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Abstract. We show that if G is a simply connected semi-simple algebraic
group and K is a model complete field, then the theory of the group G(K) is
model complete as well.

1. Introduction

The goal of this project is to show model completeness of some groups with geo-
metric origin. Recall that model completeness is a weaker and, hence, more flexible
variant of quantifier elimination - we can reduce formulas to the form, where only
a tuple of existential quantifiers remains. Many structures from algebra, geome-
try, and number theory are model complete but do not have quantifier elimination
in their natural languages. Examples include fields R of real numbers [10, The-
orem 2.7.3], the field Qp of p-adic numbers [16], the exponential field (R, exp) of
real numbers [31], etc. Another favorite source of examples for model theorists
comes from the model companion construction, which serves as an analogue to the
universal domain à la Weil for more delicate theories other than fields. Note that
model companions are automatically model complete but usually do not have quan-
tifier elimination. Examples include real closed fields (RCF) [10, Theorem 2.7.3],
p-adically closed fields (pCF) [16], algebraically closed valued fields (ACVF) [29],
algebraically closed fields with a generic automorphism ACFA [3], or more exotic
examples like G-TCF [1, 11], ACFO and interpolative fusions [28, 15], ACFG [5],
CXFs [14].

An algebraic group, for us, is a group scheme of finite type over a field K. An
algebraic group G is semi-simple if it is infinite and any normal commutative sub-
group of G(Kalg) is finite. Furthermore, G is connected if it is connected with
respect to the Zariski topology. A connected algebraic group G is simply connected
if every isogeny from a connected algebraic group to G is an isomorphism. Here,
an isogeny is defined as an algebraic group epimorphism with a finite kernel. Our
main result (see Theorem 3.14) is as follows:

Main Theorem. Let G be a simply connected semi-simple algebraic group over Z
and K be a model complete field (in the language of rings). Then G(K) (in pure
group language) is model complete.
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In particular, our result implies both SL2(R) and SL2(C) are model complete.
Initially, the project started without P.K., and we concentrated on these examples
to demonstrate the feasibility of such results. P.K. joined the project following
D.M.H.’s talk at the Antalya Algebra Days conference in May 2023, contributing
new ideas to establish model completeness for a broader class of groups.

There are several further motivations for the main theorem. For the field R and
exponential field (R, exp), model completeness can be used to show the geometric
properties of these structures (more precisely, these structure are o-minimal, so
definable sets and definable groups are very close to classical geometric objects like
smooth manifolds and Lie groups). Our heuristic is that the implication also often
goes the other way in the presence of groups, in particular, non-abelian groups
of geometric significance such as SL2(R) and SL2(C) should be model-complete.
This view is also informed by a separated project on locally compact groups and
Lie groups by D.M.H., where a related first-order structure is shown to have well
behavior provided the theory of the corresponding pure group is model complete.

Let us briefly shift the focus to the related problem of describing canonical topolo-
gies on natural examples in model theory (e.g., the Euclidean topology on the field
of real numbers, the valuation topology on ACVF, etc). In the case of pure fields,
the natural topology can be recovered by considering étale images, as outlined
in [12], with subsequent studies further expanding on this concept [13, 7, 30]. This
approach has limitations; for instance, in a model of ACVF, it incorrectly yields the
Zariski topology, where we do not have constructibility of definable sets. A view-
point by C.M.T., also one of the authors of [12], is that one would ultimately like to
recover topology from group structures instead of fields. For SL2(R) and SL2(C),
this should come from suitable variant of the notion of étale images. Establishing
the model completeness of SL2(R) and SL2(C) is the first step in this direction.

