
GALOIS ACTIONS OF FINITELY GENERATED GROUPS

RARELY HAVE MODEL COMPANIONS
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Abstract. We show that if G is a finitely generated group such that its

profinite completion pG is “far from being projective” (that is the kernel of

the universal Frattini cover of pG is not a small profinite group), then the
class of existentially closed G-actions on fields is not elementary. Since any

infinite, finitely generated, virtually free, and not free group is “far from being

projective”, the main result of this paper corrects an error in our paper Model
theory of fields with virtually free group actions, Proc. London Math. Soc., (2)

118 (2019), 221–256 by showing the negation of Theorem 3.26 in that paper.

1. Introduction

The aim of this paper is to correct an erroneous statement which appeared in our
paper [3, Theorem 3.26]. Unfortunately, this error is very serious: in short, in the
current paper we prove the negation of [3, Theorem 3.26]. In fact, our main result
(Theorem 3.7) implies a “strong negation” of [3, Theorem 3.26]. The statement [3,
Theorem 3.26] says that if G is a finitely generated and virtually free group, then
the theory of actions of G on fields has a model companion. This result had been
previously known in the cases when G is free or finite. Theorem 3.7 implies that
if G is finitely generated, infinite, virtually free, and not free, then the theory of
actions of G on fields does not have a model companion. Therefore, Theorem 3.7
(more precisely: Corollary 3.8) can be considered as a “strongest possible” negation
of [3, Theorem 3.26].

We would like to describe briefly here the content of [3] as we see it now after
realizing our mistake. There are three main statements in [3]:

(1) a statement about companionability of actions of virtually free groups on
fields ([3, Theorem 3.26]),

(2) computations of certain profinite groups ([3, Theorem 4.6]),
(3) non-companionability of actions of Z�Z on fields ([3, Corollary 5.7]).

The first statement is false (see Corollary 3.8). We use the second result above in
the current paper to show the negation of [3, Theorem 3.26]. We generalize the
third result above in the current paper to the case of nilpotent groups (see Corollary
4.3).

The mathematical reason for the error we made in [3] can be explained in very
simple terms: a tensor product of domains need not be a domain (e.g. C bR C �

♣ Supported by the Tübitak 1001 grant no. 119F397.
♠ Supported by the Narodowe Centrum Nauki grant no. 2018/31/B/ST1/00357 and by the
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C�C)! In the proof of [3, Theorem 3.26], we implicitly (and incorrectly) assumed
that a fiber product of K-irreducible algebraic varieties is again K-irreducible,
which need not be true even when K is algebraically closed. This error has its
roots already in the Introduction to [3], where we write: “Our prolongation process
may be seen as a constructive explanation ...”, however the constructive procedure
described in [3] gives only a canonical difference ring extension, where the bigger
ring need not be a domain. We can get a difference quotient which is a domain, but
finding this quotient corresponds to finding an appropriate difference prime ideal
and this is not constructive, since it requires Zorn’s Lemma.

We recall that a field is bounded, if for each n ¡ 0, there are finitely many
extensions of K of degree n in a fixed separable closure of K. In this paper, we
show that the class of existentially closedG-fields, for some finitely generated groups
G, is not elementary by showing that such G-fields are not bounded (as fields), but
they still have absolute Galois groups of bounded cardinality. Since a first-order
theory cannot axiomatize any class of infinite structures of bounded cardinality,
assuming that a model companion exists leads to a contradiction. More precisely,
we show (Theorem 3.7) that if G is finitely generated and the profinite completionpG is “far from being projective” (meaning that the kernel of the universal Frattini

cover of pG is not small, see Definition 2.1), then the theory of actions of G on
fields has no model companion. It was shown in [3] that infinite, finitely generated,
virtually free, and not free groups are “far from being projective”, so Theorem 3.7
implies that for such groups G, the theory of actions of G on fields has no model
companion. However, Theorem 3.7 covers many more cases, for example the group
Z�Z is “far from being projective”, so, as a special case, we also give a new proof of
a rather mysterious result of Hrushovski about non-companionability of the theory
of partial difference fields, that is fields with two commuting automorphisms.

