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Abstract
We prove that a differential group whose underlying variety is

an affine space is unipotent. The problem is reduced to an infinite-
dimensional version of Lazard’s Theorem.

1 Introduction

It is well-known that a connected unipotent algebraic group is isomorphic as
a variety to an affine space. Lazard ([La]) proved the converse: an algebraic
group isomorphic as a variety to an affine space is unipotent. So, the alge-
braic structure of a unipotent algebraic group is determined by its geometry.
Buium and Cassidy ([BC]) asked if the same holds for differential algebraic
groups, i.e. groups defined by differential polynomials in some differential
field. It was proved for groups of small dimension (=1, 2) by Cassidy ([Ca]),
and for arbitrary groups over a differentially closed field of characteristic 0
by Kowalski and Pillay [KP]. The principal result of the present paper is the
proof of this theorem in the full generality:

Theorem 1 Suppose (K, D) is a differential field. Let G be a differential
algebraic group over K, with underlying differential variety differentially iso-
morphic to An. Then G is unipotent (i.e. G may be embedded into a unipo-
tent algebraic group).
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The strategy of the proof of this theorem is borrowed from [KP]. We de-
duce Theorem 1 from a purely algebro–geometric, and interesting for its own
right result, which was proved in [KP] for K an algebraically closed field of
characteristic 0:

Theorem 2 Let G be a group scheme over a field K whose underlying
scheme is isomorphic to A∞ (the projective limit of affine spaces). Then
G is isomorphic in the category of group schemes over K to an inverse limit
of unipotent algebraic groups.

The paper is organized as follows. In Section 2 we reduce Theorem 1 to
Theorem 2 (replacing model theory of [KP] by a simple argument using Hopf
algebras). Theorem 1 is proved in Section 4. The proof utilizes in an essential
way étale cohomology of schemes and we collect necessary facts concerning
it in Section 3.
The reader may consult [BC] for background in differential algebraic geome-
try, while our main reference on étale cohomology is [Mi] (for basics see also
very readable [Ta]).
The first author would like to thank Andrzej Weber for several enlightening
comments concerning étale cohomology. The second author would like to
thank Anand Pillay for suggesting this problem, and Ludomir Newelski for
careful reading this paper and many helpful remarks.

2 The Reduction

Let us fix (K, D) a differential field. K{X} denotes the ring of differential
polynomials (in a set of variables X). As a ring K{X} = K[X, DX, D2X, ...],
where DiX, i ≥ 0, are tuples of new variables, and derivation on K{X}
extends DiX 7→ Di+1X (D0X := X). A differential polynomial is an element
of K{X}, and we naturally regard differential polynomials as functions from
Kn into K. We recall some notions from differential algebraic geometry.

Definition 2.1
i) A differential algebraic variety is a zero set of a finite number of differen-
tial polynomials.
ii) A morphism of differential algebraic varieties is a restriction of a differ-
ential polynomial function.
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iii) A differential algebraic group is a group object in the category of differ-
ential algebraic varieties.

Remark: Usually (e.g. [Bu], [BC]) a morphism of differential algebraic
varieties is defined as a function locally given by differential rational functions
rather than a globally defined polynomial. However on an affine space these
two notions coincide, so we may adopt the more convenient definition.

Lemma 2.2 If f : G −→ H is a morphism between affine reduced group
schemes, then there exist inverse systems (Gi), (Hi) of algebraic groups and
a morphism F between them, such that G = lim(Gi), H = lim(Hi) and
f = lim(F ).

Proof: The proof becomes straightforward when we turn to the category of
Hopf algebras, which is dual to the category of affine group schemes. The
morphism f corresponds to a morphism φ : B −→ A, where B is the Hopf
algebra corresponding to H and A corresponds to G. Since any Hopf algebra
is a direct limit of a system of its finitely generated Hopf subalgebras [Wa
p. 24], there exist systems (Ai), and (Bi) of finitely generated reduced Hopf
algebras, such that A = colim(Ai), and B = colim(Bi). Note that finitely
generated reduced Hopf algebras correspond to algebraic groups. Denote by
φ∗i the map φ restricted to the Bi. Then, since Bi is finitely generated, there
exists ni such that φ∗i can be factorized through the map φi : Bi −→ Ani

.
So φ = lim(φi), where (φi)i∈N is a map between direct systems (Bi)i∈N and
(Ani

)i∈N . Going back to the category of affine group schemes we obtain the
result.