Last but not least, the interpretation of a field within an algebraic group continues
to be an interesting research direction in model theory. For instance, Ali Nesin
achieved this for SO3(R) in [20]. in [20]. A similar result is obtained in [21], in
Theorem 1.1 from [22], and more recently in [25]. In our approach, interpreting
the field inside the group is one of the steps in proving model completeness of
a given algebraic group. More precisely, if H ≡ G(K) for some algebraic group
G, field K and group H, then we want to find a field M such that H ∼= G(M).
The last thing follows from earlier results ([25], [27]) for simply connected simple
algebraic groups (Theorem 2.17). In our study, we are more interested in the
complexity of such bi-interpretations. Particularly, we want this interpretation
to be simple in the sense of logical quantifiers so it remains geometric to some
extent. To highlight our result, in Corollary 2.12, we provide a fact saying that
homomorphisms between simply connected simple algebraic groups decompose into
a field homomorphism part and an algebraic group isomorphism part. Having
that on board, we can prove Theorem 3.1, stating model completeness of simply
connected simple algebraic groups over model complete fields. Then, we provide
a variant of the Borel-Tits theorem (Theorem 2.14), develop a criterion for model
completeness of products (Theorem 3.10) and use the Feferman-Vaught theorem to
generalize our Theorem 3.1 to the class of simply connected semi-simple algebraic
groups over model complete fields. This is one of the main parts of the paper,
finalized with Theorem 3.14.
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The main text is divided into 3 sections: in Section 2 we recall definitions and
classical facts from model theory and algebraic groups and in Section 3 we obtain the
main result, i.e. model completeness of (simply connected) semi-simple algebraic
groups.

The authors would like to thank Zoé Chatzidakis, Lou van den Dries, Aleksander
Ivanov, Tomasz Rzepecki, Katrin Tent, and Martin Ziegler for various discussions
on this paper. As each of the authors of this paper works in a different place, the
work was conducted during meetings in many places (Münster, Singapore, Sirince,
South Bend, Luminy, Wrocław). The final steps were discussed during the Simons
Semester STRUCTURES (Poland, Autumn 2023). We would like to thank the
members of the model theory group in Wrocław for their constructive remarks
during the talk of P.K. at the model theory seminars at Wrocław University

2. Homomorphism between rational points of algebraic groups

2.1. Classical results on algebraic groups. By a simple algebraic group over a
field K, we mean an infinite algebraic group G over K such that any proper normal
subgroup of G(Kalg) is finite. By a simple group scheme over Z, we mean a group
scheme G over Z such that for each field K, the base change group scheme GK is
a simple algebraic group G over K. From now on, when we simply refer to
an algebraic group G, it is assumed to be over Z.

By the radical of an algebraic group G over K, denoted Rad(G), we mean its
maximal connected normal algebraic solvable subgroup over K. By a semi-simple
algebraic group G over a field K, we mean an infinite algebraic group over K such
that Rad(G) is trivial (equivalently, any normal commutative subgroup of G(Kalg)
is finite). The definition of a semi-simple group scheme over Z is analogous to the
one above.

A connected algebraic group G is simply connected if any isogeny from a con-
nected algebraic group to G is an isomorphism, where an isogeny is an algebraic
group epimorphism with a finite kernel.

Remark 2.1. For other possible choices of the terminology above, the reader is
advised to consult [19, Definition 19.8]. General definitions are given e.g. here [6,
Def XIX, 2.7].

We state below several classical results.

Theorem 2.2 (Chapter 24a in [19]). Let G be a semi-simple algebraic group over
a field K.

(1) There is an “almost-decomposition” of G into the product of simple algebraic
groups G1, . . . , Gl over K that is there is an epimorphism

G1 × . . . Gl −→ G

with a finite kernel.
(2) If G is simply connected, then the simple algebraic groups G1, . . . , Gl are

simply connected as well and the above epimorphism is an isomorphism.

The second item in the above theorem might be found as well in [18], see Prop.
1.4.10 there. It is worth mentioning that the decomposition from the second item
above is unique up to isomorphism.



4 D. M. HOFFMANN, P. KOWALSKI, C.M. TRAN, AND J. YE

Theorem 2.3. Simple group schemes over Z are fully classified: each of them is
given (up to an isomorphism over Z) by a Dynkin diagram as in Table 9.2 on [17,
page 72] (this table also lists the simply connected ones).

Theorem 2.4 ([4]). Let H be a (semi-)simple algebraic group over an algebraically
closed field K. Then, there is a (semi-)simple algebraic group scheme G over Z
such that H ∼= GK .

The result below was proved by Rosenlicht in the case of a perfect field M and
by Grothendieck in the arbitrary case. We will need it for model complete fields
which are necessarily perfect.

Theorem 2.5 ([24] and [6]). If G is a reductive algebraic group defined over a field
K (in particular: it applies to semi-simple algebraic groups), then G(K) is Zariski
dense in G(Kalg).

Theorem 2.6. Suppose that G is a simply-connected simple algebraic group scheme
over Z and K is an infinite field. Then we have the following.

