proof of Theorem
3.3.

Our main model-theoretic result is below.

Corollary 3.9. The class of Krasner hyper�elds is not elementary.

Proof. If the class of Krasner hyper�elds is elementary, then the class K� of groups
(see Notation 2.17(2)) is closed under elementary equivalence by Lemmas 2.15, 2.20,
2.22. We will show that this is not the case.

Since C� is divisible, we have:

K� Q C�{R� � A`
à
p

Cp8 � Q`
à
p

Cp8 ,

where Cp8 is the Prüfer p-group and A is a vector space over Q of dimension
continuum. The isomorphism above follows from the classi�cation of divisible com-
mutative groups (see [11, Theorem 5 in Section 4]) and the elementary equivalence
follows from the Szmielew's description (see [19]) of the theories of commutative
groups (this elementary equivalence can be also directly shown by taking ultraprod-
ucts).

However, the rational rank of Q`
À

p Cp8 is 1, so this group does not belong to

K� by Theorem 3.3. �

4. Generalization, conjecture and question

In this section we improve on Theorem 3.3 and we also discuss some model-
theoretical problems related with hyper�elds and the algebraic methods used in
this paper.

We show now the following improvement of Theorem 3.3 to its proper generality.

Theorem 4.1. Let F � K be an arbitrary �eld extension. Then both rrpF�q and
rrpK�{F�q are 0 or in�nite.

Sketch of Proof. If F is algebraic over a �nite �eld, then F� is torsion, so rrpF�q �
0. If F is not algebraic over a �nite �eld, then either Q embeds into F or FppXq
embeds into F for some prime number p. So, for the case of rrpF�q, it is enough
to notice that

rrpQ�q � rrpFppXq
�q � ℵ0,

which follows (as in Example 3.5) from the fact that both of these �elds are fraction
�elds of unique factorization domains with in�nitely many pairwise non-associated
prime elements.

We move now to the case of a �eld extension F � K. If the extension F � K is
not algebraic, we take a transcendental t P K and then rrpF ptq�{F�q is in�nite by
a similar argument as above.

If the extension F � K is purely inseparable or K is contained in the algebraic
closure of a �nite �eld, then rrpK�{F�q � 0 as in the proof of Lemma 3.6.
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Therefore, we can assume that F � K is a �nite extension which is not contained
in the algebraic closure of a �nite �eld and which is also not purely inseparable. We
aim to show that rrpK�{F�q is in�nite. Let us take the �eld tower F � K0 � K,
where the �rst extension is separable and non-trivial and the second one is purely
inseparable. We have the following exact sequence:

1Ñ K�0 {F
� Ñ K�{F� Ñ K�{K�0 Ñ 1

and we know that rrpK�{K�0 q � 0, so using Remark 3.2(2), we obtain that
rrpK�0 {F

�q � rrpK�{F�q, so we can moreover assume that F � K is �nite,
separable, and F � FppXq or F is a number �eld. Let F � L be the normal
closure of F � K and n :� rK : F s ¡ 1. By Theorem 2.23, there are in�nitely
many prime ideals P1, P2, . . . of OF which split completely in OL, so for each i,
we also have PiOK � Qi1 . . . Qin, where Qij 's are maximal ideals in OK . We take
a1, a2, . . . P OK such that for each i, we have:

ai P Qi1z

�
i�1¤
j�1

Qj1 Y
i¤

j�1

l¤
k�2

Qjk

�
.

Then the proof of the Case p2q situation from Lemma 3.8 works after taking σ P
GalpL{F q such that σparq R Qr1OL. �

Therefore (as in the proof of Corollary 3.9), the following class of groups:

tK� | K is a �eldu

is not elementary. Interestingly, a similar phenomenon appeared in [9] where the au-
thors consider model completeness of groups of rational points of algebraic groups.
One can ask the following.

Question 4.2. Let G be a group scheme over Z. Are the following two conditions
on G equivalent?

(1) The class

tGpKq | K is a �eldu

is elementary.
(2) If K is a model complete �eld, then GpKq is a model complete group.

The multiplicative group scheme Gm fails both items p1q and p2q above. On the
other hand, semisimple or unipotent algebraic groups seem to satisfy both these
items, which is work in progress related to [9]. Therefore, we do not have coun-
terexamples to the equivalence in Question 4.2. Actually, if item p1q holds, then
(as in [9]) it is usually an important step for proving that item p2q holds. The fact
that item p1q holds for certain simple algebraic groups follows from [18] and [20].

While trying to understand hyper�elds (or any other structures) model-theoretically,
it is natural to ask �rst what are the �model-theoretically simplest�, that is strongly
minimal, hyper�elds. We propose the following.

Conjecture 4.3. A hyper�eld is strongly minimal if and only if it is either a
strongly minimal �eld (i.e., an algebraically closed �eld) or a hyper�eld where
the hyperaddition is de�nable in the structure of its multiplicative group which is
strongly minimal.
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Since any in�nite commutative group can be expanded to a hyper�eld where the
hyperaddition is de�nable just from one constant symbol (see Fact 2.19) there are
plenty hyper�elds as after �or� in the conjecture above.
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