Strongly minimal sets definable in expansions of RCF

Assaf Hasson1 Piotr Kowalski1,2

1Mathematical Institute
University of Oxford

2Instytut Matematyczny
Uniwersytetu Wrocławskiego

June 20, 2006
Peterzil’s question

Question (Kobi Peterzil, Norwich Conference 2005)

Let \mathcal{M} be a strongly minimal structure definable in an o-minimal structure. Assume \mathcal{M} is not locally modular. Is an algebraically closed field interpretable in \mathcal{M}?
Let $\mathcal{M} = (M, f_i, R_j)$ and $\mathcal{N} = (N, \ldots)$ be structures.

Definition

- \mathcal{M} is **definable** in \mathcal{N} if M, f_i’s and R_j’s are definable in \mathcal{N}.
- \mathcal{M} is **inter-definable** with \mathcal{N} if \mathcal{M} is definable in \mathcal{N} and \mathcal{N} is definable in \mathcal{M}.
- We get **interpretable** or **bi-interpretable**, if we replace “definable” with “definable as the quotient by a definable equivalence relation”.
- If \mathcal{M} is definable in \mathcal{N} and $M = N$, then \mathcal{M} is a **reduct** of \mathcal{N} or \mathcal{N} is an **expansion** of \mathcal{M}.
Let $\mathcal{M} = (M, f_i, R_j)$ and $\mathcal{N} = (N, \ldots)$ be structures.

Definition

- \mathcal{M} is **definable** in \mathcal{N} if M, f_i’s and R_j’s are definable in \mathcal{N}.
- \mathcal{M} is **inter-definable** with \mathcal{N} if \mathcal{M} is definable in \mathcal{N} and \mathcal{N} is definable in \mathcal{M}.
- We get **interpretable** or **bi-interpretable**, if we replace “definable” with “definable as the quotient by a definable equivalence relation”.
- If \mathcal{M} is definable in \mathcal{N} and $M = N$, then \mathcal{M} is a **reduct** of \mathcal{N} or \mathcal{N} is an **expansion** of \mathcal{M}.
Let $\mathcal{M} = (M, f_i, R_j)$ and $\mathcal{N} = (N, \ldots)$ be structures.

Definition

- \mathcal{M} is **definable** in \mathcal{N} if M, f_i’s and R_j’s are definable in \mathcal{N}.
- \mathcal{M} is **inter-definable** with \mathcal{N} if \mathcal{M} is definable in \mathcal{N} and \mathcal{N} is definable in \mathcal{M}.

We get **interpretable** or bi-**interpretable**, if we replace “definable” with “definable as the quotient by a definable equivalence relation”.

- If \mathcal{M} is definable in \mathcal{N} and $M = N$, then \mathcal{M} is a **reduct** of \mathcal{N} or \mathcal{N} is an **expansion** of \mathcal{M}.
Let $\mathcal{M} = (M, f_i, R_j)$ and $\mathcal{N} = (N, \ldots)$ be structures.

Definition

- \mathcal{M} is **definable** in \mathcal{N} if M, f_i’s and R_j’s are definable in \mathcal{N}.
- \mathcal{M} is **inter-definable** with \mathcal{N} if \mathcal{M} is definable in \mathcal{N} and \mathcal{N} is definable in \mathcal{M}.
- We get **interpretable** or **bi-interpretable**, if we replace “definable” with “definable as the quotient by a definable equivalence relation”.
- If \mathcal{M} is definable in \mathcal{N} and $M = N$, then \mathcal{M} is a **reduct** of \mathcal{N} or \mathcal{N} is an **expansion** of \mathcal{M}.

Let $\mathcal{M} = (M, f_i, R_j)$ and $\mathcal{N} = (N, \ldots)$ be structures.

Definition

- \mathcal{M} is **definable** in \mathcal{N} if M, f_i's and R_j's are definable in \mathcal{N}.
- \mathcal{M} is **inter-definable** with \mathcal{N} if \mathcal{M} is definable in \mathcal{N} and \mathcal{N} is definable in \mathcal{M}.
- We get **interpretable** or **bi-interpretable**, if we replace “definable” with “definable as the quotient by a definable equivalence relation”.
- If \mathcal{M} is definable in \mathcal{N} and $M = N$, then \mathcal{M} is a **reduct** of \mathcal{N} or \mathcal{N} is an **expansion** of \mathcal{M}.
A structure M is **strongly minimal** if any b-definable set $X_b \subseteq M$ is either finite or cofinite uniformly in b.

Example

- $(\mathbb{C}, +, \cdot)$ is strongly minimal (as any algebraically closed field).
- $(\mathbb{C}, +, \cdot)$ is definable in $(\mathbb{R}, +, \cdot)$ which is o-minimal.
- If $(K, +, \cdot)$ is a field, then the vector space $(K, +, \cdot \lambda)_{\lambda \in K}$ is strongly minimal and it is a reduct of $(K, +, \cdot)$.
- A set with no structure is strongly minimal.
Strongly minimal structures

Definition

A structure M is **strongly minimal** if any b-definable set $X_b \subseteq M$ is either finite or cofinite uniformly in b.

Example

- $(\mathbb{C}, +, \cdot)$ is strongly minimal (as any algebraically closed field).
- $(\mathbb{C}, +, \cdot)$ is definable in $(\mathbb{R}, +, \cdot)$ which is o-minimal.
- If $(K, +, \cdot)$ is a field, then the vector space $(K, +, \cdot, \lambda)_{\lambda \in K}$ is strongly minimal and it is a reduct of $(K, +, \cdot)$.
- A set with no structure is strongly minimal.
Strongly minimal structures

Definition

A structure M is **strongly minimal** if any b-definable set $X_b \subseteq M$ is either finite or cofinite uniformly in b.

Example

- $(\mathbb{C}, +, \cdot)$ is strongly minimal (as any algebraically closed field). $(\mathbb{C}, +, \cdot)$ is definable in $(\mathbb{R}, +, \cdot)$ which is o-minimal.
- If $(K, +, \cdot)$ is a field, then the vector space $(K, +, \cdot \lambda)_{\lambda \in K}$ is strongly minimal and it is a reduct of $(K, +, \cdot)$.
- A set with no structure is strongly minimal.
A question of Kobi Peterzil
Proof of our theorem
Motivations
Other cases
Accessible form of Kobi’s question
Our answer to Kobi’s question

Strongly minimal structures

Definition
A structure M is strongly minimal if any b-definable set $X_b \subseteq M$ is either finite or cofinite uniformly in b.

Example
- $(\mathbb{C}, +, \cdot)$ is strongly minimal (as any algebraically closed field).
- $(\mathbb{C}, +, \cdot)$ is definable in $(\mathbb{R}, +, \cdot)$ which is o-minimal.
- If $(K, +, \cdot)$ is a field, then the vector space $(K, +, \cdot \lambda)_{\lambda \in K}$ is strongly minimal and it is a reduct of $(K, +, \cdot)$.
- A set with no structure is strongly minimal.
Locally modular structures

Definition

For us a **locally-modular structure** is a strongly minimal structure which is inter-definable with a vector space or has no structure.

Two equivalent “formal” definitions of local-modularity

- No 2-dimensional family of plane curves through a point.
- Any two algebraically closed sets are independent over their intersection.
Locally modular structures

Definition
For us a **locally-modular structure** is a strongly minimal structure which is inter-definable with a vector space or has no structure.

Two equivalent “formal” definitions of local-modularity

- No 2-dimensional family of plane curves through a point.
- Any two algebraically closed sets are independent over their intersection.
Definition

For us a **locally-modular structure** is a strongly minimal structure which is inter-definable with a vector space or has no structure.

Two equivalent “formal” definitions of local-modularity

- No 2-dimensional family of plane curves through a point.
- Any two algebraically closed sets are independent over their intersection.
Zilber’s conjecture

Zilber’s dichotomy conjecture
A strongly minimal set is either locally-modular or interprets a field.

Theorem (Hrushovski)
- There is a strongly minimal set which is not locally-modular and does not interpret even a group.
- There is a strongly minimal group which is not locally modular and does not interpret a field.
Zilber’s conjecture

Zilber’s dichotomy conjecture
A strongly minimal set is either locally-modular or interprets a field.

Theorem (Hrushovski)
- There is a strongly minimal set which is not locally-modular and does not interpret even a group.
- There is a strongly minimal group which is not locally modular and does not interpret a field.
Zilber’s conjecture

A strongly minimal set is either locally-modular or interprets a field.

Theorem (Hrushovski)

- There is a strongly minimal set which is not locally-modular and does not interpret even a group.
- There is a strongly minimal group which is not locally modular and does not interpret a field.
Positive results

Zilber’s conjecture holds in:

- Zariski Geometries (Hrushovski-Zilber).
- Differentially closed fields (Hrushovski-Sokolovic).
- Separably closed fields (Hrushovski).
- Algebraically closed fields with a generic automorphism (Chatzidakis-Hrushovski-Peterzil).