(1) Any proper normal subgroup of G(K) is contained in Z(G(K)) and Z(G(K))
is finite.

(2) Each element of G(K) is a commutator.

Proof. Item (1) follows by [23, Theorem 7.1] and the paragraph above [23, Propo-
sition 7.5], since, by Theorem 2.5, we have Z(G(K)) ⊆ Z(G(Kalg)).

For Item (2), by [8, Theorem 1] and the paragraph below it, we obtain that G(K)
satisfies the Thompson conjecture, that is each element of G(K) is a commutator
(see also the second paragraph of the Introduction to [8]). □

Remark 2.7. We will actually need only that for each G as above, there is n >
0 such that for each infinite field K, each element of G(K) is the product of n
commutators. This follows by the Compactness Theorem for any elementary class
of perfect groups and it applies to our case by Theorem 2.17(1).

For a homomorphism of algebraic groups f : H → G over K, we denote by
fK : H(K) → G(K) the corresponding group homomorphism between the rational
points. If φ : K → K ′ is a field homomorphism, then φG : G(K) → G(K ′) denotes
the corresponding group homomorphism between the rational points and by φH
we denote the corresponding (change of basis) algebraic group over K ′ (we have
H(K ′) = φH(K ′)). We will often use the following crucial result [26, Theorem 1.3]
originating from [2, (A)], which we state in a slightly simplified form.

Theorem 2.8 (Theorem 1.3 in [26]). Let H,G be simple algebraic groups defined
over infinite fields L,M respectively. Assume that H is simply connected. Let
α : H(L) → G(M) be a group homomorphism such that α(H(L)) is Zariski dense
(see Remark 2.9(1)). Then there exist:

• a field homomorphism φ : L→M ,
• an isogeny β : φH → G,
• a homomorphism γ : H(L) → Z(G(M))

such that for all h ∈ H(L), we have:

α(h) = γ(h) · βM (φH(h)),

where · is the group operation in G(M).
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Remark 2.9. We collect here some observations regarding the last theorem.
(1) By Theorem 2.5 the assumption that α(H(L)) is Zariski dense (in the

statement of Theorem 2.8) is unambiguous since being Zariski dense in
G(M) is the same as being Zariski dense in G(Malg).

(2) By Theorem 2.6, H(K) is perfect, hence γ is trivial and we get that α =
βM ◦φH in the situation from Theorem 2.8. (It is conjectured in [2] that γ
is always trivial.)

(3) We will usually apply Theorem 2.8 in the situation when G,H come from
simple group schemes over Z (as in Theorem 2.4). In such a case, there
will be no need for the base change φH, which appears in the statement of
Theorem 2.8.

2.2. Homomorphisms. In this subsection, we collect some consequences of The-
orem 2.8.

Proposition 2.10. Let H be a simply connected simple algebraic group over an
infinite field L, G be a linear algebraic group over a field M , and α : H(L) → G(M)
be a non-trivial homomorphism. Let G0 denote the algebraic subgroup of G being
the Zariski closure of α(H(L)) in G(Malg) (we identify here G0 with G0(M

alg)).
Then, there is a field homomorphism φ : L → Malg and an isogeny between φH
and a quotient of G0.

Proof. By Theorem 2.5 and Theorem 2.6(1), α has infinite image. By Theorem
2.6(1) again, we have:

Rad(G0)(M) ∩ α(H(L)) ⊆ α(Z(H(L))).

Let us define:
G1 := (G0)ss := G0/Rad(G0).

Then, the following composition map:

H(L) −→ G0

(
Malg

)
−→ G1

(
Malg

)
has infinite image that is dense. Since G1 is semi-simple, by Theorem 2.2(1) and
the same argument as above, we can assume that G1 is simple. We apply now
Theorem 2.8 for the induced homomorphism H(L) → G1(M

alg), hence we obtain
a field homomorphism φ : L→Malg and an isogeny φH → G1. □

Remark 2.11. One observation and two minor generalizations.
(1) The algebraic group G0 appearing in the statement of Proposition 2.10 need

not be simple, for example let us consider:

H = SL2, G = SL2 × SL2, L =M = C, α(g) = (g, ḡ),

where g 7→ ḡ is the complex conjugation.
(2) The group G0 is definable over M , so it is defined (as an algebraic group)

over the perfect hull of M .
(3) By the Chevalley’s structure theorem, we could have dropped the linearity

assumption on G.