Our main result (Corollary 3.8) also provides a counterexample (quite an un-
expected one) to [3, Conjecture 5.9]. We also give a counterexample (see Remark
3.9(2)) to a conjecture of Hoffmann ([10, Conjecture 5.2]) and to a conjecture
about relations between the free product of groups and companionability of the
corresponding theories of their actions on fields (see Remark 3.9(3)). Using [14,
Theorem 1], we also give a counterexample to [17, Theorem 6] (see Remark 2.5(3)).

The paper is organized as follows. In Section 2, we collect the necessary defini-
tions and results which are needed for the sequel. In Section 3, we show our main
non-companionability results. In Section 4, we deal with the nilpotent and the free
product cases and we also summarize what we know about the companionability
of the theories of group actions on fields.

We would like to thank Alexander Ivanov for fruitful discussions about geometric
group theory and Alexander Ol’shanskii for pointing out to us the example of the
group G which appears in Remark 2.5(3). We are also very thankful to the referee
for a careful report.

2. Absolute Galois groups of G-fields

In this section, we set our notation and present the necessary notions and results.
Let G be an arbitrary group. By pG :� limÐÝ

HPfG

G{H,
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where H ranges over normal subgroups of G of finite index, we denote the profinite
completion of G considered as a profinite topological group.

We recall (see [6, Definition 22.5.1, page 508]) that a continuous epimorphism of
profinite groups f : G Ñ H is a Frattini cover, if G is the only closed subgroup of G
whose image under f is H. A Frattini cover f : G Ñ H is called a universal Frattini
cover, if the profinite group G is projective (see [6, Proposition 22.6.1, page 513]). A
universal Frattini cover f : G Ñ H is unique up to a topological isomorphism over
H; thus, if f : G Ñ H is a universal Frattini cover, then we can denote its domain

G by rH. A profinite group G is small, if for any n ¡ 0, there are only finitely many
open normal subgroups of G of index n. If G is a profinite group, then the rank of
G (denoted rkpGq) is the smallest cardinal κ such that there is A � G of cardinality
κ such that A converges to 1 P G and the subgroup generated by A is dense in G
(see [6, Section 17.1]).

In Section 4, we will use the following notions and facts from the theory of
profinite groups (proofs can be found in [6, Chapter 22.9]). The classical Sylow
theory for finite groups generalizes to the profinite case after replacing the notion
of a p-subgroup with the notion of a closed pro-p subgroup. In particular, for
a prime p and a profinite group G, p-Sylow subgroups of G exist and they are
conjugate. We also have the corresponding results about pronilpotent groups: a
profinite group is pronilpotent if and only if it is the product of its unique p-Sylow
subgroups. If G is a pronilpotent group and p is a prime number, then we denote
by Gp the unique p-Sylow subgroup of G. By “cl”, we denote the topological closure
(in an ambient profinite group). For a prime number p and a cardinal number κ,

we denote the free pro-p group of rank κ by pFκppq (see [6, Remark 17.4.7, page
348]).

We introduce below a notation for the most important profinite groups in this
paper.

Definition 2.1. Let G be an arbitrary group and G be a profinite group.

(1) We denote by

KG :� ker
�rG ÝÑ G

	
the kernel of the universal Frattini cover of G.

(2) We also use the following notation

KG :� K
pG.

(3) We sometimes say that “G is far from being projective”, if the profinite
group KG is not small.

We give below a few examples of the notions mentioned above. For any m ¡ 0,
we denote by Cm the cyclic group of order m written multiplicatively.

Example 2.2. Let p be a prime number and n ¡ 0.

(1) We have xCp � Cp, �Cp � Zp.
We obtain that

KCp � pZp � Zp,

which is a small profinite group. One can show that in general finite groups
are have small universal Frattini covers.
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(2) The profinite completion (which is xFn) of the free group Fn on n generators
is a free profinite group, therefore it is projective. Hence, we obtain�xFn � xFn, KFn � t1u.