Applications

Zilber’s Dichotomy for the structures above yields diophantine consequences – Mordell-Lang, Manin-Mumford.
Positive results

Zilber’s conjecture holds in:

- Zariski Geometries (Hrushovski-Zilber).
- Differentially closed fields (Hrushovski-Sokolovic).
- Separably closed fields (Hrushovski).
- Algebraically closed fields with a generic automorphism (Chatzidakis-Hrushovski-Peterzil).

Applications

Zilber’s Dichotomy for the structures above yields diophantine consequences – Mordell-Lang, Manin-Mumford.
Positive results

Zilber’s conjecture holds in:

- Zariski Geometries (Hrushovski-Zilber).
- Differentially closed fields (Hrushovski-Sokolovic).
- Separably closed fields (Hrushovski).
- Algebraically closed fields with a generic automorphism (Chatzidakis-Hrushovski-Peterzil).

Applications

Zilber’s Dichotomy for the structures above yields diophantine consequences – Mordell-Lang, Manin-Mumford.
Positive results

Zilber’s conjecture holds in:

- Zariski Geometries (Hrushovski-Zilber).
- Differentially closed fields (Hrushovski-Sokolovic).
- Separably closed fields (Hrushovski).
- Algebraically closed fields with a generic automorphism (Chatzidakis-Hrushovski-Peterzil).

Applications

Zilber’s Dichotomy for the structures above yields diophantine consequences – Mordell-Lang, Manin-Mumford.
Positive results

Zilber’s conjecture holds in:

- Zariski Geometries (Hrushovski-Zilber).
- Differentially closed fields (Hrushovski-Sokolovic).
- Separably closed fields (Hrushovski).
- Algebraically closed fields with a generic automorphism (Chatzidakis-Hrushovski-Peterzil).

Applications

Zilber’s Dichotomy for the structures above yields diophantine consequences – Mordell-Lang, Manin-Mumford.
Informal Zilber’s conjecture

Zilber’s Dichotomy holds in structures with “geometric flavor”.

Informal statement

O-minimal structures and their reducts have geometric flavor.

Reformulation of Peterzil’s question

Does Zilber’s Dichotomy hold in reducts of o-minimal structures?
Informal Zilber’s conjecture
Zilber’s Dichotomy holds in structures with “geometric flavor”.

Informal statement
O-minimal structures and their reducts have geometric flavor.

Reformulation of Peterzil’s question
Does Zilber’s Dichotomy hold in reducts of o-minimal structures?
Zilber’s conjecture and Peterzil’s Question

Informal Zilber’s conjecture
Zilber’s Dichotomy holds in structures with “geometric flavor”.

Informal statement
O-minimal structures and their reducts have geometric flavor.

Reformulation of Peterzil’s question
Does Zilber’s Dichotomy hold in reducts of o-minimal structures?

Hasson, Kowalski
Strongly minimal sets definable in expansions of RCF
Let \mathcal{R} be an o-minimal expansion of $(\mathbb{R}, +, \cdot)$.

An accessible version of Peterzil’s question

Let \mathcal{M} be a strongly minimal expansion of $(\mathbb{C}, +)$. Assume \mathcal{M} is definable in \mathcal{R}. Does \mathcal{M} satisfy Zilber’s Dichotomy?

This version reduces to:

A reformulation

Assume $X \subset \mathbb{C}^2$ is definable in \mathcal{R} and $\mathbb{C}_X := (\mathbb{C}, +, X)$ is strongly minimal and not locally modular. Does \mathbb{C}_X interpret a field?

We give the positive answer when X is the graph of a function.
Let \mathcal{R} be an o-minimal expansion of $(\mathbb{R}, +, \cdot)$.

An accessible version of Peterzil’s question

Let \mathcal{M} be a strongly minimal expansion of $(\mathbb{C}, +)$. Assume \mathcal{M} is definable in \mathcal{R}. Does \mathcal{M} satisfy Zilber’s Dichotomy?

This version reduces to:

A reformulation

Assume $X \subset \mathbb{C}^2$ is definable in \mathcal{R} and $\mathbb{C}_X := (\mathbb{C}, +, X)$ is strongly minimal and not locally modular. Does \mathbb{C}_X interpret a field?

We give the positive answer when X is the graph of a function.
Reducts of an o-minimal field

Let \mathcal{R} be an o-minimal expansion of $(\mathbb{R}, +, \cdot)$.

An accessible version of Peterzil’s question

Let \mathcal{M} be a strongly minimal expansion of $(\mathbb{C}, +)$. Assume \mathcal{M} is definable in \mathcal{R}. Does \mathcal{M} satisfy Zilber’s Dichotomy?

This version reduces to:

A reformulation

Assume $X \subset \mathbb{C}^2$ is definable in \mathcal{R} and $\mathbb{C}_X := (\mathbb{C}, +, X)$ is strongly minimal and not locally modular. Does \mathbb{C}_X interpret a field?

We give the positive answer when X is the graph of a function.
Reducts of an o-minimal field

Let \(\mathcal{R} \) be an o-minimal expansion of \((\mathbb{R}, +, \cdot)\).

An accessible version of Peterzil’s question

Let \(\mathcal{M} \) be a strongly minimal expansion of \((\mathbb{C}, +)\). Assume \(\mathcal{M} \) is definable in \(\mathcal{R} \). Does \(\mathcal{M} \) satisfy Zilber’s Dichotomy?

This version reduces to:

A reformulation

Assume \(X \subset \mathbb{C}^2 \) is definable in \(\mathcal{R} \) and \(\mathbb{C}_X := (\mathbb{C}, +, X) \) is strongly minimal and not locally modular. Does \(\mathbb{C}_X \) interpret a field?

We give the positive answer when \(X \) is the graph of a function.
Theorem (Hasson, K.)

Assume $f : \mathbb{C} \to \mathbb{C}$ is definable in \mathcal{R} and $\mathbb{C}_f := (\mathbb{C}, +, f)$ is strongly minimal and not locally-modular. Then, there is $A \in \text{GL}_2(\mathbb{R})$ such that $\mathbb{C}_{AfA^{-1}}$ is bi-interpretable with $(\mathbb{C}, +, \cdot)$.

Although our assumptions are much stronger than Kobi’s, the conclusions are also stronger, since:

- We identify a definable field – complex field twisted by A.
- There is nothing more than the field structure on \mathbb{C}_f.
- AfA^{-1} is rational on a cofinite set.
Our theorem

Theorem (Hasson, K.)

Assume $f : \mathbb{C} \to \mathbb{C}$ is definable in \mathcal{R} and $\mathbb{C}_f := (\mathbb{C}, +, f)$ is strongly minimal and not locally-modular. Then, there is $A \in \text{GL}_2(\mathbb{R})$ such that $\mathbb{C}_{AfA^{-1}}$ is bi-interpretable with $(\mathbb{C}, +, \cdot)$.

Although our assumptions are much stronger than Kobi’s, the conclusions are also stronger, since:

- We identify a definable field – complex field twisted by A.
- There is nothing more than the field structure on \mathbb{C}_f.
- AfA^{-1} is rational on a cofinite set.
Our theorem

Theorem (Hasson, K.)

Assume \(f : \mathbb{C} \to \mathbb{C} \) is definable in \(\mathcal{R} \) and \(\mathbb{C}_f := (\mathbb{C}, +, f) \) is strongly minimal and not locally-modular. Then, there is \(A \in \text{GL}_2(\mathbb{R}) \) such that \(\mathbb{C}_{AfA^{-1}} \) is bi-interpretable with \((\mathbb{C}, +, \cdot) \).

Although our assumptions are much stronger than Kobi’s, the conclusions are also stronger, since:

- We identify a definable field – complex field twisted by \(A \).
- There is nothing more than the field structure on \(\mathbb{C}_f \).
- \(AfA^{-1} \) is rational on a cofinite set.
Our theorem

Theorem (Hasson, K.)

Assume $f : \mathbb{C} \to \mathbb{C}$ is definable in \mathcal{R} and $\mathbb{C}_f := (\mathbb{C}, +, f)$ is strongly minimal and not locally-modular. Then, there is $A \in \text{GL}_2(\mathbb{R})$ such that $\mathbb{C}_{AfA^{-1}}$ is bi-interpretable with $(\mathbb{C}, +, \cdot)$.

Although our assumptions are much stronger than Kobi’s, the conclusions are also stronger, since:

- We identify a definable field – complex field twisted by A.
- There is nothing more than the field structure on \mathbb{C}_f.
- AfA^{-1} is rational on a cofinite set.
Our theorem

Theorem (Hasson, K.)