We immediately obtain the following.

Corollary 2.12. Suppose that H,G are simply connected simple algebraic groups
defined over infinite fields L,M respectively. Let α : H(L) → G(M) be a non-trivial
homomorphism. Then we have the following.
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(1) dim(H) ⩽ dim(G).
(2) If dim(H) = dim(G), then there is a field homomorphism φ : L → M and

an algebraic group isomorphism β : φH → G such that α = βM ◦ φH .

Proof. Item (1) follows directly from Proposition 2.10. For Item (2), Proposition
2.10 implies that the image of α is Zariski dense, so we can apply Theorem 2.8
and Remark 2.9(2). Since G is simply connected as well, the isogeny β is an
isomorphism. □

We will need some results about homomorphisms between rational points of
products of simple group schemes.

Theorem 2.13. Let G1, G2 be simply connected simple group schemes defined over
Z and L1, L2,M1,M2 be infinite fields. Assume that

Ψ : G1(L1)×G2(L2) −→ G1(M1)×G2(M2)

is a group monomorphism. Then one of the following happens:
• there are monomorphisms

Ψ1 : G1(L1) −→ G1(M1), Ψ2 : G2(L2) −→ G2(M2)

such that Ψ = Ψ1 ×Ψ2

or
• there are monomorphisms

Ψ1 : G1(L1) −→ G2(M2), Ψ2 : G2(L2) −→ G1(M1)

such that Ψ = twist ◦ (Ψ1 ×Ψ2) and G1
∼= G2, where “twist” is the obvious

permutation of coordinates.
.

Proof. We have four homomorphisms Ψij : Gi(Li) → Gj(Mj) for i, j ∈ {1, 2}. For
example, Ψ1

1 is defined as the following composition:

G1(L1) ↪→ G1(L1)×G2(L2)
Ψ−→ G1(M1)×G2(M2) ↠ G1(M1).

We need to show that Ψ1
2,Ψ

2
1 are trivial OR Ψ1

1,Ψ
2
2 are trivial and G1

∼= G2.

Claim
If Ψ1

1 is non-trivial, then Ψ2
1 is trivial (similarly for Ψ2

2 and Ψ1
2).

Proof of Claim. By Proposition 2.10, the image of Ψ1
1 is Zariski dense. Therefore,

we have:
CG1(M1)

(
Ψ1

1 (G1(L1))
)
= Z (G1(M1)) .

Since
Ψ2

1 (G2(L2)) ⊆ CG1(M1)

(
Ψ1

1 (G1(L1))
)
,

we obtain that the image of Ψ2
1 is a commutative group. Since G2(L2) is perfect

(by Theorem 2.6(2)), Ψ2
1 is trivial. □

We consider two cases.

Case 1 Ψ1
1 is non-trivial.

By Claim, Ψ2
1 is trivial. Since Ψ is one-to-one, we obtain that Ψ2

2 is non-trivial.
Using Claim again, we get that Ψ1

2 is trivial.
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Case 2 Ψ1
1 is trivial.

Since Ψ is one-to-one, we obtain that Ψ1
2 is non-trivial. By Claim, we get that Ψ2

2

is trivial. It is enough to show now that G1
∼= G2.

By Corollary 2.12(1), we get that dim(G1) ⩽ dim(G2). Since Ψ is one-to-one,
we obtain as above that Ψ2

1 is non-trivial. By Corollary 2.12(1), we obtain that
dim(G2) ⩽ dim(G1), so dim(G1) = dim(G2). By Corollary 2.12(2), we get β : G1

∼=
G2. □

Using the same arguments as in the proof of Theorem 2.13, one can show the
following generalization.

Theorem 2.14. Let G1, . . . , Gn be simply connected simple algebraic groups defined
over Z and L1,M1, . . . , Ln,Mn be infinite fields. Assume that

Ψ :

n∏
i=1

Gi(Li) −→
n∏
i=1

Gi(Mi)

is a group monomorphism. Then, there is σ ∈ Sym(n) and monomorphisms

Ψi : Gi(Li) −→ Gσ(i)
(
Mσ(i)

)
(i = 1, . . . , n)

such that
Ψ = σ̃−1 ◦ (Ψ1 × . . .×Ψn) ,

where σ̃−1 is the obvious coordinate permutation and for each i, we have Gi ∼= Gσ(i).

