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G -fields as first-order structures

We fix a finitely generated (marked) group

G = 〈ρ〉, ρ = (ρ1, . . . , ρm).

By a G -field, we mean a field together with a Galois action by G .
Similarly, we define G -field extensions, G -rings, etc.
We consider a G -field as a first-order structure in the following way

K = (K ,+,−, ·, ρ1, . . . , ρm).

Note that any ρi above denotes three things at the same time:

an element of G ,

a function from K to K ,

a formal function symbol.
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Existentially closed G -fields 1

Let us fix a G -field (K , ρ).

Systems of G -polynomial equations

Let x = (x1, . . . , xn) be a tuple of variables and ϕ(x) be a system
of G -polynomial equations over K

ϕ(x) : F1(g1(x1), . . . , gn(xn)) = 0, . . . ,Fn(g1(x1), . . . , gn(xn)) = 0

for some g1, . . . , gn ∈ G and F1, . . . ,Fn ∈ K [X1, . . . ,Xn].

Existentially closed G -fields

The G -field (K , ρ) is existentially closed (e.c.) if any system ϕ(x)
of G -polynomial equations over K which is solvable in a
G -extension of (K , ρ) is already solvable in (K , ρ).
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Existentially closed G -fields 2

Any G -field has an e.c. G -extension.

For G = {1}, e.c. G -fields coincide with algebraically closed
fields.

For G = Z, e.c. G -fields coincide with transformally (or
difference) closed fields.

It often happens that (K , ρ) is e.c., but K is not algebraically
closed. By a result of Sjögren, if (K , ρ) is an e.c. G -field, then

Gal(K ) ∼= ker
(˜̂
G → Ĝ

)
,

where for a profinite group H, the map H̃ → H is the
universal Frattini cover.

Analogy: for “G = Ĝa”, we get differentially closed
(Hasse-Schmidt) fields.
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The theory G -TCF

Definition

If the class of existentially closed G -fields is elementary, then we
call the resulting theory G -TCF and say that G -TCF exists.

Example

For G = {1}, we get G -TCF = ACF.

For G = Fm (free group), we get G -TCF = ACFAm.

If G is finite, then G -TCF exists (Sjögren, independently
Hoffmann-K.)

(Z×Z)-TCF does not exist (Hrushovski).
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Axioms for ACFA

We fix now a difference field (K , σ), i.e. (G , ρ) = (Z, 1) (or, for
technical reasons, (G , ρ) = (Z, 0, 1)).

By a variety, we always mean an affine K -variety which is
K -irreducible and K -reduced (i.e. a prime ideal of K [X̄ ]).

For any variety V , we also have the variety σV and the
bijection (not a morphism!)

σV : V (K )→ σV (K ).

A pair of varieties (V ,W ) is called a Z-pair, if W ⊆ V × σV
and the projections W → V ,W → σV are dominant.

Axioms for ACFA (Chatzidakis-Hrushovski)

The difference field (K , σ) is e.c. if and only if for any Z-pair
(V ,W ), there is a ∈ V (K ) such that (a, σV (a)) ∈W (K ).
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Axioms for G -TCF, G -finite

Let G = {ρ1 = 1, . . . , ρe} be a finite group and (K , ρ) be a G -field.

Definition of G -pair

A pair of varieties (V ,W ) is a G -pair, if:

W ⊆ ρ1V × . . .× ρeV ;

all projections W → ρiV are dominant;

Iterativity Condition: for any i , we have ρiW = πi (W ), where

πi : ρ1V × . . .× ρeV → ρiρ1V × . . .× ρiρeV

is the appropriate coordinate permutation.

Axioms for G -TCF, G finite (Hoffmann-K.)

The G -field (K , ρ) is e.c. if and only if for any G -pair (V ,W ),
there is a ∈ V (K ) such that

((ρ1)V (a), . . . , (ρe)V (a)) ∈W (K ).
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Our strategy 1

Find a generalization of the known results (mentioned above)
for free groups and finite groups.

Natural class of groups for such a generalization: virtually free
groups.

For a fixed (G , ρ), the general scheme of axioms should be as
follows: for any G -pair (V ,W ), there is a ∈ V (K ) such that

ρV (a) := ((ρ1)V (a), . . . , (ρm)V (a)) ∈W (K ).

Hence one needs to find the right notion of a G -pair.

G -pairs in general

A pair of varieties (V ,W ) will be called a G -pair, if:

W ⊆ ρV := ρ1V × . . .× ρmV ;

all projections W → ρiV are dominant;

Iterativity Condition: to be found.
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Our strategy 2

We need to find a good Iterativity Condition for a virtually free,
finitely generated group (G , ρ).