Assume \(f : \mathbb{C} \to \mathbb{C} \) *is definable in* \(\mathcal{R} \) *and* \(\mathbb{C}_f := (\mathbb{C}, +, f) \) *is strongly minimal and not locally-modular. Then, there is* \(A \in \text{GL}_2(\mathbb{R}) \) *such that* \(\mathbb{C}_{AfA^{-1}} \) *is bi-interpretable with* \((\mathbb{C}, +, \cdot) \).

Although our assumptions are much stronger than Kobi’s, the conclusions are also stronger, since:

- We identify a definable field – complex field twisted by \(A \).
- There is nothing more than the field structure on \(\mathbb{C}_f \).
- \(AfA^{-1} \) is rational on a cofinite set.
The idea of the proof

1. Using topological arguments show that f extends to a continuous ramified covering of the Riemann sphere.

2. Prove that for some special $a \in \mathbb{C}$

 \[
 \det f'(a) = 0 \Rightarrow f'(a) = 0
 \]

 (a weak version of Cauchy-Riemann).

3. Using the theory of Lie groups, find an open $U \subseteq \mathbb{C}$ such that $f|_U$ is holomorphic.

4. Using the Chain Rule and the Argument Principle for $f|_U$, find a field configuration in \mathbb{C}_f.

Hasson, Kowalski

Strongly minimal sets definable in expansions of RCF
The idea of the proof

1. Using topological arguments show that \(f \) extends to a continuous ramified covering of the Riemann sphere.

2. Prove that for some special \(a \in \mathbb{C} \)

\[
\det f'(a) = 0 \implies f'(a) = 0
\]

(a weak version of Cauchy-Riemann).

3. Using the theory of Lie groups, find an open \(U \subseteq \mathbb{C} \) such that \(f|_U \) is holomorphic.

4. Using the Chain Rule and the Argument Principle for \(f|_U \), find a field configuration in \(\mathbb{C}_f \).
The idea of the proof

1. Using topological arguments show that f extends to a continuous ramified covering of the Riemann sphere.

2. Prove that for some special $a \in \mathbb{C}$

 \[\det f'(a) = 0 \implies f'(a) = 0 \]

 (a weak version of Cauchy-Riemann).

3. Using the theory of Lie groups, find an open $U \subseteq \mathbb{C}$ such that $f|_U$ is holomorphic.

4. Using the Chain Rule and the Argument Principle for $f|_U$, find a field configuration in \mathbb{C}_f.
The idea of the proof

1. Using topological arguments show that f extends to a continuous ramified covering of the Riemann sphere.

2. Prove that for some special $a \in \mathbb{C}$

$$\det f'(a) = 0 \implies f'(a) = 0$$

(a weak version of Cauchy-Riemann).

3. Using the theory of Lie groups, find an open $U \subseteq \mathbb{C}$ such that $f|_U$ is holomorphic.

4. Using the Chain Rule and the Argument Principle for $f|_U$, find a field configuration in \mathbb{C}_f.

Hasson, Kowalski

Strongly minimal sets definable in expansions of RCF.
The idea of the proof

1. Using topological arguments show that f extends to a continuous ramified covering of the Riemann sphere.

2. Prove that for some special $a \in \mathbb{C}$

 $\det f'(a) = 0 \implies f'(a) = 0$

 (a weak version of Cauchy-Riemann).

3. Using the theory of Lie groups, find an open $U \subseteq \mathbb{C}$ such that $f|_U$ is holomorphic.

4. Using the Chain Rule and the Argument Principle for $f|_U$, find a field configuration in \mathbb{C}_f.
Frontier of a strongly minimal set is finite

The first step (based on a paper of Peterzil-Starchenko) is:

Fact

\[X \subset \mathbb{C}^2 \text{ be } \mathbb{C}_f\text{-definable and strongly minimal.} \]
\[\text{Then } \text{cl}(X) \setminus X, \text{ called the frontier of } X, \text{ is finite.} \]

A few words about the proof.

Peterzil-Starchenko look how complex lines intersect with \(X \). We do not have enough lines, so we use the sets

\[l^b_a = \text{graph}(f(x + a) + b). \]

The main problem is to show that enough of these \(l^b_a \) meet \(X \) transversally, and in particular that enough of the curves \(l^b_a \) are smooth at all the intersection points with \(X \).
Frontier of a strongly minimal set is finite

The first step (based on a paper of Peterzil-Starchenko) is:

Fact

Let $X \subset \mathbb{C}^2$ be \mathbb{C}_f-definable and strongly minimal. Then $\text{cl}(X) \setminus X$, called the **frontier** of X, is finite.

A few words about the proof.

Peterzil-Starchenko look how complex lines intersect with X. We do not have enough lines, so we use the sets

$$l_a^b = \text{graph}(f(x + a) + b).$$

The main problem is to show that enough of these l_a^b meet X transversally, and in particular that enough of the curves l_a^b are smooth at all the intersection points with X.
Frontier of a strongly minimal set is finite

The first step (based on a paper of Peterzil-Starchenko) is:

Fact

Let $X \subset \mathbb{C}^2$ be \mathbb{C}_f-definable and strongly minimal.

Then $\text{cl}(X) \setminus X$, called the *frontier* of X, is finite.

A few words about the proof.

Peterzil-Starchenko look how complex lines intersect with X. We do not have enough lines, so we use the sets

$$l^b_a = \text{graph}(f(x + a) + b).$$

The main problem is to show that enough of these l^b_a meet X transversally, and in particular that enough of the curves l^b_a are smooth at all the intersection points with X.
Without loss $f : S^2 \rightarrow S^2$ is continuous and open

Let $S^2 = \mathbb{C} \cup \{\infty\}$ denote the Riemann sphere.
Using finiteness of the frontier (mostly with $\text{graph}(f)$), we show that f has all the topological properties of rational functions:

Fact

- f is continuous outside a finite set F.
- Resetting, if needed, the values of f on F (to possibly $\infty \in S^2$), we can assume that $f : \mathbb{C} \rightarrow S^2$ is continuous.
- f is open.
- f is proper, i.e. continuously extends to $f : S^2 \rightarrow S^2$.

Hasson, Kowalski
Strongly minimal sets definable in expansions of RCF
Without loss \(f : S^2 \to S^2 \) is continuous and open

Let \(S^2 = \mathbb{C} \cup \{\infty\} \) denote the Riemann sphere. Using finiteness of the frontier (mostly with \(\text{graph}(f) \)), we show that \(f \) has all the topological properties of rational functions:

Fact
- \(f \) is continuous outside a finite set \(F \).
- Resetting, if needed, the values of \(f \) on \(F \) (to possibly \(\infty \in S^2 \)), we can assume that \(f : \mathbb{C} \to S^2 \) is continuous.
- \(f \) is open.
- \(f \) is proper, i.e. continuously extends to \(f : S^2 \to S^2 \).
Without loss \(f : S^2 \rightarrow S^2 \) is continuous and open

Let \(S^2 = \mathbb{C} \cup \{\infty\} \) denote the Riemann sphere.
Using finiteness of the frontier (mostly with \(\text{graph}(f) \)), we show that \(f \) has all the topological properties of rational functions:

Fact

- \(f \) is continuous outside a finite set \(F \).
- Resetting, if needed, the values of \(f \) on \(F \) (to possibly \(\infty \in S^2 \)), we can assume that \(f : \mathbb{C} \rightarrow S^2 \) is continuous.
- \(f \) is open.
- \(f \) is proper, i.e. continuously extends to \(f : S^2 \rightarrow S^2 \).
Without loss \(f : S^2 \to S^2 \) is continuous and open

Let \(S^2 = \mathbb{C} \cup \{\infty\} \) denote the Riemann sphere. Using finiteness of the frontier (mostly with \(\text{graph}(f) \)), we show that \(f \) has all the topological properties of rational functions:

Fact

- \(f \) is continuous outside a finite set \(F \).
- Resetting, if needed, the values of \(f \) on \(F \) (to possibly \(\infty \in S^2 \)), we can assume that \(f : \mathbb{C} \to S^2 \) is continuous.
- \(f \) is open.
- \(f \) is proper, i.e. continuously extends to \(f : S^2 \to S^2 \).
Without loss \(f : S^2 \to S^2 \) is continuous and open

Let \(S^2 = \mathbb{C} \cup \{\infty\} \) denote the Riemann sphere. Using finiteness of the frontier (mostly with \(\text{graph}(f) \)), we show that \(f \) has all the topological properties of rational functions:

Fact

- \(f \) is continuous outside a finite set \(F \).
- Resetting, if needed, the values of \(f \) on \(F \) (to possibly \(\infty \in S^2 \)), we can assume that \(f : \mathbb{C} \to S^2 \) is continuous.
- \(f \) is open.
- \(f \) is proper, i.e. continuously extends to \(f : S^2 \to S^2 \).
Without loss \(f : S^2 \to S^2 \) is continuous and open

Let \(S^2 = \mathbb{C} \cup \{\infty\} \) denote the Riemann sphere. Using finiteness of the frontier (mostly with graph\((f)\)), we show that \(f \) has all the topological properties of rational functions:

Fact

- \(f \) is continuous outside a finite set \(F \).
- Resetting, if needed, the values of \(f \) on \(F \) (to possibly \(\infty \in S^2 \)), we can assume that \(f : \mathbb{C} \to S^2 \) is continuous.
- \(f \) is open.
- \(f \) is proper, i.e. continuously extends to \(f : S^2 \to S^2 \).
$f : S^2 \to S^2$ is a ramified covering

We use the following topological theorem:

Theorem

If f is as in our case, then f is a ramified covering, i.e. it is locally topologically equivalent to $z \mapsto z^k$ on $|z| \leq 1$ (k may vary).