2.3. Miscellaneous model theory. Here, very shortly, we provide some easy
standard notions and facts from model theory.

Definition 2.15. Let L be a language and M be an L-structure. We say that:
(1) M is model complete if Th(M) is model complete;
(2) M is model complete with parameters if ThM (M) is model complete.

The next result is folklore.

Theorem 2.16. Let G be an algebraic group over a field K. Then the group G(K)
has finite centralizer dimension, that is there is n > 0 such that there is no strictly
decreasing chain of centralizers in G(K) of length n.

We need one more result, which was proved by Dan Segal and Katrin Tent, and
also by Simon Thomas.

Theorem 2.17. Let G be a simply connected simple group scheme defined over Z
and K be a field. Then we have the following.

(1) If N is a group and N ≡ G(K), then there is a field M such that N ∼=
G(M).

(2) If M is a field such that G(K) ≡ G(M), then K ≡M .

Proof. If G ≇ SL2, then the result follows from [25, Corollary 1.2]. If G ∼= SL2,
then the result follows from Theorem 2 and the discussion below it on page 55 of
[27]. □

Lemma 2.18. Assume that G1, G2 are simply connected simple algebraic groups
over Z and K is a field. Then the subgroups G1(K) × {1} and {1} × G2(K) are
existentially definable (with parameters) in the pure group G1(K)×G2(K).
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Proof. By Theorem 2.16, there are u1, . . . , un ∈ G2(K) such that CG2(K)(u1, . . . , un) =
Z(G2(K)). Let γ(x) be the following formula:

[x, (1, u1)] = . . . = [x, (1, un)] = (1, 1).

Then we have:

γ(G1(K)×G2(K)) = CG1(K)×G2(K)((1, u1), . . . , (1, un)) = G1(K)× Z(G2(K)).

Let φ(x) be the following formula:

∃y, z γ(y) ∧ γ(z) ∧ x = [y, z].

By Theorem 2.6(2), we obtain that φ(G1(K) × G2(K)) = G1(K) × {1}. The
argument for {1} ×G2(K) is analogous. □

In similar way, we can obtain the following, more general, variant:

Lemma 2.19. Assume that G1, . . . , Gl are simply connected simple algebraic groups
over Z and K is a field. Then there are parameters ū in G(K) := G1(K)×. . . Gl(K)
and existential formulas ψ1(ȳ, x), . . . , ψl(ȳ, x) in the language of groups such that
for every i ⩽ l we have

ψi(ū, G) = {1} × . . .× {1} ×Gi(K)× {1} × . . .× {1}.

3. Proof of the main theorem

In this section, we start with proving the main result of our paper in the simple
case, then we consider the semi-simple case with parameters and finally we consider
the general semi-simple case without parameters.

3.1. Simple case.

Theorem 3.1. Let G be a simply connected simple algebraic group and K be a
model complete field. Then the structure (G(K), ·) is model complete (in the lan-
guage of groups).

Proof. Let H,N be models of Th(G(K), ·) and f : H → N be a monomorphism.
We need to show that f is elementary. Since any isomorphism is elementary and
the composition of two elementary monomorphisms is again elementary, we can
(and will) often replace f with h ◦ f ◦ g, where h and g are group isomorphisms.

By Theorem 2.17, there are fields L,M such that:

H ∼= G(L), N ∼= G(M), L ≡ K ≡M.

Therefore (by the “we can often replace” observation above), we can assume that
f : G(L) → G(M).

By Corollary 2.12, there there is a field homomorphism φ : L → M and an
algebraic group automorphism β : G→ G (defined over M) such that

α = βM ◦ φG.

Therefore, we can assume that f = G(φ), which is elementary, since the field K is
model complete and L ≡ K ≡M . □
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3.2. Model completeness with parameters. We decided to prove two variants
of model completeness. The easier one involves parameters in the language, the
more difficult one, does not and thus implies the easier variant. The reason behind
this decision is that we need to introduce the same tools for both variants, and
after introducing these tools there is only one step (Lemma 3.8) before achieving
the easier variant, so the model completeness with parameters (Proposition 3.9).

