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G-fields as first-order structures

We fix a finitely generated (marked) group
G={(p) p=_(p1,---,pm)-

By a G-field, we mean a field together with a Galois action by G.

Similarly, we define G-field extensions, G-rings, etc.
We consider a G-field as a first-order structure in the following way

K:(K7+7_7'7p17"'7pm)'

Note that any p; above denotes three things at the same time:

@ an element of G,
@ a function from K to K,

@ a formal function symbol.
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Existentially closed G-fields 1

Let us fix a G-field (K, p).

Systems of G-polynomial equations

Let x = (xy,...,x,) be a tuple of variables and ¢(x) be a system
of G-polynomial equations over K

o(x): Fi(gi(x1);-.-.8n(xn)) =0,..., Fa(g1(x1),- .., 8n(xn)) =0
for some g1,...,8, € G and Fi,...,F, € K[X1,..., Xs].

Existentially closed G-fields

The G-field (K, p) is existentially closed (e.c.) if any system ¢(x)
of G-polynomial equations over K which is solvable in a
G-extension of (K, p) is already solvable in (K, p).
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Existentially closed G-fields 2

@ Any G-field has an e.c. G-extension.

e For G = {1}, e.c. G-fields coincide with algebraically closed
fields.

e For G =7, e.c. G-fields coincide with transformally (or
difference) closed fields.

@ It often happens that (K, p) is e.c., but K is not algebraically
closed. By a result of Sjogren, if (K, p) is an e.c. G-field, then

Gal(K) = ker (5 - 6),

where for a profinite group H, the map H — H is the
universal Frattini cover.

@ Analogy: for “G = (f}\a we get differentially closed
(Hasse-Schmidt) fields.

Kowalski Model theory of Galois actions



The theory G-TCF

If the class of existentially closed G-fields is elementary, then we
call the resulting theory G-TCF and say that G-TCF exists.

e For G = {1}, we get G-TCF = ACF.
e For G = F, (free group), we get G-TCF = ACFA,,.

e If G is finite, then G-TCF exists (Sjogren, independently
Hoffmann-K.)

@ (Z x Z)-TCF does not exist (Hrushovski).
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Axioms for ACFA

We fix now a difference field (K, o), i.e. (G,p) = (Z,1) (or, for
technical reasons, (G, p) = (Z,0,1)).

@ By a variety, we always mean an affine K-variety which is
K-irreducible and K-reduced (i.e. a prime ideal of K[X]).

@ For any variety V/, we also have the variety V and the
bijection (not a morphism!)

ov: V(K) = V(K).

@ A pair of varieties (V, W) is called a Z-pair, if W C V x 7V
and the projections W — V, W — 7V are dominant.

Axioms for ACFA (Chatzidakis-Hrushovski)

The difference field (K, o) is e.c. if and only if for any Z-pair
(V, W), there is a € V(K) such that (a,ov(a)) € W(K).
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Axioms for G-TCF, G-finite

Let G ={p1 =1,...,pe} be afinite group and (K, p) be a G-field.
A pair of varieties (V, W) is a G-pair, if:

o WCPAV x ... xPV:

@ all projections W — PiV/ are dominant;

@ lterativity Condition: for any i, we have W = 7;(W), where
m PPV x Lo x PeV 5 PIPLY 5 x PiPeV/

is the appropriate coordinate permutation.

Axioms for G-TCF, G finite (Hoffmann-K.)

The G-field (K, p) is e.c. if and only if for any G-pair (V, W),
there is a € V(K) such that

((p1)v(a), .-, (pe)v(a)) € W(K).




Our strategy 1

e Find a generalization of the known results (mentioned above)
for free groups and finite groups.

@ Natural class of groups for such a generalization: virtually free
groups.

e For a fixed (G, p), the general scheme of axioms should be as
follows: for any G-pair (V, W), there is a € V(K) such that

pv(a) = ((p1)v(a), .-, (pm)v(a)) € W(K).

Hence one needs to find the right notion of a G-pair.

G-pairs in general

A pair of varieties (V, W) will be called a G-pair, if:
e WCPV =PV x. xP"V:
@ all projections W — PiV/ are dominant;

@ lterativity Condition: to be found.
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Our strategy 2

We need to find a good lterativity Condition for a virtually free,
finitely generated group (G, p).

o G free: trivial lterativity Condition.
@ G finite: Iterativity Condition as before.