Definition

1. If $k > 1$ at c, then c is a branch point of degree k (of f), e.g. 0 is a branch point of degree 3 of $g(z) = z^3 + 7$.
2. If c is a branch point, then $f(c)$ is a ramification point.
\[f : S^2 \rightarrow S^2 \] is a ramified covering

We use the following topological theorem:

Theorem

If \(f \) is as in our case, then \(f \) is a *ramified covering*, i.e. it is locally topologically equivalent to \(z \mapsto z^k \) on \(|z| \leq 1\) (\(k\) may vary).

Definition

1. If \(k > 1 \) at \(c \), then \(c \) is a *branch point of degree \(k \)* (of \(f \)), e.g. 0 is a branch point of degree 3 of \(g(z) = z^3 + 7 \).
2. If \(c \) is a branch point, then \(f(c) \) is a *ramification point*.

Hasson, Kowalski

Strongly minimal sets definable in expansions of RCF
$f : S^2 \rightarrow S^2$ is a ramified covering

We use the following topological theorem:

Theorem

If f is as in our case, then f is a ramified covering, i.e. it is locally topologically equivalent to $z \mapsto z^k$ on $|z| \leq 1$ (k may vary).

Definition

1. If $k > 1$ at c, then c is a branch point of degree k (of f), e.g. 0 is a branch point of degree 3 of $g(z) = z^3 + 7$.
2. If c is a branch point, then $f(c)$ is a ramification point.
Remark

Since f is definable in an o-minimal structure, f is C^1 on a codimension 1 subset of \mathbb{C}.

Definition

Let $f'(c)$ denote the Jacobian matrix of f at c (if defined). It is an element of $M_2(\mathbb{R})$.

Our aim

We want to show that f is holomorphic on some open $U \subseteq \mathbb{C}$, i.e. for each $c \in U$, $f'(c) \in M_1(\mathbb{C})$ ($M_1(\mathbb{C}) \hookrightarrow M_2(\mathbb{R})$).
Remark
Since f is definable in an o-minimal structure, f is C^1 on a codimension 1 subset of \mathbb{C}.

Definition
Let $f'(c)$ denote the Jacobian matrix of f at c (if defined). It is an element of $M_2(\mathbb{R})$.

Our aim
We want to show that f is holomorphic on some open $U \subseteq \mathbb{C}$, i.e. for each $c \in U$, $f'(c) \in M_1(\mathbb{C})$ ($M_1(\mathbb{C}) \hookrightarrow M_2(\mathbb{R})$).
Remark

Since f is definable in an o-minimal structure, f is C^1 on a codimension 1 subset of \mathbb{C}.

Definition

Let $f'(c)$ denote the Jacobian matrix of f at c (if defined). It is an element of $M_2(\mathbb{R})$.

Our aim

We want to show that f is holomorphic on some open $U \subseteq \mathbb{C}$, i.e. for each $c \in U$, $f'(c) \in M_1(\mathbb{C})$ ($M_1(\mathbb{C}) \hookrightarrow M_2(\mathbb{R})$).
Jacobian matrix vanishes at branch points

Fact (weak Cauchy-Riemann)

If f is C^1 at c and c is a branch point, then $f'(c) = 0$.

Idea of the proof.

Let $f = (f_1, f_2)$. We can assume $f(c) = 0$. It is enough to show that for almost all directions $\alpha \in S^1$,

$$\frac{\partial f_i}{\partial \alpha}(c) = 0, \quad i = 1, 2.$$

Since f is equivalent locally at c to $z \mapsto z^k$ and $k > 1$, $f^{-1}([-1, 1]) \setminus \{c\}$ has $2k$ connected components X_j. Since $f_2(X_j) = 0$, it is enough (for f_2) to take $\alpha \neq \alpha_j$, where

$$\alpha_j \mathbb{R} = T_c(X_j), \quad j = 1, 2, \ldots, 2k.$$
Jacobian matrix vanishes at branch points

Fact (weak Cauchy-Riemann)

If f is C^1 at c and c is a branch point, then $f'(c) = 0$.

Idea of the proof.

Let $f = (f_1, f_2)$. We can assume $f(c) = 0$. It is enough to show that for almost all directions $\alpha \in S^1$,

$$\frac{\partial f_i}{\partial \alpha}(c) = 0, \quad i = 1, 2.$$

Since f is equivalent locally at c to $z \mapsto z^k$ and $k > 1$, $f^{-1}([−1, 1]) \setminus \{c\}$ has $2k$ connected components X_j. Since $f_2(X_j) = 0$, it is enough (for f_2) to take $\alpha \neq \alpha_j$, where

$$\alpha_j \mathbb{R} = T_c(X_j), \quad j = 1, 2, \ldots, 2k.$$
Jacobian matrix vanishes at branch points

Fact (weak Cauchy-Riemann)

If f is C^1 at c and c is a branch point, then $f'(c) = 0$.

Idea of the proof.

Let $f = (f_1, f_2)$. We can assume $f(c) = 0$. It is enough to show that for almost all directions $\alpha \in S^1$,

$$\frac{\partial f_i}{\partial \alpha}(c) = 0, \quad i = 1, 2.$$

Since f is equivalent locally at c to $z \mapsto z^k$ and $k > 1$, $f^{-1}([-1, 1]) \setminus \{c\}$ has $2k$ connected components X_j. Since $f_2(X_j) = 0$, it is enough (for f_2) to take $\alpha \neq \alpha_j$, where

$$\alpha_j \mathbb{R} = T_c(X_j), \quad j = 1, 2, \ldots, 2k.$$
Jacobian matrix vanishes at branch points

Fact (weak Cauchy-Riemann)

If f is C^1 at c and c is a branch point, then $f'(c) = 0$.

Idea of the proof.

Let $f = (f_1, f_2)$. We can assume $f(c) = 0$. It is enough to show that for almost all directions $\alpha \in S^1$,

$$\frac{\partial f_i}{\partial \alpha}(c) = 0, \quad i = 1, 2.$$

Since f is equivalent locally at c to $z \mapsto z^k$ and $k > 1$, $f^{-1}([-1, 1]) \setminus \{c\}$ has $2k$ connected components X_j. Since $f_2(X_j) = 0$, it is enough (for f_2) to take $\alpha \neq \alpha_j$, where

$$\alpha_j \mathbb{R} = T_c(X_j), \quad j = 1, 2, \ldots, 2k.$$
There is a branch point

Fact

1. **We can assume** \(f \) **is not 1-to-1.**
2. **There is a branch point of** \(f \).

Proof.

1. If \(f \) is 1-1 (e.g. when \(f(x) = 1/x \)), we replace \(f \) with \(f(x + 1) - f(x) \).
2. Hurwitz formula (an Euler characteristic argument).
There is a branch point

Fact

1. *We can assume* f *is not 1-to-1.*
2. *There is a branch point of* f.

Proof.

1. If f is 1-1 (e.g. when $f(x) = 1/x$), we replace f with $f(x + 1) - f(x)$.
2. Hurwitz formula (an Euler characteristic argument).
There is a branch point

Fact

1. *We can assume* f *is not 1-to-1.*
2. *There is a branch point of* f.

Proof.

1. If f is 1-1 (e.g. when $f(x) = 1/x$), we replace f with $f(x + 1) - f(x)$.
2. Hurwitz formula (an Euler characteristic argument).
There is a branch point

Fact

1. We can assume f is not 1-to-1.
2. There is a branch point of f.

Proof.

1. If f is 1-1 (e.g. when $f(x) = 1/x$), we replace f with $f(x + 1) - f(x)$.
2. Hurwitz formula (an Euler characteristic argument).
There is a C^1 branch point

Fact

There is a C_f-definable $g : S^2 \to S^2$ having a C^1 branch point.

Idea of the proof.

- By the theory of local degrees (winding numbers), we can control the way branch points move in families.

- If all branch points of $f_a(x) := f(x + a) - f(x)$ are not smooth for all a then for some a_0 one of the branch points of f_{a_0} has lower degree. Now use induction.

We assume f already has a C^1 branch point.
There is a C^1 branch point

Fact

There is a C_f-definable $g : S^2 \to S^2$ having a C^1 branch point.