Definition 3.2. Consider a language L, an L-theory T , a model M of T and a
definable subset D ∈ Defx(M). We define a D-restriction of any formula φ(x̄) ∈ L
(where x̄ is a tuple of variables, each from the same sort as the variable x) as
follows. Let φ(x̄) be (Q1 y1) . . . (Qk yk)φ0(y1, . . . , yk, x̄), where φ0(y1, . . . , yk, x̄) is
quantifier-free and Q1, . . . , Qk is a sequence of quantifiers. Then φD(x̄) is defined
as

(Q1 y1 ∈ D) . . . (Qk yk ∈ D)
( ∧
x∈x̄

x ∈ D ∧ φ0(y1, . . . , yk, x̄)
)
.

If D is given by a formula ψ(x), then we also use the convention φψ(x̄) to denote
φD(x̄).

Remark 3.3. Consider the situation from Lemma 2.19 and defineDj := ψj(ū, G(K))
for some j ⩽ l. If φ(x) is a formula in the group language, χ(x) is the formula

(∃y1, . . . , yl)
(
x = y1 · . . . · yl ∧

∧
k⩽l

ψk(ū, yk) ∧ φDj (yj)
)
,

and g = (g1, . . . , gl) ∈ G(K), then

Gj(K) |= φ(gj) ⇐⇒ G(K) |= χ(g).

The proof is left to the reader.

Fact 3.4 (Cor 9.6.4 in [9]). Let L be a language, let A and B be L-structures and
let φ(x̄) be an L-formula. Then there is a sequence

(
(θi(x̄), χi(x̄))

)
i⩽n

of pairs of
L-formulas, such that for all tuples ā = (a0, a1, . . .) ∈ Ax̄ and b̄ = (b0, b1, . . .) ∈ Bx̄,
we have

A×B |= φ
(
(a0, b0), (a,b1), . . .

)
⇐⇒

∨
i⩽n

(A |= θi(ā) ∧ B |= χi(b̄)).

In a straightforward manner, we conclude the below corollary.

Corollary 3.5. Let L be a language, let A1, . . . , Al be L-structures and let φ(x̄)
be an L-formula. Then there is a sequence

(
(θ1i (x̄), . . . , θ

l
i(x̄))

)
i⩽n

of l-tuples of L-
formulas, such that for all tuples ā1 = (a10, a

1
1, . . .) ∈ Ax̄1 , . . . , ā

l = (al0, a
l
1, . . .) ∈ Ax̄l ,

we have

A1 × . . .×Al |= φ
(
(a10, . . . , a

l
0), (a

1
1, . . . , a

l
1), . . .

)
⇐⇒

∨
i⩽n

(A1 |= θ1i (ā
1) ∧ . . . ∧ Al |= θli(ā

l)).

Corollary 3.6. There is no harm to improve the above corollary, so it will work for
sets definable over parameters: let L be a language, let A1, . . . , Al be L-structures,
let ū0 = (u10, . . . , u

l
0), . . . , ūk = (u1k, . . . , u

l
k) ∈ A1 × . . . × Al, and let φ(x̄) be an

L(ū0, . . . , ūk)-formula. Then there is a sequence
(
(θ1i (x̄), . . . , θ

l
i(x̄))

)
i⩽n

of l-tuples
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of formulas, each θji (x̄) being an L(uj0, . . . , u
j
k)-formula, such that for all tuples

ā1 = (a10, a
1
1, . . .) ∈ Ax̄1 , . . . , ā

l = (al0, a
l
1, . . .) ∈ Ax̄l , we have

A1 × . . .×Al |= φ
(
(a10, . . . , a

l
0), (a

1
1, . . . , a

l
1), . . .

)
⇐⇒

∨
i⩽n

(A1 |= θ1i (ā
1) ∧ . . . ∧ Al |= θli(ā

l)).

Fact 3.7 (Cor 9.6.5(b) in [9]). If M1 ≼ N1,M2 ≼ N2 then M1 ×M2 ≼ N1 ×N2.

Lemma 3.8. Assume that G1(K), . . . , Gl(K) are simply connected simple algebraic
groups over a model complete field K, and set G(K) := G1(K)×. . .×Gl(K). There
exist parameters ū in G(K) such that, if φ(x̄) is a formula in the language of groups,
extended by parameters ū, with |x̄| = m, then there is an existential formula φ∃(ū, x̄)
in the language of groups such that

G(K) |= (∀x̄)
(
φ(x̄) ↔ φ∃(ū, x̄)

)
.