Remark: A part of Lemma 2.2 (the existence of (Gi)) was proved in [KP]
by a model-theoretical argument (valid in any stable theory after a suitable
reformulation) for algebraic groups over an algebraically closed field.

Corollary 2.3 Theorem 2 implies Theorem 1.

Proof: Let us consider the ring K{X} of differential polynomials in n vari-
ables. It is also a ring of differential regular functions (i.e. morphisms into A1)
on An, so as in algebraic geometry, differential group structure on An gives
us the Hopf algebra structure on K{X}. We denote this Hopf algebra by A
(it is also a differential algebra). It corresponds to an infinite–dimensional
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group scheme G∗. The group G∗(K) may be thought of as the set K∞ with
the group operation given by the sequence (µ,D(µ), D2(µ), ...), where D is
a derivation in K{X}, and K{X} acts on K∞ as the ring of polynomials of
infinitely many variables. Then the map φ : a 7→ (a,Da,D2a, ...) is a homo-
morphism between G and G∗(K). From Lemma 2.2, we have G∗ = lim(Gi),
where Gi’s are algebraic groups. Denote by Hi, the Hopf algebra of Gi. The
Hopf algebra A is a direct limit of the system (Hi) and it is finitely generated
as a differential algebra, so there exists n such that Hn differentially gener-
ates A. Then the composition morphism G −→ Gn is an embedding, since
it induces epimorphism of algebras of differential regular functions. Using
Theorem 1 and Lemma 2.2 we see that Gn is unipotent .

Remark:
i) The construction of G∗ is the same as in [KP]. However here we do not
need our field to be differentially closed to check that we obtain a group.
ii) If G is an algebraic group, then G∗ coincides with the Buium’s infinite
prolongation, which is an inverse limit of so-called twisted jet spaces [Bu].
If D vanishes on the field of definition, then the infinite prolongation of an
algebraic group is an inverse limit of the usual jet spaces.

3 Some Étale Cohomology of Group Schemes

The aim of this section is to prove some facts about étale cohomology of
group schemes which will be needed in the proof of Theorem 2. Throughout
this section k is an algebraically closed field and all schemes are of finite
type over k. We are interested in étale cohomology groups with coefficients
in the constant sheaf Z/l where l is a prime distinct from the characteristic.
We say that a scheme X is Z/l–acyclic if it has cohomology of a point i.e.
H i

et(X,Z/l) = 0 for i > 0, and H0
et(X,Z/l) = Z/l; a morphism of schemes

is called Z/l–acyclic if it induces an isomorphism on H∗
et(−,Z/l). The main

computational tool in étale cohomology theory is the Leray spectral sequence
associated to a morphism of schemes f : X −→ Y :

Eij
2 = H i

et(X,Rjf∗(Z/l)) ⇒ H i+j
et (X,Z/l).

The typical application of the Leray spectral sequence is the following crite-
rion of the acyclicity of a morphism:

4



Lemma 3.1 Let f : X −→ Y be either proper or smooth. Suppose all fibres
of f are Z/l–acyclic. Then f is Z/l–acyclic.

Proof: By the Proper (or Smooth) Base Change Theorem ([Mi] p. 224, p.
230) we may identify stalks of Rjf∗(Z/l) with j–th cohomology of fibres.
Thus all rows except 0–th in the Leray spectral sequence disappear. Now it
suffices to observe that since f has connected fibre, then R0f∗(Z/l) = Z/l.

If f is locally trivial (i.e. locally a projection from a product) and Y is
smooth, then the Leray spectral sequence takes form known from algebraic
topology. We recall that a scheme is simply connected if it has trivial al-
gebraic fundamental group (i.e. the group classifying étale coverings of a
scheme).