Idea of the proof.

- By the theory of local degrees (winding numbers), we can control the way branch points move in families.
- If all branch points of $f_a(x) := f(x + a) - f(x)$ are not smooth for all a then for some a_0 one of the branch points of f_{a_0} has lower degree. Now use induction.

We assume f already has a C^1 branch point.
There is a C^1 branch point

Fact

There is a C_f-definable $g : S^2 \rightarrow S^2$ having a C^1 branch point.

Idea of the proof.

- By the theory of local degrees (winding numbers), we can control the way branch points move in families.
- If all branch points of $f_a(x) := f(x + a) - f(x)$ are not smooth for all a then for some a_0 one of the branch points of f_{a_0} has lower degree. Now use induction.

We assume f already has a C^1 branch point.
There is a C^1 branch point

Fact

There is a C^1-definable $g : S^2 \rightarrow S^2$ having a C^1 branch point.

Idea of the proof.

- By the theory of local degrees (winding numbers), we can control the way branch points move in families.
- If all branch points of $f_a(x) := f(x + a) - f(x)$ are not smooth for all a then for some a_0 one of the branch points of f_{a_0} has lower degree. Now use induction.

We assume f already has a C^1 branch point.
Multiplication of Jacobian matrices

Our aim again

We want to show that for some open $U \subseteq \mathbb{C}$, we have:

$$f'(U) \subseteq \text{GL}_1(\mathbb{C}).$$

So, $f'(U)$ is a subset of a 2-dim. Lie subgroup of $\text{GL}_2(\mathbb{R})$.

In particular, for any $U_1, \ldots, U_n \subseteq U$, we should have

$$\dim(f'(U_1) \cdot \ldots \cdot f'(U_n)) \leq 2.$$
Our aim again

- We want to show that for some open $U \subseteq \mathbb{C}$, we have:

$$f'(U) \subseteq \text{GL}_1(\mathbb{C}).$$

So, $f'(U)$ is a subset of a 2-dim. Lie subgroup of $\text{GL}_2(\mathbb{R})$.

- In particular, for any $U_1, \ldots, U_n \subseteq U$, we should have

$$\dim(f'(U_1) \cdot \ldots \cdot f'(U_n)) \leq 2.$$
Our aim again

- We want to show that for some open $U \subseteq \mathbb{C}$, we have:

 $$f'(U) \subseteq \text{GL}_1(\mathbb{C}).$$

 So, $f'(U)$ is a subset of a 2-dim. Lie subgroup of $\text{GL}_2(\mathbb{R})$.

- In particular, for any $U_1, \ldots, U_n \subseteq U$, we should have

 $$\dim(f'(U_1) \cdot \ldots \cdot f'(U_n)) \leq 2.$$

 We show this assertion first.
Some control on dimension

Fact

There are $U_1, \ldots, U_n \subseteq \mathbb{C}$ open such that f is C^1 on each U_i and $f'(U_1) \cdot \ldots \cdot f'(U_n) \subseteq f'(\mathbb{C})$, so $\dim(f'(U_1) \cdot \ldots \cdot f'(U_n)) \leq 2$.

Proof.

Consider $f_a^b(x) = f(a + f(x)) - f(x + b)$. Then, for small enough $|a|, |b|$, f_a^b has a C^1 branch point c_a^b. Hence $(f_a^b)'(c_a^b) = 0$, so:

$$f'(a + f(c_a^b)) \cdot f'(c_a^b) = f'(c_a^b + b).$$

Take $U_1 = \text{locus}(a + f(c_a^b))$, $U_2 := \text{locus}(c_a^b)$ (for generic a, b). It works for $n = 2$. For $n > 2$, we take a more complicated f_a^b. \qed
Fact

There are $U_1, \ldots, U_n \subseteq \mathbb{C}$ open such that f is C^1 on each U_i and $f'(U_1) \cdot \ldots \cdot f'(U_n) \subseteq f'(\mathbb{C})$, so $\dim(f'(U_1) \cdot \ldots \cdot f'(U_n)) \leq 2$.

Proof.

Consider $f_a^b(x) = f(a + f(x)) - f(x + b)$. Then, for small enough $|a|, |b|, f_a^b$ has a C^1 branch point c_a^b. Hence $(f_a^b)'(c_a^b) = 0$, so:

$$f'(a + f(c_a^b)) \cdot f'(c_a^b) = f'(c_a^b + b).$$

Take $U_1 = \text{locus}(a + f(c_a^b)), U_2 := \text{locus}(c_a^b)$ (for generic a, b). It works for $n = 2$. For $n > 2$, we take a more complicated f_a^b. □
A question of Kobi Peterzil
Proof of our theorem
Other cases

Topology
Differential Geometry
Lie groups
Analytic Geometry and Algebraic Geometry

Some control on dimension

Fact

There are $U_1, \ldots, U_n \subseteq \mathbb{C}$ open such that f is C^1 on each U_i and $f'(U_1) \cdot \ldots \cdot f'(U_n) \subseteq f'(\mathbb{C})$, so $\dim(f'(U_1) \cdot \ldots \cdot f'(U_n)) \leq 2$.

Proof.

Consider $f^b_a(x) = f(a + f(x)) - f(x + b)$. Then, for small enough $|a|, |b|$, f^b_a has a C^1 branch point c^b_a. Hence $(f^b_a)'(c^b_a) = 0$, so:

$$f'(a + f(c^b_a)) \cdot f'(c^b_a) = f'(c^b_a + b).$$

Take $U_1 = \text{locus}(a + f(c^b_a))$, $U_2 := \text{locus}(c^b_a)$ (for generic a, b). It works for $n = 2$. For $n > 2$, we take a more complicated f^b_a. □
Some control on dimension

Fact

There are $U_1, \ldots, U_n \subseteq \mathbb{C}$ open such that f is C^1 on each U_i and $f'(U_1) \cdot \ldots \cdot f'(U_n) \subseteq f'(\mathbb{C})$, so $\dim(f'(U_1) \cdot \ldots \cdot f'(U_n)) \leq 2$.

Proof.

Consider $f_a^b(x) = f(a + f(x)) - f(x + b)$. Then, for small enough $|a|, |b|$, f_a^b has a C^1 branch point c_a^b. Hence $(f_a^b)'(c_a^b) = 0$, so:

$$f'(a + f(c_a^b)) \cdot f'(c_a^b) = f'(c_a^b + b).$$

Take $U_1 = \text{locus}(a + f(c_a^b))$, $U_2 := \text{locus}(c_a^b)$ (for generic a, b). It works for $n = 2$. For $n > 2$, we take a more complicated f_a^b. \qed
Some control on dimension

Fact

There are $U_1, \ldots, U_n \subseteq \mathbb{C}$ open such that f is C^1 on each U_i and $f'(U_1) \cdot \ldots \cdot f'(U_n) \subseteq f'(\mathbb{C})$, so $\dim(f'(U_1) \cdot \ldots \cdot f'(U_n)) \leq 2$.

Proof.

Consider $f^b_a(x) = f(a + f(x)) - f(x + b)$. Then, for small enough $|a|, |b|$, f^b_a has a C^1 branch point c^b_a. Hence $(f^b_a)'(c^b_a) = 0$, so:

$$f'(a + f(c^b_a)) \cdot f'(c^b_a) = f'(c^b_a + b).$$

Take $U_1 = \text{locus}(a + f(c^b_a))$, $U_2 := \text{locus}(c^b_a)$ (for generic a, b). It works for $n = 2$. For $n > 2$, we take a more complicated f^b_a. \[\square\]
Fact

There are $U_1, \ldots, U_n \subseteq \mathbb{C}$ open such that f is C^1 on each U_i and $f'(U_1) \cdot \ldots \cdot f'(U_n) \subseteq f'(\mathbb{C})$, so $\dim(f'(U_1) \cdot \ldots \cdot f'(U_n)) \leq 2$.

Proof.

Consider $f_a^b(x) = f(a + f(x)) - f(x + b)$. Then, for small enough $|a|, |b|$, f_a^b has a C^1 branch point c_a^b. Hence $(f_a^b)'(c_a^b) = 0$, so:

$$f'(a + f(c_a^b)) \cdot f'(c_a^b) = f'(c_a^b + b).$$

Take $U_1 = \text{locus}(a + f(c_a^b))$, $U_2 := \text{locus}(c_a^b)$ (for generic a, b). It works for $n = 2$. For $n > 2$, we take a more complicated f_a^b. \qed
There is a local Lie subgroup of $\text{GL}_2(\mathbb{R})$ around

Definition

For a Lie group G, $A \subset G$ is a local Lie subgroup, if there is a relatively open $B \subset A$ such that $1 \in B$, $B = B^{-1}$ and $B \cdot B \subseteq A$.