Proof. Let ū and ψ1, . . . , ψl be as in Lemma 2.19, and define Dj := ψj(ū, G(K)).
Consider formulas

(
(θ1i (x̄), . . . , θ

l
i(x̄))

)
i⩽n

given by Corollary 3.6. By Theorem

3.1, without loss of generality we may assume that every θji (x̄) is an existential for-
mula. Fix tuples ḡ1 = (g10 , g

1
1 , . . . , g

1
m−1) ∈ G1(K)x̄, . . . , ḡl = (gl0, g

l
1, . . . , g

l
m−1) ∈

Gl(K)x̄. Set
ḡ :=

(
(g10 , . . . , g

l
0), . . . , (g

1
m−1, . . . , g

l
m−1)

)
.

Then
G(K) |= φ(ḡ) ⇐⇒

∨
i⩽n

∧
j⩽l

Gj(K) |= θji (ḡ
j).

To finish the proof, we need to be able to express “Gj(K) |= θji (ḡ
j)” in terms of the

satisfiability in G(K) of some existential formulas with the tuple ḡ.
We fix i ⩽ n and j ⩽ l and work with the case of “Gj(K) |= θji (ḡ

j)”. Consider
the formula χji (ū, x0, . . . , xm−1) given by(

∃y10 , . . . , yl0, . . . , y1m−1, . . . , y
l
m−1)

)( ∧
k<m

(
xk = y1k · . . . · ylk ∧ ψ1(ū, y

1
k) ∧ . . . ∧ ψl(ū, y

l
k)
)
∧

(θji )
Dj (yj0, y

j
1, . . . , y

j
m−1)

)
,

where (θji )
Dj is the Dj-restriction of formula θji . Similarly as in Remark 3.3, it

follows that
Gj(K) |= θji (ḡ

j) ⇐⇒ G(K) |= χji (ū, ḡ).

Finally, we set φ∃(ū, x̄) to be ∨
i⩽n

∧
j⩽l

χji (ū, x̄).

□

Proposition 3.9. Let G(K) be a simply connected semi-simple algebraic group and
K be a model complete field. Then there exists a finite tuple of parameters ū in
G(K) such that the structure (G(K), ·, ū) (pure group language with parameters ū)
is model complete.
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Proof. By Theorem 2.2, there are simply connected simple algebraic groupsG1, . . . , Gl
such that:

G(K) ∼= G1(K)× . . . Gl(K).

Now, we use Lemma 3.8 to show that every formula is equivalent to an existential
one, which is equivalent to model completeness. □

3.3. Model completeness without parameters. We start this subsection with
proving a general result, which will be used in the proof of the main theorem. This
general result is a criterion for model completeness of a product of model complete
structures. As usual, we avoid heavy involved notation in the proof by proving the
statement for the case of pair of structures.

Theorem 3.10. Let M1, . . . ,Mn be L-structures in a common language L such
that the following holds.

(1) M1, . . . ,Mn are model complete.
(2) For any ℵ0-saturated S ≡M1×. . .×Mn, there are M ′

1 ≡M1, . . . ,M
′
n ≡Mn

such that S ∼=M ′
1 × . . .×M ′

n.
(3) For any M ′

1 ≡M1 ≡M ′′
1 , . . . ,M

′
n ≡Mn ≡M ′′

n and any embedding

Ψ :M ′
1 × . . .×M ′

n →M ′′
1 × . . .×M ′′

n ,

there is σ ∈ Sym(n) and embeddings

Ψi :M
′
i −→M ′′

σ(i) (i = 1, . . . , n)

such that
Ψ = σ̃−1 ◦ (Ψ1 × . . .×Ψn)

(see Theorem 2.14 for the corresponding notation) and for each i, we have
M ′
i ≡M ′′

σ(i).

Then, M1 × . . .×Mn is model complete.

Proof. We provide the proof for n = 2, the general case is similar. Take S′ ⊆
S′′ being models of Th(M1 × M2). Without loss of generality, we can pass to
ultrapowers and assume that both S′ and S′′ are ℵ0-saturated. By the second
assumption, we replace S′ and S′′ with productsM ′

1×M ′
2 andM ′′

1 ×M ′′
2 respectively.

Then, the first and the third assumption allow us to reduce the problem to Fact
3.7.