Lemma 3.2 Suppose f : X −→ Y is locally trivial in the étale topology, and
Y is smooth, connected and simply connected. Denote by F the fiber of f .
Then the Leray spectral sequence associated with f has the following form:

Eij
2 = H i

et(X, Hj
et(F,Z/l)) ⇒ H i+j

et (X,Z/l),

where Hj
et(F,Z/l) is a constant sheaf.

Proof: ¿From the Smooth Base Change Theorem ([Mi] p. 230) we derive
that if f is a projection, then Rjf∗(Z/l) may be identified with a constant
sheaf having a stalk Hj

et(F,Z/l), where F is a fiber of f . So for f being
locally trivial, the sheaf Rjf∗(Z/l) is locally trivial with a stalk Hj

et(F,Z/l).
However, analogously to the classical context, a locally constant sheaf with
finite stalks (we point out that Hj

et(F,Z/l) for smooth F is always finite ([Mi]
p. 244)) on a connected scheme Y is determined by an action of algebraic
fundamental group of Y on a stalk ([Mi] p. 156). Thus for a simply connected
scheme Y a locally constant sheaf with finite stalks must be constant and
the Leray spectral sequence has the required form.

Another useful spectral sequence is the Hochschild–Serre spectral sequence
corresponding to a Galois covering p : X −→ Y with the structural group G
([Mi] p. 105):

Eij
2 = H i(G,Hj(X,Z/l)) ⇒ H i+j(Y,Z/l),
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here H i(G,−) denotes cohomology of the discrete group G.
Now we turn to the facts we need for the proof of Theorem 2.

Proposition 3.3 Let f : G −→ H be an isogeny of connected affine alge-
braic groups. Then for almost all primes l, f is Z/l-acyclic.

Proof: Let K be the kernel of f regarded as a finite affine group scheme.
Then it may be obtained as an extension: 1 −→ K0 −→ K −→ Π0(K) −→ 1,
where K0 is connected and Π0(K) is étale ([Wa] p. 51). Hence we may
factorize f as

G
fc−→ G/K0 fet−→ (G/K0)/Π0(K) = H,

where fc has connected fibres and fet is a Galois covering.
Since K0 as a scheme is just a point (in general with multiplicities), fibres of
fc are Z/l–acyclic. Moreover fc being finite must be proper. Thus it satisfies
the assumptions of Lemma 3.1, hence is Z/l–acyclic for any l.
Let us turn to fet and take l prime to |Π0(K)|. Then the Hochschild–Serre
spectral sequence corresponding to fet collapses and we get H∗

et(H,Z/l) =
(H∗

et((G/K0),Z/l))Π0(K), which gives us a monomorphism H∗
et(H,Z/l) −→

H∗
et((G/K0),Z/l). This monomorphism is compatible with f ∗et by the very

construction of the spectral sequence. Now it remains to show that Π0(K)
acts trivially on H∗

et((G/K0),Z/l). But the action of Π0(K) on G/K0 ex-
tends to the action of the whole group G/K0, which is connected. Thus the
triviality of the action at the level of cohomology will follow if we show that
any embedding φg : G/K0 −→ G/K0 × G/K0 defined by φg(h) = (h, g)
induces the same morphism on cohomology as φe. The last fact follows im-
mediately form the Kunneth formula for G/K0×G/K0 ([SGA] p. 236), and
the trivial observation that two constant morphisms into a connected scheme
induce the same on étale cohomology.

Proposition 3.4 Let G be a simple group. Then for almost all primes l, G
is not Z/l–acyclic.