Taking $n = 9$ in the last fact we obtain:

Fact

There is an open $U \subseteq \mathbb{C}$ such that $f'(U)$ is a subset of a local Lie subgroup $A \subset \text{GL}_2(\mathbb{R})$ and $\dim A \leq 2$.

Hasson, Kowalski

Strongly minimal sets definable in expansions of RCF
There is a local Lie subgroup of $GL_2(\mathbb{R})$ around

Definition

For a Lie group G, $A \subset G$ is a local Lie subgroup, if there is a relatively open $B \subset A$ such that $1 \in B$, $B = B^{-1}$ and $B \cdot B \subseteq A$.

Taking $n = 9$ in the last fact we obtain:

Fact

There is an open $U \subseteq \mathbb{C}$ such that $f'(U)$ is a subset of a local Lie subgroup $A \subset GL_2(\mathbb{R})$ and $\dim A \leq 2$.
Definition

For a Lie group G, a virtual Lie subgroup of G is a smooth injective homomorphism of Lie groups $\phi : H \rightarrow G$.

Virtual Lie subgroups of G correspond exactly to Lie subalgebras of $\text{Lie}(G)$ and the following is well-known:

Theorem

If A is a local Lie subgroup of G, then there is a virtual Lie subgroup $\phi : H \rightarrow G$ such that $\dim H = \dim A$ and $\phi(H) \cap A$ is open in A.
There is a virtual Lie subgroup of $GL_2(\mathbb{R})$ around

Definition

For a Lie group G, a **virtual Lie subgroup** of G is a smooth injective homomorphism of Lie groups $\phi : H \rightarrow G$.

Virtual Lie subgroups of G correspond exactly to Lie subalgebras of Lie(G) and the following is well-known:

Theorem

If A is a local Lie subgroup of G, then there is a virtual Lie subgroup $\phi : H \rightarrow G$ such that $\dim H = \dim A$ and $\phi(H) \cap A$ is open in A.
Definition

For a Lie group G, a **virtual Lie subgroup** of G is a smooth injective homomorphism of Lie groups $\phi : H \to G$.

Virtual Lie subgroups of G correspond exactly to Lie subalgebras of Lie(G) and the following is well-known:

Theorem

*If A is a local Lie subgroup of G, then there is a virtual Lie subgroup $\phi : H \to G$ such that $\dim H = \dim A$ and $\phi(H) \cap A$ is open in A.***
A virtual Lie subgroup need not be Lie

The image of a virtual Lie subgroup need not be a Lie subgroup as the “non-commutative torus” example shows.

Example

Let a be an irrational number, $T = S^1 \times S^1$ a 2-dimensional torus and take:

$$\mathbb{R} \ni r \mapsto \phi(r) = (r, ar) + \mathbb{Z}^2 \in \mathbb{R}^2/\mathbb{Z}^2$$

Then $\phi(\mathbb{R})$ is dense in T, so it is not a Lie subgroup. The quotient $T/\phi(\mathbb{R})$ is called a non-commutative torus.
A virtual Lie subgroup need not be Lie

The image of a virtual Lie subgroup need not be a Lie subgroup as the “non-commutative torus” example shows.

Example

Let a be an irrational number, $T = S^1 \times S^1$ a 2-dimensional torus and take:

$$\mathbb{R} \ni r \mapsto \phi(r) = (r, ar) + \mathbb{Z}^2 \in \mathbb{R}^2 / \mathbb{Z}^2 = T$$

Then $\phi(\mathbb{R})$ is dense in T, so it is not a Lie subgroup.
The quotient $T/\phi(\mathbb{R})$ is called a non-commutative torus.
A virtual Lie subgroup need not be Lie

The image of a virtual Lie subgroup need not be a Lie subgroup as the “non-commutative torus” example shows.

Example

Let a be an irrational number, $T = S^1 \times S^1$ a 2-dimensional torus and take:

$$\mathbb{R} \ni r \mapsto \phi(r) = (r, ar) + \mathbb{Z}^2 \in \mathbb{R}^2/\mathbb{Z}^2 = T$$

Then $\phi(\mathbb{R})$ is dense in T, so it is not a Lie subgroup. The quotient $T/\phi(\mathbb{R})$ is called a non-commutative torus.
A virtual Lie subgroup need not be Lie

The image of a virtual Lie subgroup need not be a Lie subgroup as the “non-commutative torus” example shows.

Example

Let \(a \) be an irrational number, \(T = S^1 \times S^1 \) a 2-dimensional torus and take:

\[
\mathbb{R} \ni r \mapsto \phi(r) = (r, ar) + \mathbb{Z}^2 \in \mathbb{R}^2/\mathbb{Z}^2 = T
\]

Then \(\phi(\mathbb{R}) \) is dense in \(T \), so it is not a Lie subgroup. The quotient \(T/\phi(\mathbb{R}) \) is called a **non-commutative torus**.
There is still a Lie subgroup of $\text{GL}_2(\mathbb{R})$ around

But in our case we still obtain:

Fact

*There is a solvable Lie subgroup $\bar{H} < \text{GL}_2(\mathbb{R})$ containing $f'(U)$.***

Proof.

- We have $f : H \to \text{GL}_2(\mathbb{R})$ and $\dim H \leq 2$, hence H is solvable.
- Therefore $f(H)$ is solvable.
- Therefore $\bar{H} := \text{cl}(f(H))$ is solvable.
- $\text{GL}_2(\mathbb{R})$ is not solvable, so \bar{H} is proper.
There is still a Lie subgroup of \(GL_2(\mathbb{R}) \) around

But in our case we still obtain:

Fact

There is a solvable Lie subgroup \(\bar{H} < GL_2(\mathbb{R}) \) containing \(f'(U) \).

Proof.

- We have \(f : H \to GL_2(\mathbb{R}) \) and \(\dim H \leq 2 \), hence \(H \) is solvable.
- Therefore \(f(H) \) is solvable.
- Therefore \(\bar{H} := \text{cl}(f(H)) \) is solvable.
- \(GL_2(\mathbb{R}) \) is not solvable, so \(\bar{H} \) is proper.
There is still a Lie subgroup of $GL_2(\mathbb{R})$ around

But in our case we still obtain:

Fact

There is a solvable Lie subgroup $\bar{H} < GL_2(\mathbb{R})$ containing $f'(U)$.

Proof.

- We have $f : H \to GL_2(\mathbb{R})$ and $\dim H \leq 2$, hence H is solvable.
- Therefore $f(H)$ is solvable.
- Therefore $\bar{H} := \text{cl}(f(H))$ is solvable.
- $GL_2(\mathbb{R})$ is not solvable, so \bar{H} is proper.
There is still a Lie subgroup of $GL_2(\mathbb{R})$ around.

But in our case we still obtain:

Fact

*There is a solvable Lie subgroup $\bar{H} < GL_2(\mathbb{R})$ containing $f'(U)$.***

Proof.

- We have $f : H \to GL_2(\mathbb{R})$ and dim $H \leq 2$, hence H is solvable.
- Therefore $f(H)$ is solvable.
- Therefore $\bar{H} := \text{cl}(f(H))$ is solvable.
- $GL_2(\mathbb{R})$ is not solvable, so \bar{H} is proper.
There is still a Lie subgroup of $GL_2(\mathbb{R})$ around

But in our case we still obtain:

Fact

There is a solvable Lie subgroup $\bar{H} < GL_2(\mathbb{R})$ containing $f'(U)$.

Proof.

- We have $f : H \to GL_2(\mathbb{R})$ and $\dim H \leq 2$, hence H is solvable.
- Therefore $f(H)$ is solvable.
- Therefore $\bar{H} := \text{cl}(f(H))$ is solvable.
- $GL_2(\mathbb{R})$ is not solvable, so \bar{H} is proper.
Fact

\(f'(U) \) is contained in a conjugate of \(\text{GL}_1(\mathbb{C}) \).

Proof.

- \(f'(U) \) is contained in a solvable Lie subgroup \(\bar{H} \).
- By classification of such, \(\bar{H} \) (possibly after conjugation) is a subgroup of the triangular group or \(\text{GL}_1(\mathbb{C}) \).
- Triangular group contradicts strong minimality of \(\mathbb{C}_f \) (one partial derivative of \(f_1 \) vanishes on \(U \)).

Remark

This how we find the matrix \(A \) from the statement of our theorem. It is the conjugation matrix above.
That Lie subgroup is $GL_1(\mathbb{C})$

Fact

$f'(U)$ is contained in a conjugate of $GL_1(\mathbb{C})$.

Proof.

- $f'(U)$ is contained in a solvable Lie subgroup \tilde{H}.
- By classification of such, \tilde{H} (possibly after conjugation) is a subgroup of the triangular group or $GL_1(\mathbb{C})$.
- Triangular group contradicts strong minimality of \mathbb{C}_f (one partial derivative of f_1 vanishes on U).