(3) It is shown in [17, Section 9] that

KZ�Z �
¹

p:prime

pFωppq,
therefore {Z�Z is “far from being projective”. We will generalize this result
to the nilpotent case in Section 4.

(4) Suppose that G is an infinite, finitely generated, virtually free, and not free
group. By [3, Theorem 4.6], the profinite group KG is not small.

For a field K, we denote by Ksep a fixed separable closure of K and by Kalg a
fixed algebraic closure of K. We name the following two subgroups of Aut pKsepq

AuttKu pK
sepq :� tσ P Aut pKsepq | σpKq � Ku, GalpKq :� GalpKsep{Kq,

where GalpKq is the absolute Galois group of K considered as a profinite group
being the inverse limit of the inverse system of groups GalpK 1{Kq where K 1{K is
a finite Galois extension and K 1 � Ksep. We would like to single out a standard
result about actions on the absolute Galois groups.

Fact 2.3. For any field K, we have that GalpKq P AuttKupK
sepq and conjugation

induces an action of AuttKupK
sepq on GalpKq by continuous automorphisms.

Let us fix a group G. By a G-field, we mean a field together with an action of G
by field automorphisms (see [11], [3], and [2]). A G-field K is G-closed if the action
of G does not extend to any proper algebraic extension of K. The class of G-fields
coincides with the class of models of the obvious theory of G-fields in the language
of rings extended by unary function symbols for the elements of G. We say that a
G-field is existentially closed (abbreviated e.c.), if it is an existentially closed model
of the theory of G-fields. It is clear that an e.c. G-field is G-closed (the converse
is not true, see Remark 4.9). If the class of e.c. G-fields is elementary, then we
denote the theory of this class (a model companion of the theory of G-fields) by
G�TCF and we say that “G�TCF exists”. Otherwise, we say that “G�TCF does
not exist”.

Let us note here that in [3] we defined some theories and call them G�TCF
(so, they exist, since we have defined them), but these theories usually do not
axiomatize the class of e.c. G-fields as Corollary 3.8 shows. These theories are
either inconsistent or they axiomatize something else.

We recall below some results about absolute Galois groups of G-fields. The
statements in the next theorem originate from [17, Theorems 4, 5, 6]. We use the
formulations from [2, Lemma 2.7 and Corollaries 2.13, 2.14], where the assumptions
are a bit different and the proofs are more elaborate. We give below a counterex-
ample to [17, Theorem 6] (see Remark 2.5(3)).

Theorem 2.4 ([17] and [2]). Assume that the group G is finitely generated. Let K
be an e.c. G-field and C be the subfield of G-invariants.

(1) We have

GalpCsep{K X Csepq � pG.
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(2) We have

GalpCq �
rpG.

(3) There is a natural continuous epimorphism (see Definition 2.1)

GalpKq� KG.

Remark 2.5. We would like to comment here on Theorem 2.4(3) and its relation
to [17, Theorem 6].

(1) It is claimed in [17, Theorem 6] that after assuming that G is finitely pre-
sented, the natural map GalpKq� KG is an isomorphism. This statement
is
 true for finite groups and free groups ([2, Remark 2.18(2)]),
 true for some other groups (see item p2q),
 false for C2 � C3 (see item p3q).

(2) We can partially confirm the statement from [17, Theorem 6] for some
particular groups, we give details in Remark 3.6.

(3) Let us consider the group C2 �C3 � xa, b | a2, b3y, which is hyperbolic (this
is folklore, see e.g. [7, Proposition 3.2.A] or [12, Corollary 3]). By [14,
Theorem 1], the group C2 � C3 has a finitely presented infinite quotient

G such that pG is trivial, hence KG is trivial as well. This group is a
counterexample to [17, Theorem 6]. For, let b1 be the image of b in G.
Clearly, b1 still has order 3, since otherwise G would have order at most
2. If [17, Theorem 6] was true for this G, then we would obtain a faithful
action of G on an algebraically closed field (an e.c. G-field), contradicting
the Artin-Schreier Theorem, since b1 would give an automorphism of order
3 of an algebraically closed field.