Proof: First observe that G has finite algebraic fundamental group. Indeed,
it suffices to show that there is only a finite number of étale coverings of G.
But this follows from the fact that any étale covering is étale (hence central)
isogeny, while we have only a finite number of possibilities for centers of
groups having root systems isomorphic to the root system of G ([Hu] p. 215),
and all these centers are finite. Thus G has the universal covering being an
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étale isogeny. Therefore, according to Proposition 3.3, we may assume that
G is simply connected. Let B ⊂ G be a Borel subgroup. Then the sequence
B −→ G −→ G/B is locally trivial in the étale topology [Se], and G/B
is simply connected (this follows from Πalg

1 (G) = 0 and connectivity of B).
Then, by Lemma 3.2 we have:

Eij
2 = H i

et(G/B, Hj
et(B,Z/l)) ⇒ H i+j

et (G,Z/l)

Now take i0 = max{i : H i(G/B,Z/l) 6= 0}. Since G/B is projective, it has
the fundamental class ([Mi] pp. 247–252), so i0 = 2·dim(G/B) > 0. Similarly
we take j0 = max{j : Hj(B,Z/l) 6= 0}. Then we have 0 6= Ei0j0

2 = Ei0j0∞ ,
hence H i0+j0

et (G,Z/l) 6= 0, so G is not Z/l-acyclic.

4 The proof of Theorem 2

The main ingredient in the proof is the following:

Proposition 4.1 Let f : G −→ Q be an epimorphism of connected affine
algebraic groups defined over an algebraically closed field k, and assume that
f factorizes through an affine space. Then Q is solvable.

Proof: Suppose Q is not solvable. Then we have an epimorphism p : Q −→ S
with simple S, hence we may assume that Q is already simple. According
to the acyclicity of An ([Mi] p. 295) and Proposition 3.4 in order to obtain
contradiction it suffices to show that f induces a monomorphism on étale
cohomology with coefficients in Z/l for almost all l’s.
Let Ru be the unipotent radical of G. Then since Ru ⊂ ker(f), we may

factorize f as G
g−→ G/Ru

h−→ Q. Let us first investigate g. Observe that
g is smooth and has acyclic fibers, since Ru as a variety is isomorphic to
an affine space. Thus according to Lemma 3.1 it induces an isomorphism on
étale cohomology for any l prime to the characteristic. So, we may focus on h.
Since G/Ru is reductive we have an isogeny i : T × S1 × . . .× Sn −→ G/Ru,
where T is a torus and each Si is simple. We shall see that (h ◦ i)∗ is a
monomorphism on étale cohomology for some l. Indeed, since Q is simple,
there exists such j that (h ◦ i)|Sj

: Sj −→ Q is also an isogeny. Hence
((h ◦ i)|Sj

)∗ is an isomorphism for almost all l’s, by Proposition 3.3. Thus
(h ◦ i)∗ (a fortiori h∗) is a monomorphism for these l’s.

7



In fact we need the following, quite straightforward, generalization of the
above proposition:

Corollary 4.2 Let K be any field, and f : G −→ Q be an epimorphism
of connected affine algebraic groups defined over K. Suppose that f factors
through an affine space. Then Q is unipotent.

Proof: Let GL = G⊗ L,QL = Q⊗ L, fL = f ⊗ L, where L is the algebraic
closure of K. Then the epimorphism fL : GL −→ QL factors through an
affine space, so by Lemma 4.1, QL is solvable. Moreover, any connected
solvable group is a semidirect product of its unipotent radical R and some
algebraic torus ([Hu] p. 123). But since QL is an image of an affine space, it
cannot be mapped onto a torus. Thus QL is unipotent. It is also easy to see
that QL is unipotent iff Q is (see e.g. [Wa] p. 64). This completes the proof.

Now we are in a position to prove our main theorem. We recall that by 2.5
it suffices to prove Theorem 2.

Proof of Theorem 2: Let G be a group scheme whose underlying scheme
is A∞. By Lemma 2.2, G is isomorphic to an inverse limit of a system (Gi)
of algebraic groups. It is enough to prove that Gi’s are unipotent. Fix a
positive integer n. Then, like in the proof of Lemma 2.2 , the isomorphism
between G and lim(Gi) yields morphisms f : GN −→ Al, and g : Al −→ Gn,
for some l and N > n. The composition g ◦ f is an epimorphism, since it
comes from the identity map on G. From Corollary 4.2, Gn is unipotent.
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