Remark

This how we find the matrix A from the statement of our theorem. It is the conjugation matrix above.
That Lie subgroup is $GL_1(\mathbb{C})$

Fact

$f'(U)$ is contained in a conjugate of $GL_1(\mathbb{C})$.

Proof.

- $f'(U)$ is contained in a solvable Lie subgroup \bar{H}.
- By classification of such, \bar{H} (possibly after conjugation) is a subgroup of the triangular group or $GL_1(\mathbb{C})$.
- Triangular group contradicts strong minimality of \mathbb{C}_f (one partial derivative of f_1 vanishes on U).

Remark

This how we find the matrix A from the statement of our theorem. It is the conjugation matrix above.
That Lie subgroup is $\text{GL}_1(\mathbb{C})$

Fact

$f'(U)$ is contained in a conjugate of $\text{GL}_1(\mathbb{C})$.

Proof.

- $f'(U)$ is contained in a solvable Lie subgroup \bar{H}.
- By classification of such, \bar{H} (possibly after conjugation) is a subgroup of the triangular group or $\text{GL}_1(\mathbb{C})$.
- Triangular group contradicts strong minimality of \mathbb{C}_f (one partial derivative of f_1 vanishes on U).

Remark

This how we find the matrix A from the statement of our theorem. It is the conjugation matrix above.
That Lie subgroup is $GL_1(\mathbb{C})$

Fact

$f'(U)$ is contained in a conjugate of $GL_1(\mathbb{C})$.

Proof.

- $f'(U)$ is contained in a solvable Lie subgroup \tilde{H}.
- By classification of such, \tilde{H} (possibly after conjugation) is a subgroup of the triangular group or $GL_1(\mathbb{C})$.
- Triangular group contradicts strong minimality of \mathbb{C}_f (one partial derivative of f_1 vanishes on U).

Remark

This how we find the matrix A from the statement of our theorem. It is the conjugation matrix above.
Fact

There is an open $U \subseteq \mathbb{C}$ such that f is holomorphic on U.

Proof.

The fact that for $a \in U$, $f'(a) \in \text{GL}_1(\mathbb{C})$ means exactly that f satisfies Cauchy-Riemann at a, so f is holomorphic at a.

Remark

If U is dense in \mathbb{C}, we can easily show that f is rational and we are done. But we do not know it at this stage.
We forgot about the conjugate and assume that \(f'(U) \subseteq \text{GL}_1(\mathbb{C}) \).

Fact

There is an open \(U \subseteq \mathbb{C} \) such that \(f \) is holomorphic on \(U \).

Proof.

The fact that for \(a \in U \), \(f'(a) \in \text{GL}_1(\mathbb{C}) \) means exactly that \(f \) satisfies Cauchy-Riemann at \(a \), so \(f \) is holomorphic at \(a \).

Remark

If \(U \) is dense in \(\mathbb{C} \), we can easily show that \(f \) is rational and we are done. But we do not know it at this stage.
We forgot about the conjugate and assume that $f'(U) \subseteq \text{GL}_1(\mathbb{C})$.

Fact

There is an open $U \subseteq \mathbb{C}$ such that f is holomorphic on U.

Proof.

The fact that for $a \in U$, $f'(a) \in \text{GL}_1(\mathbb{C})$ means exactly that f satisfies Cauchy-Riemann at a, so f is holomorphic at a.

Remark

If U is dense in \mathbb{C}, we can easily show that f is rational and we are done. But we do not know it at this stage.
A question of Kobi Peterzil
Proof of our theorem
Other cases

Topology
Differential Geometry
Lie groups
Analytic Geometry and Algebraic Geometry

\(f \) is holomorphic on an open set

We forgot about the conjugate and assume that \(f'(U) \subseteq \text{GL}_1(\mathbb{C}) \).

Fact

There is an open \(U \subseteq \mathbb{C} \) such that \(f \) is holomorphic on \(U \).

Proof.

The fact that for \(a \in U \), \(f'(a) \in \text{GL}_1(\mathbb{C}) \) means exactly that \(f \) satisfies Cauchy-Riemann at \(a \), so \(f \) is holomorphic at \(a \).

Remark

If \(U \) is dense in \(\mathbb{C} \), we can easily show that \(f \) is rational and we are done. But we do not know it at this stage.
Fact

There is a field interpretable in \mathbb{C}_f.

Proof.

- Take U such that f is holomorphic on U.
- Then, for $c \in U$, $f'(c) = 0$ implies c is a branch point.
- This allows us to pull-back by $f'|_U$ the group configuration of $\mathbb{G}_a(\mathbb{C}) \ltimes \mathbb{G}_m(\mathbb{C})$ acting on $\mathbb{G}_a(\mathbb{C})$ to get a \mathbb{C}_f-interpretable field.
Fact

There is a field interpretable in \mathbb{C}_f.

Proof.

- Take U such that f is holomorphic on U.
- Then, for $c \in U$, $f'(c) = 0$ implies c is a branch point.
- This allows us to pull-back by $f'|_U$ the group configuration of $\mathbb{G}_a(\mathbb{C}) \ltimes \mathbb{G}_m(\mathbb{C})$ acting on $\mathbb{G}_a(\mathbb{C})$ to get a \mathbb{C}_f-interpretable field.
Fact

There is a field interpretable in \mathbb{C}_f.

Proof.

- Take U such that f is holomorphic on U.
- Then, for $c \in U$, $f'(c) = 0$ implies c is a branch point.
- This allows us to pull-back by $f'|_U$ the group configuration of $\mathbb{G}_a(\mathbb{C}) \ltimes \mathbb{G}_m(\mathbb{C})$ acting on $\mathbb{G}_a(\mathbb{C})$ to get a \mathbb{C}_f-interpretable field.
Fact

There is a field interpretable in \mathbb{C}_f.

Proof.

- Take U such that f is holomorphic on U.
- Then, for $c \in U$, $f'(c) = 0$ implies c is a branch point.
- This allows us to pull-back by $f'|_U$ the group configuration of $\mathbb{G}_a(\mathbb{C}) \ltimes \mathbb{G}_m(\mathbb{C})$ acting on $\mathbb{G}_a(\mathbb{C})$ to get a \mathbb{C}_f-interpretable field.
Conclusion of the proof.

- Let K be a field interpretable in C_f. By a result of Peterzil-Starchenko and Hrushovski’s internality theory, K is bi-interpretable with C_f.
- Hence, $(C, +)$ is a 1-dimensional K-algebraic group.
- Since $(C, +)$ is torsion-free, it is C_f-definably isomorphic to $G_a(K)$.
- Using the above isomorphism, we get a C_f-definable operation $\star : C^2 \rightarrow C$ such that $(C, +, \star)$ is a field.
- Then, it is easy to find $A \in GL_2(R)$ such that

$$A : (C, +, \star) \cong (C, +, \cdot), \quad A \circ f \circ A^{-1} \in \mathbb{C}(x).$$
Conclusion of the proof.

- Let \mathbb{K} be a field interpretable in \mathbb{C}_f. By a result of Peterzil-Starchenko and Hrushovski’s internality theory, \mathbb{K} is bi-interpretable with \mathbb{C}_f.
- Hence, $(\mathbb{C}, +)$ is a 1-dimensional \mathbb{K}-algebraic group.
- Since $(\mathbb{C}, +)$ is torsion-free, it is \mathbb{C}_f-definably isomorphic to $\mathbb{G}_a(\mathbb{K})$.
- Using the above isomorphism, we get a \mathbb{C}_f-definable operation $\star : \mathbb{C}^2 \rightarrow \mathbb{C}$ such that $(\mathbb{C}, +, \star)$ is a field.
- Then, it is easy to find $A \in \text{GL}_2(\mathbb{R})$ such that

$$A : (\mathbb{C}, +, \star) \cong (\mathbb{C}, +, \cdot), \quad A \circ f \circ A^{-1} \in \mathbb{C}(x).$$
Conclusion of the proof.

- Let K be a field interpretable in \mathbb{C}_f. By a result of Peterzil-Starchenko and Hrushovski’s internality theory, K is bi-interpretable with \mathbb{C}_f.
- Hence, $(\mathbb{C}, +)$ is a 1-dimensional K-algebraic group.
- Since $(\mathbb{C}, +)$ is torsion-free, it is \mathbb{C}_f-definably isomorphic to $\mathbb{G}_a(K)$.
- Using the above isomorphism, we get a \mathbb{C}_f-definable operation $\star : \mathbb{C}^2 \to \mathbb{C}$ such that $(\mathbb{C}, +, \star)$ is a field.
- Then, it is easy to find $A \in \text{GL}_2(\mathbb{R})$ such that
 \[A : (\mathbb{C}, +, \star) \cong (\mathbb{C}, +, \cdot), \quad A \circ f \circ A^{-1} \in \mathbb{C}(x). \]
Conclusion of the proof.