3. Groups with large universal Frattini kernels

In this section, we show the main result of this paper (Theorem 3.7) about non-
existence of the theory G�TCF in the case when the profinite group KG is not
small (see Section 2 for the necessary notions).

We first note the following obvious result.

Lemma 3.1. Let G be a topological group, H be a countable group acting on G by
continuous automorphisms and A be a countable subset of G. Let us assume that
G is not topologically countably generated (i.e. there is no countable subgroup of G
that is dense in G). Then, there is a subgroup G ¤ G such that

(1) for each h P H, we have hpGq � G;
(2) A � G;
(3) G is closed and proper in G.

Proof. Since the group operation in G is continuous, it is clear that

G :� cl

�C¤
hPH

hpAq

G�
is a closed subgroup of G such that items p1q–p3q are satisfied. �

Remark 3.2. The above notion of “topologically countably generated” actually
coincides with the notion of “separable” (having a dense countable subset), which
also appears at the end of the proof of Theorem 3.7.
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Lemma 3.3. Let G be a finitely generated group such that the profinite group KG
(see Definition 2.1) is not small and let K be an e.c. G-field. Then K is not
bounded, that is there is n ¡ 0 such that K has infinitely many extensions of degree
n (inside Ksep).

Proof. Since any continuous quotient of a small profinite group is again small, the
result follows directly from Theorem 2.4(3). �

Remark 3.4. Let F be a field and n ¡ 0. It is well-known that the following
properties of F are equivalent.

(1) The field F has infinitely many extensions of degree n in F sep.
(2) The field F has infinitely many isomorphism classes of separable extensions

of degree n.
(3) There are infinitely many separable irreducible polynomials f1, f2, . . . P

F rXs of degree n such that for all i � j and for all α, β P F sep, if fipαq �
0 � fjpβq then F pαq � F pβq.

We would like to point out that (3) just spells out the meaning of (1), and (2)
follows from this since n bounds the number of separable extensions of degree n
that are isomorphic to a given one (over F ).

Lemma 3.5. Let G be a countable group and K be a G-field. Assume that GalpKq
is not countably topologically generated. Then K is not G-closed.

Proof. Let us choose a presentation

G � xτi : i   ω | wjpτ̄q : j   ωy,

where wj are words and τ̄ � pτi : i   ωq. We identify G with a subgroup of AutpKq,
since without loss of generality the action of G on K is faithful. For any σ P G, we
choose σ1 P AuttKupK

sepq (see Fact 2.3 for the notation) extending σ and we define

τ̄ 1 :� pτ 1iqi ω, A :� twjpτ̄
1q : j   ωu � AuttKupK

sepq, H :� xτ̄ 1y ¤ AuttKupK
sepq.

Since for each j   ω, we have

wjpτ̄
1q|K � wjpτ̄q � idK ,

we obtain that A � GalpKq. Therefore, using Fact 2.3, we can apply Lemma 3.1
for G � GalpKq and H,A as above. By Lemma 3.1, we obtain a closed proper
subgroup G   GalpKq such that A � G and for each h P H, we have hGh�1 � G.
Let us take M :� pKsepqG . Since for each h P H, we have hGh�1 � G, we obtain
that H acts on M by field automorphisms. Since A � G, the above action of H on
M yields an action of G on M extending the action of G on K. Since G is a proper
subgroup of GalpKq, the algebraic extension K � M is proper as well, therefore
the G-field K is not G-closed. �

Remark 3.6. Our proof of Lemma 3.5 above has some similarities to Sjögren’s
argument towards [17, Theorem 6], which does not hold in general (see Remark
2.5(3)). Using some additional properties of profinite groups and the ideas from
the proof of Lemma 3.5, we can show the statement from [17, Theorem 6] in some
specific cases, for example if G is of the form Cp � . . . � Cp for a prime p (however,
we probably get an abstract isomorphism, rather than showing that the natural
epimorphism from Theorem 2.4(3) is an isomorphism).
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Theorem 3.7. Let G be a finitely generated group such that the profinite group
KG is not small. Then, the theory G�TCF does not exist.