We need a procedure to obtain virtually free groups from finite

groups, luckily such a procedure exists and gives the right
Iterativity Condition.

Theorem (Karrass, Pietrowski and Solitar)

Let H be a finitely generated group. TFAE:

@ H is virtually free,

@ H is isomorphic to the fundamental group of a finite graph of
finite groups.
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Bass-Serre theory
Graph of groups (slightly simplified)

A graph of groups G(—) is a connected graph (V, £) together
with:
@ a group G;j for each vertex i € V;

@ a group Aj; for each edge (/,/) € £ together with
monomorphisms A; — G;, Ajj — G;.

Fundamental group

For a fixed maximal subtree 7 of (V, ), the fundamental group of
(G(=),T) (denoted by 71(G(—), 7)) can be obtained by
successively performing:

@ one free product with amalgamation for each edge in T;
@ and then one HNN extension for each edge not in 7T .
m1(G(—),T) does not depend on the choice of T (up to ).
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Iterativity Condition for amalgamated products

Let G = Gy * Gy, where G; are finite. We define p = p1 U po,
where p; = G; and the neutral elements of G; are identified in p.
We also define the projection morphisms p; : PV — PiV.

Iterativity Condition for Gy * Gp

e W C *?V and dominance conditions;
o (V,pi(W)) is a Gj-pair for i = 1,2 (up to Zariski closure).

Let G = m1(G(—)), where G(—) is a tree of groups. We take
p= Uiev G;, where for (i,)) € €, G; is identified with G;j along Aj;.

Iterativity Condition for fundamental group of tree of groups

@ W C PV and dominance conditions;
o (V,pi(W)) is a Gj-pair for all i € V (up to Zariski closure).
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Iterativity Condition for HNN extensions

Let G x G = {1, 0, 7,7} and consider the following:
a:{l,o}={l,7}, G:=(Cx G)*q-
Then the crucial relation defining G is ot = t7. We take:

e p:=(1,0,7,7,t,to, tT, t7);

@ po = (1701 T, 7)1
e tpg = (t,to, tT, ty).

Iterativity Condition for (G x Gp)x*q

°f (ppo(W)) - prO(W)-
o (V,pp(W))isa (G x G)-pair.
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We find a complicated Iterative Condition for virtually free groups
using the conditions from the two previous slides as building blocks.

Theorem (Beyarslan-K.)

If G is finitely generated and virtually free, then G-TCF exists.

Properties of G-TCF
o If G is finite, then G-TCF is supersimple of finite rank(=|G]).
o If G is infinite and free, then G-TCF is simple.

@ Sjogren: for any G, if (K, p) is an e.c. G-field then K is PAC
and K¢ is PAC.

o Chatzidakis: for a PAC field K, the theory Th(K) is simple iff
K is bounded (i.e. Gal(K) is small).
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New theories are not simple
Theorem (Beyarslan-K.)

Assume that G is finitely generated, virtually free, infinite and not
free. Then the following profinite group

ker <GA — @)
is not small.

Corollary

Putting everything together, we get the following.

o If G is finitely generated virtually free, then the theory G-TCF
is simple if and only if G is finite or G is free.

@ If G is finitely generated, virtually free, infinite and not free,
then the theory G-TCF is not even NTP>.

Maybe these theories are NSOP...
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Negative results

@ Hrushovski showed that (Z x Z)-TCF does not exists.

e Modifying his proof, we show that (Z x Z)-TCF does not
exists.

@ Actually, in both cases the proof gives that there is no
No-saturated e.c. model.

@ The proof is quite mysterious. The action of our group on
primitive 3rd roots of unity in a saturated model yields a
contradiction.

@ Hrushovski has also an argument for (as | learnt this morning):
if Z x 7, embeds into G, then G-TCF does not exist.
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Two conjectures

Suppose that G is finitely generated. Then the theory G-TCF
exists iff G is virtually free.

@ There is a surprisingly long list of equivalent conditions for a
group to be virtually free. It would be interesting to have one
more coming from model theory.

@ Main challenge for a proof: infinite Burnside groups (finitely
generated and of bounded exponent).

Let G be an arbitrary group (e.g. G = (Q,+)). Then the theory
G-TCF exists iff G is locally virtually free.

Q-TCF exists (Medvedev).
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