- Let \mathbb{K} be a field interpretable in \mathbb{C}_f. By a result of Peterzil-Starchenko and Hrushovski’s internality theory, \mathbb{K} is bi-interpretable with \mathbb{C}_f.
- Hence, $(\mathbb{C}, +)$ is a 1-dimensional \mathbb{K}-algebraic group.
- Since $(\mathbb{C}, +)$ is torsion-free, it is \mathbb{C}_f-definably isomorphic to $\mathbb{G}_a(\mathbb{K})$.
- Using the above isomorphism, we get a \mathbb{C}_f-definable operation $\star : \mathbb{C}^2 \to \mathbb{C}$ such that $(\mathbb{C}, +, \star)$ is a field.
- Then, it is easy to find $A \in \text{GL}_2(\mathbb{R})$ such that

$$A : (\mathbb{C}, +, \star) \cong (\mathbb{C}, +, \cdot), \quad A \circ f \circ A^{-1} \in \mathbb{C}(x).$$
Conclusion of the proof.
Let K be a field interpretable in C_f. By a result of Peterzil-Starchenko and Hrushovski’s internality theory, K is bi-interpretable with C_f.

Hence, $(C, +)$ is a 1-dimensional K-algebraic group.

Since $(C, +)$ is torsion-free, it is C_f-definably isomorphic to $G_a(K)$.

Using the above isomorphism, we get a C_f-definable operation $\star : C^2 \to C$ such that $(C, +, \star)$ is a field.

Then, it is easy to find $A \in GL_2(R)$ such that

$$A : (C, +, \star) \cong (C, +, \cdot), \quad A \circ f \circ A^{-1} \in C(x).$$
Conclusion of the proof.

- Let \mathbb{K} be a field interpretable in \mathbb{C}_f. By a result of Peterzil-Starchenko and Hrushovski’s internality theory, \mathbb{K} is bi-interpretable with \mathbb{C}_f.
- Hence, $(\mathbb{C}, +)$ is a 1-dimensional \mathbb{K}-algebraic group.
- Since $(\mathbb{C}, +)$ is torsion-free, it is \mathbb{C}_f-definably isomorphic to $\mathbb{G}_a(\mathbb{K})$.
- Using the above isomorphism, we get a \mathbb{C}_f-definable operation $\star : \mathbb{C}^2 \to \mathbb{C}$ such that $(\mathbb{C}, +, \star)$ is a field.
- Then, it is easy to find $A \in \text{GL}_2(\mathbb{R})$ such that

$$A : (\mathbb{C}, +, \star) \cong (\mathbb{C}, +, \cdot), \quad A \circ f \circ A^{-1} \in \mathbb{C}(x).$$
Let \mathcal{R} be an o-minimal expansion of an arbitrary real closed field.

Remark

The proof of our theorem generalizes from \mathbb{C} to any $\mathcal{K} = \mathcal{R}[i]$.

About the proof

- The theory of winding numbers, differentiable/analityc manifolds etc. was developed in this context by Berarducci, Otero, Peterzil, Pillay, Starchenko and others.

- The only place in the proof where we left the o-minimal context was when a virtual Lie group showed up. But another argument using Lie algebras holds in this context too.
Let \mathcal{R} be an o-minimal expansion of an arbitrary real closed field.

Remark

The proof of our theorem generalizes from \mathbb{C} to any $\mathcal{K} = \mathcal{R}[i]$.

About the proof

- The theory of winding numbers, differentiable/analytic manifolds etc. was developed in this context by Berarducci, Otero, Peterzil, Pillay, Starchenko and others.
- The only place in the proof where we left the o-minimal context was when a virtual Lie group showed up. But another argument using Lie algebras holds in this context too.
Let \mathcal{R} be an o-minimal expansion of an arbitrary real closed field.

Remark

The proof of our theorem generalizes from \mathbb{C} to any $\mathcal{K} = \mathcal{R}[i]$.

About the proof

- The theory of winding numbers, differentiable/analytic manifolds etc. was developed in this context by Berarducci, Otero, Peterzil, Pillay, Starchenko and others.
- The only place in the proof where we left the o-minimal context was when a virtual Lie group showed up. But another argument using Lie algebras holds in this context too.
Weakening conditions on \mathcal{R}

Remark

Not much of o-minimality was used in the proof.

Question

- Can we assume that \mathcal{R} is e.g. just weakly o-minimal?
- Can we assume that f is just continuous or smooth (so, no ambient o-minimal structure \mathcal{R} at all)?
- Can pathological Hrushovski examples be constructed in nice geometric context as above?
Weakening conditions on \mathcal{R}

Remark

Not much of o-minimality was used in the proof.

Question

- Can we assume that \mathcal{R} is e.g. just weakly o-minimal?
- Can we assume that f is just continuous or smooth (so, no ambient o-minimal structure \mathcal{R} at all)?
- Can pathological Hrushovski examples be constructed in nice geometric context as above?
Weakening conditions on \mathcal{R}

Remark
Not much of o-minimality was used in the proof.

Question
- Can we assume that \mathcal{R} is e.g. just weakly o-minimal?
- Can we assume that f is just continuous or smooth (so, no ambient o-minimal structure \mathcal{R} at all)?
- Can pathological Hrushovski examples be constructed in nice geometric context as above?
Weakening conditions on \mathcal{R}

Remark
Not much of o-minimality was used in the proof.

Question
- Can we assume that \mathcal{R} is e.g. just weakly o-minimal?
- Can we assume that f is just continuous or smooth (so, no ambient o-minimal structure \mathcal{R} at all)?
- Can pathological Hrushovski examples be constructed in nice geometric context as above?
Question

Can we replace \((\mathbb{C}, +, f)\) with any strongly minimal expansion of \((\mathbb{C}, +)\) definable in \(\mathcal{R}\)?

Remark

We know it is enough to consider \(\mathbb{C}_X = (\mathbb{C}, +, X)\) with a relation (so “multi-function”) \(X\) replacing \(f\). We do not know if our proof still works. It should be still possible to prove the finiteness of frontier of strongly minimal \(\mathbb{C}_X\)-definable subsets of \(\mathbb{C}^2\).
Any expansion of \((\mathbb{C}, +)\)

Question

Can we replace \((\mathbb{C}, +, f)\) with any strongly minimal expansion of \((\mathbb{C}, +)\) definable in \(\mathcal{R}\)?

Remark

We know it is enough to consider \(\mathbb{C}_X = (\mathbb{C}, +, X)\) with a relation (so “multi-function”) \(X\) replacing \(f\). We do not know if our proof still works. It should be still possible to prove the finiteness of frontier of strongly minimal \(\mathbb{C}_X\)-definable subsets of \(\mathbb{C}^2\).
Open Question

Let \((A, +)\) be a strongly minimal group which is not locally modular. Is there a definable function \(f : A \rightarrow A\) such that \((A, +, f)\) is not locally-modular?

Remarks

- Positive answer to the above question extends our theorem to any strongly minimal expansion of \((\mathbb{C}, +)\).
- The answer is positive if \(A\) has elimination of imaginaries, i.e. “definable” = “interpretable”.
- Can elimination of imaginaries for \(\mathcal{R}\) be used?
Can we always produce a function?

Open Question
Let \((A, +)\) be a strongly minimal group which is not locally modular. Is there a definable function \(f : A \to A\) such that \((A, +, f)\) is not locally-modular?

Remarks
- Positive answer to the above question extends our theorem to any strongly minimal expansion of \((\mathbb{C}, +)\).
- The answer is positive if \(A\) has elimination of imaginaries, i.e. “definable” = “interpretable”.
- Can elimination of imaginaries for \(\mathcal{R}\) be used?
Can we always produce a function?

Open Question

Let \((A, +)\) be a strongly minimal group which is not locally modular. Is there a definable function \(f : A \rightarrow A\) such that \((A, +, f)\) is not locally-modular?

Remarks

- Positive answer to the above question extends our theorem to any strongly minimal expansion of \((\mathbb{C}, +)\).
- The answer is positive if \(A\) has elimination of imaginaries, i.e. “definable” = “interpretable”.

- Can elimination of imaginaries for \(\mathbb{R}\) be used?
A question of Kobi Peterzil
Proof of our theorem
Other cases

Can we always produce a function?

Open Question

Let \((A, +)\) be a strongly minimal group which is not locally modular. Is there a definable function \(f : A \rightarrow A\) such that \((A, +, f)\) is not locally-modular?

Remarks

- Positive answer to the above question extends our theorem to any strongly minimal expansion of \((\mathbb{C}, +)\).
- The answer is positive if \(A\) has elimination of imaginaries, i.e. “definable” = “interpretable”.
- Can elimination of imaginaries for \(R\) be used?
Remark

Most likely our argument still works when we replace $\left(\mathbb{C}, + \right)$ with another one-dimensional algebraic group, i.e. the multiplicative group or an elliptic curve.