Proof. By Lemma 3.3, any e.c G-field is not bounded. We assume that the theory
G�TCF exists and we will reach a contradiction.

Claim
There is a model K of the theory G�TCF such that GalpKq is not topologically
countably generated.

Proof of Claim. Let us take any e.c. G field M (so M is a model of G�TCF). By
Lemma 3.3, there is n ¡ 0 such that M has infinitely many extensions of degree n
(inside Ksep). For any field F and any ā � pa0, . . . , an�1q P F

n, we set

fā :� a0 � a1X � . . .� an�1X
n�1 �Xn P F rXs.

By [4, Section 3: (3.3), (3.4), and (3.5)] and Remark 3.4, there is a formula ϕpx̄, ȳq
in the language of rings, where |x̄| � |ȳ| � n, such that for any field F and any
ā, b̄ P Fn, we have that F |ù ϕpā, b̄q if and only if the following two conditions hold

(1) the polynomials fā, fb̄ are irreducible in F rXs;
(2) for any α, β P F sep, if fāpαq � 0 � fb̄pβq then F pαq � F pβq.

For any cardinal number κ, let us consider the language Lκ which is the language
of G-fields extended by κ many n-tuples pc̄iqi κ of constant symbols. Let Tκ be the
following Lκ-theory

Tκ :� G-TCFY tϕpc̄i, c̄jq | i   j   κu.

By the Compactness Theorem, the theory Tκ is consistent. Therefore, there are
models of G�TCF with arbitrarily large absolute Galois groups. In particular,
there is a model K of the theory G�TCF such that GalpKq is not topologically
countably generated, since the cardinality of any topologically countably generated

profinite group is bounded by i2 � 22ℵ0
(see e.g. [15, Exercise 3.5.14, page 112] or

much more generally: the maximum possible cardinality of a separable Hausdorff
space is i2 as well). �

We take the G-field K from Claim. By Lemma 3.5, K is not G-closed, therefore
K is not e.c., a contradiction. �

The result below can be considered as a “strong negation” to [3, Theorem 3.26].

Corollary 3.8. Let G be a finitely generated virtually free group. Then, the theory
G-TCF exists if and only if G is finite or G is free.

Proof. Since it is well-known that if G is finite or G is free, then the theory G�TCF
exists (see [11], [5], and [1]), it is enough to show the left-to-right implication.
Suppose that G is an infinite, finitely generated virtually free group that is not
free. By [3, Theorem 4.6], the profinite group KG is not small. By Theorem 3.7,
the theory G�TCF does not exist. �

Remark 3.9. We discuss here some additional issues related to the results above.

(1) The assumption on finite generation of G was not used directly in the
arguments above, however, to be able to use the crucial Theorem 2.4, we
need to assume that G is finitely generated. It is still possible that Theorem
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3.7 is true without the assumption that G is finitely generated, since we do
not have a counterexample for such a more general statement.

(2) Hoffmann conjectured ([10, Conjecture 5.2]) that if a theory T has a model
companion and a group G is finite, then the theory of G-actions on models
of T has a model companion as well. If we take for T the theory of difference
fields (which are Z-fields in our terminology) and for G any finite non-trivial
group, then the theory of G-actions on models of T is the same as the theory
of pZ�Gq-fields. By Corollary 3.8, the theory pZ�Gq�TCF does not exist,
so we get a counterexample to Hoffmann’s conjecture.

(3) It was also conjectured (private communications with Moshe Kamensky)
that if G and H are groups and the theories G�TCF and H-TCF exist,
then the theory pG � Hq-TCF exists as well. Using Corollary 3.8, we can
see that this not the case when the groups G,H are finite and non-trivial.