G free: trivial Iterativity Condition.

G finite: Iterativity Condition as before.

We need a procedure to obtain virtually free groups from finite
groups, luckily such a procedure exists and gives the right
Iterativity Condition.

Theorem (Karrass, Pietrowski and Solitar)

Let H be a finitely generated group. TFAE:

H is virtually free,

H is isomorphic to the fundamental group of a finite graph of
finite groups.
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Bass-Serre theory

Graph of groups (slightly simplified)

A graph of groups G (−) is a connected graph (V, E) together
with:

a group Gi for each vertex i ∈ V;

a group Aij for each edge (i , j) ∈ E together with
monomorphisms Aij → Gi ,Aij → Gj .

Fundamental group

For a fixed maximal subtree T of (V, E), the fundamental group of
(G (−), T ) (denoted by π1(G (−), T )) can be obtained by
successively performing:

one free product with amalgamation for each edge in T ;

and then one HNN extension for each edge not in T .

π1(G (−), T ) does not depend on the choice of T (up to ∼=).
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Iterativity Condition for amalgamated products

Let G = G1 ∗ G2, where Gi are finite. We define ρ = ρ1 ∪ ρ2,
where ρi = Gi and the neutral elements of Gi are identified in ρ.
We also define the projection morphisms pi : ρV → ρiV .

Iterativity Condition for G1 ∗ G2

W ⊆ ρV and dominance conditions;

(V , pi (W )) is a Gi -pair for i = 1, 2 (up to Zariski closure).

Let G = π1(G (−)), where G (−) is a tree of groups. We take
ρ =

⋃
i∈V Gi , where for (i , j) ∈ E , Gi is identified with Gj along Aij .

Iterativity Condition for fundamental group of tree of groups

W ⊆ ρV and dominance conditions;

(V , pi (W )) is a Gi -pair for all i ∈ V (up to Zariski closure).
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Iterativity Condition for HNN extensions

Let C2 × C2 = {1, σ, τ, γ} and consider the following:

α : {1, σ} ∼= {1, τ}, G := (C2 × C2) ∗α .

Then the crucial relation defining G is σt = tτ . We take:

ρ := (1, σ, τ, γ, t, tσ, tτ, tγ);

ρ0 := (1, σ, τ, γ);

tρ0 := (t, tσ, tτ, tγ).

Iterativity Condition for (C2 × C2)∗α
t (pρ0(W )) = ptρ0(W ).

(V , pρ0(W )) is a (C2 × C2)-pair.
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Main Theorem

We find a complicated Iterative Condition for virtually free groups
using the conditions from the two previous slides as building blocks.

Theorem (Beyarslan-K.)

If G is finitely generated and virtually free, then G-TCF exists.

Properties of G -TCF

If G is finite, then G -TCF is supersimple of finite rank(=|G |).

If G is infinite and free, then G -TCF is simple.

Sjögren: for any G , if (K , ρ) is an e.c. G -field then K is PAC
and KG is PAC.

Chatzidakis: for a PAC field K , the theory Th(K ) is simple iff
K is bounded (i.e. Gal(K ) is small).
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New theories are not simple

Theorem (Beyarslan-K.)

Assume that G is finitely generated, virtually free, infinite and not
free. Then the following profinite group

ker
(˜̂
G → Ĝ

)
is not small.

Corollary

Putting everything together, we get the following.

If G is finitely generated virtually free, then the theory G -TCF
is simple if and only if G is finite or G is free.

If G is finitely generated, virtually free, infinite and not free,
then the theory G -TCF is not even NTP2.

Maybe these theories are NSOP...
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Negative results

Hrushovski showed that (Z×Z)-TCF does not exists.

Modifying his proof, we show that (ZoZ)-TCF does not
exists.

Actually, in both cases the proof gives that there is no
ℵ0-saturated e.c. model.

The proof is quite mysterious. The action of our group on
primitive 3rd roots of unity in a saturated model yields a
contradiction.

Hrushovski has also an argument for (as I learnt this morning):
if Z×Z embeds into G , then G -TCF does not exist.
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Two conjectures

Conjecture 1

Suppose that G is finitely generated. Then the theory G -TCF
exists iff G is virtually free.

There is a surprisingly long list of equivalent conditions for a
group to be virtually free. It would be interesting to have one
more coming from model theory.

Main challenge for a proof: infinite Burnside groups (finitely
generated and of bounded exponent).

Conjecture 2

Let G be an arbitrary group (e.g. G = (Q,+)). Then the theory
G -TCF exists iff G is locally virtually free.

Remark

Q-TCF exists (Medvedev).

Kowalski Model theory of Galois actions