□

Remark 3.11. • Clearly, we could have replaced ℵ0 in the statement of
Theorem 3.10 with any other cardinal.

• Martin Ziegler kindly provided to us two proofs of a stronger version of
Theorem 3.10, where the assumption (2) is removed. One proof uses spe-
cial models together with expandable models, and the other proof uses
Robinson’s joint consistency lemma.

Roughly speaking, if G is a finite product of simply connected simple algebraic
groups G1, . . . , Gl, then we are almost in the situation of Theorem 3.10 (the first
point follows by Theorem 3.1, the third point by Theorem 2.14) - we need to satisfy
the second point and let us achieve that now.
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Lemma 3.12. Let G1, G2 be simply connected simple algebraic groups over an
infinite model complete field K and G := G1 ×G2. Let H be an ℵ0-saturated group
such that H ≡ G(K). Then there exist H1 ≡ G1(K) and H2 ≡ G2(K) such that
H ∼= H1 ×H2.

Proof. If φ(x, ȳ) is a formula (over ∅) such that φ(G(K), ḡ) ⩽ G(K) for some
ḡ ⊂ G(K), then for any sentence α, we define the formula αφ(ȳ) such that for all
groups N and all n̄ ⊂ N of the appropriate length, we have:

N |= αφ(n̄) ⇔ φ(N, n̄) ⩽ N ∧ φ(N, n̄) |= α

(one may check the formalism of Definition 3.2 and Remark 3.3 to see that the
formula αφ(ȳ) exists). By Lemma 2.19, there exists a tuple ū in G, and formulas
φ1(x, ȳ) and φ2(x, ȳ) such that

φ1(G(K), ū) = G1(K)× {1}, φ2(G(K), ū) = {1} ×G2(K).

We define the following type (with respect to Th(G(K)))

Σ(ȳ) := {αφ1
(ȳ) ∧ βφ2

(ȳ) | α ∈ Th(G1(K)), β ∈ Th(G2(K))} ∪ {ψ(ȳ)},
where for all groups N and all n̄ ⊂ N , we have:

N |= ψ(n̄) ⇔ N is the internal direct product of φ1(N, n̄) and φ2(N, n̄).

The set Σ(ȳ) is a consistent type (with respect to Th(G(K))), since G(K) |= Σ(ū).
Since H is ℵ0-saturated and H ≡ G(K), there is h̄ ⊂ H such that H |= Σ(h̄) and
we set Hi := φi(H, h̄) for i = 1, 2. □

The same idea of the proof yields a more notationally involved:

Lemma 3.13. Let G1(K), . . . , Gl(K) be simply connected simple algebraic groups
over a model complete field K (K infinite). Set G := G1(K) × . . . × Gl(K) and
consider an ℵ0-saturated H ≡ G. Then there exists H1 ≡ G1(K), . . . ,Hl ≡ Gl(K)
such that H ∼= H1 × . . .×Hl.

Theorem 3.14. Let G(K) be a simply connected semi-simple algebraic group and
K be a model complete field. Then the structure (G(K), ·) (pure group language) is
model complete.

Proof. By Theorem 2.2, there are simply connected simple algebraic groupsG1, . . . , Gl
such that:

G(K) ∼= G1(K)× . . . Gl(K).

We need to verify the three assumptions of Theorem 3.10. By Theorem 3.1, each
group Gi(K) is model complete and so the first assumption holds. The second
assumption follows by Lemma 3.13. The last point of Theorem 3.10 is implied in
our situation by Theorem 2.14. More precisely, if

H ′
1 ≡ G1(K) ≡ H ′′

1 , . . . ,H
′
l ≡ Gl(K) ≡ H ′′

l

then, by Theorem 2.17, there exist fields K ′
1,K

′′
1 , . . . ,K

′
l ,K

′′
l ≡ K such that for

every i ⩽ l
H ′
i
∼= Gi(K

′
i), H

′′
i
∼= Gi(K

′′
i ).

Theorem 2.14 states that for each i ⩽ l, the group schemes Gi and Gσ(i) are
isomorphic. Thus

Gi(K
′
i) ≡ Gi(K) ∼= Gσ(i)(K) ≡ Gσ(i)(K

′′
σ(i))

and so H ′
i ≡ H ′′

σ(i) for every i ⩽ l as in the third assumption of Theorem 3.10. □
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