4. Nilpotent groups and summary

In this section, we give the full description of those finitely generated nilpotent
groups G for which the theory G�TCF exists, we discuss the case of free products,
and we also summarize what we know about the companionability of the theories
of group actions on fields.

4.1. Finitely generated nilpotent groups. We will use the fact that pronilpo-
tent groups are fully described by their pro-p Sylow subgroups (see Section 2). The
crucial preparatory result is the following, which may be folklore.

Proposition 4.1. Assume N is an infinite finitely generated nilpotent group which

is not cyclic. Then, there is a prime number p such that pNp is infinite and rkp pNpq ¥
2.

Proof. It is enough to find a quotient of N for which the result holds. We will often
use that if a group H acts on a finitely generated group G, then we havepG� pH � {G�H.

Since N is supersolvable, N has an infinite virtually cyclic quotient C. By [8,
Lemma 11.4, page 102], C is of the form G� Z where G is finite and nilpotent or
C projects onto Z� C2. Since we have�{Z� C2

	
2
� Z2 � C2

and rkpZ2 � C2q ¥ 2, we can assume that C � G�Z. If G is non-trivial, then we
take a prime number p dividing the order of G and obtain�{G�Z

	
p
� Gp �Zp.

The above pro-p group is infinite and rank at least 2.
Therefore, we can assume that C � Z, so N � N0�Z, where N0 is a non-trivial

finitely generated nilpotent group, since subgroups of finitely generated nilpotent
groups are again finitely generated. In this case, we can proceed as above taking a
prime p which divides the order of a non-trivial finite quotient of N0. �

We obtain the following.

Theorem 4.2. Assume N is an infinite, finitely generated nilpotent group which
is not cyclic. Then, the profinite group KN is not small.
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Proof. By Proposition 4.1, there is a prime number p such that pNp is infinite and

rkp pNpq ¥ 2. Since for any pronilpotent group N , we have

p rN qp ��pNpq,

it is enough to show that K
xNp

is not small. However, since a pro-p group is projective

if and only if it is pro-p free (this is a result of Tate, see [6, Proposition 22.7.6, page
518]), we get that �xNp � pFrppq,
where r � rkp pNpq ¥ 2 (we also use here that a Frattini cover preserves the rank,

see e.g. [6, Corollary 22.5.3, page 509]). Since pNp is not only pronilpotent but also
nilpotent, we get that the universal Frattini cover map�xNp ÝÑ pNp
is not an isomorphism ( pFrppq is not nilpotent for r ¥ 2, since it contains a free group
on two generators as a subgroup, see [15, Proposition 3.3.6, page 90]). Therefore,

K
xNp

is a closed, normal, non-trivial, and infinite index subgroup of pFrppq. By [15,

Proposition 8.6.3, page 329], we obtain

K
xNp

� pFωppq,
so K

xNp
is not small. �

Corollary 4.3. Let N be a finitely generated nilpotent group. Then, the theory
N -TCF exists if and only if N is finite or N is cyclic.

Proof. The proof is the same as the proof of Corollary 3.8, where we replace [3,
Theorem 4.6] with Theorem 4.2. �

Since the group Z�Z is infinite, nilpotent, and not cyclic, Corollary 4.3 includes
Hrushovski’s result about the non-companionability of the theory of fields with two
commuting automorphisms.

4.2. Free products. This part is inspired by a question of Alexander Ivanov re-
garding the existence of the theory pZ2 �Zq-TCF. The motivation for this question
comes from the fact that the group Z2 �Z is fully residually free and we know that
for a free group F , the theory F -TCF exists.

To answer the question above, we need the following general result.

Theorem 4.4. For any groups G,H, we have a natural epimorphism

KG�H ÝÑ KG.

Proof. By [15, Exercise 9.1.1(a) and Corollary 9.1.4(a)], we get that pG is topolog-

ically isomorphic to a closed subgroup of {G �H. By [3, Lemma 4.3], there is a
continuous epimorphism

K
{G�H

ÝÑ K
pG,

which gives the result. �

Corollary 4.5. For any finitely generated group H, the theory pZ2�Hq�TCF does
not exist.
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Proof. By Example 2.2(3), we have that the profinite group KZ2 is not small. By
Theorem 4.4, we obtain that the profinite group KZ2�H is not small either. By
Theorem 3.7, the theory pZ2 �Hq-TCF does not exist. �

4.3. Summary. In this final section, we give a summary of what we know regard-
ing existence of the theories G�TCF for different types of groups G.

If the group G is finitely generated, then we do not know any “new” (that
is: infinite and not free) types of groups G such that the theory G�TCF exists.
Therefore, it is reasonable to ask the following.

Question 4.6. Suppose that G is an infinite and finitely generated group. Is it
the case that the theory G�TCF exists if and only if G is free?

Corollary 4.3 answers Question 4.6 positively in the case of a nilpotent group
G. Possibly, the methods of Section 4.1 could be extended to supersolvable or
even solvable groups. On a rather “orthogonal” side of the spectrum of finitely
generated groups, Question 4.6 has an affirmative answer for virtually free groups
by Corollary 3.8.

Remark 4.7. It is natural to start with checking for those finitely generated groups
G for which the profinite group KG is not small. We know that

(1) if G is finite or free, then KG is small;
(2) excluding item (1), KG is not small in the case when G is virtually free [3,

Theorem 4.6.];

(3) KG is small (even trivial, since pG is trivial!) for very complicated groups
like Tarski monster groups (see e.g. [16, Section 1]) or the Higman group
(see [9]).

We do not have any counterexample for the following.

Question 4.8. Suppose that H   G and the theory G�TCF exists. Does the
theory H�TCF exist as well?

We conjectured [2, Conjecture 6.6] that Question 4.8 has the affirmative answer
for H � Z�Z, but we were able to show only a slightly weaker (and a bit surprising)
result, which is [2, Corollary 6.9].

Remark 4.9. We would like to point out here an important difference between
Hrushovski’s proof of non-existence of the theory pZ � Zq�TCF and our proof of
a more general result (Corollary 4.3). Hrushovski focused on p.e.c. (pseudo e.c.)
G-fields, that is G-fields which are existentially closed in those G-field extensions
that are regular extensions of pure fields. It is rather clear that a G-field is e.c. if
and only if it is p.e.c. and G-closed (see [2, Remark 2.3(1)]). Hrushovski’s proof
gives that actually there are no saturated p.e.c. pZ�Zq-fields (see [2, Theorem 6.7]),
which is a stronger statement comparing to our result (in the case of G � Z�Z).

The following question is related to Remark 4.9 above.

Question 4.10. Suppose that G is a finitely generated and virtually free group.
Is the class of p.e.c. G-fields elementary?

The methods from [3] (Bass-Serre theory) could be used to attack Question 4.10,
but we do not know how to do it exactly.
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A positive answer to Question 4.6 would be quite negative for the whole theory,
since there will be no “new” theories in the case of finitely generated groups. There-
fore, one can turn the attention to the arbitrary groups. The first non-free infinite
case was considered by Medvedev [13] who showed that (in our terminology) the
theory Q-TCF exists. In [2], we obtained the full classification of torsion Abelian
groups A such that the theory A-TCF exists. The next step could be to extend this
classification to the case of arbitrary Abelian groups. Having in mind the results
of this paper, the following may be reasonable.

Question 4.11. Suppose that A is an Abelian group. Is it true that the theory
A-TCF exists if and only if none of the following groups embed in G (p is a prime
number below)?

 Z�Z.
 Z� Cp.

 C
pωq
p , which is the infinite countable direct sum of Cp’s.

 Cp � Cp8 , where Cp8 is the Prüfer p-group.

The last two types of groups are the “forbidden groups” from [2, Remark 1.2(1)].
The results from [2] can be possibly extended to the case of locally finite nilpotent
groups and then one could appropriately generalize Question 4.11 above.
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