

Model theory of Galois actions

(joint work with Özlem Beyarslan)

Piotr Kowalski

Instytut Matematyczny
Uniwersytetu Wrocławskiego

*Workshop on Differential Galois Theory and Differential
Algebraic Groups*

The Fields Institute, Toronto, July 24 - 28, 2017

We fix a finitely generated (marked) group

$$G = \langle \rho \rangle, \quad \rho = (\rho_1, \dots, \rho_m).$$

By a **G -field**, we mean a field together with a Galois action by G .
Similarly, we define **G -field extensions**, **G -rings**, etc.

We consider a G -field as a first-order structure in the following way

$$\mathbf{K} = (K, +, -, \cdot, \rho_1, \dots, \rho_m).$$

Note that any ρ_i above denotes *three* things at the same time:

- an element of G ,
- a function from K to K ,
- a formal function symbol.

Let us fix a G -field (K, ρ) .

Systems of G -polynomial equations

Let $x = (x_1, \dots, x_n)$ be a tuple of variables and $\varphi(x)$ be a **system of G -polynomial equations over K**

$$\varphi(x) : F_1(g_1(x_1), \dots, g_n(x_n)) = 0, \dots, F_n(g_1(x_1), \dots, g_n(x_n)) = 0$$

for some $g_1, \dots, g_n \in G$ and $F_1, \dots, F_n \in K[X_1, \dots, X_n]$.

Existentially closed G -fields

The G -field (K, ρ) is **existentially closed (e.c.)** if any system $\varphi(x)$ of G -polynomial equations over K which is solvable in a G -extension of (K, ρ) is already solvable in (K, ρ) .

- Any G -field has an e.c. G -extension.
- For $G = \{1\}$, e.c. G -fields coincide with algebraically closed fields.
- For $G = \mathbb{Z}$, e.c. G -fields coincide with *transformally* (or *difference*) *closed fields*.
- It often happens that (K, ρ) is e.c., but K is *not* algebraically closed. By a result of Sjögren, if (K, ρ) is an e.c. G -field, then

$$\text{Gal}(K) \cong \ker \left(\widetilde{\hat{G}} \rightarrow \hat{G} \right),$$

where for a profinite group H , the map $\widetilde{H} \rightarrow H$ is the **universal Frattini cover**.

- Analogy: for “ $G = \widehat{\mathbb{G}_{\text{a}}}$ ”, we get differentially closed (Hasse-Schmidt) fields.

Definition

If the class of existentially closed G -fields is *elementary*, then we call the resulting theory **G -TCF** and say that **G -TCF exists**.

Example

- For $G = \{1\}$, we get G -TCF = ACF.
- For $G = F_m$ (free group), we get G -TCF = ACFA _{m} .
- If G is finite, then G -TCF exists (Sjögren, independently Hoffmann-K.)
- $(\mathbb{Z} \times \mathbb{Z})$ -TCF does *not* exist (Hrushovski).

Axioms for ACFA

We fix now a difference field (K, σ) , i.e. $(G, \rho) = (\mathbb{Z}, 1)$ (or, for technical reasons, $(G, \rho) = (\mathbb{Z}, 0, 1)$).

- By a **variety**, we always mean an affine K -variety which is K -irreducible and K -reduced (i.e. a prime ideal of $K[\bar{X}]$).
- For any variety V , we also have the variety ${}^\sigma V$ and the bijection (not a morphism!)

$$\sigma_V : V(K) \rightarrow {}^\sigma V(K).$$

- A pair of varieties (V, W) is called a **\mathbb{Z} -pair**, if $W \subseteq V \times {}^\sigma V$ and the projections $W \rightarrow V$, $W \rightarrow {}^\sigma V$ are dominant.

Axioms for ACFA (Chatzidakis-Hrushovski)

The difference field (K, σ) is e.c. if and only if for any \mathbb{Z} -pair (V, W) , there is $a \in V(K)$ such that $(a, \sigma_V(a)) \in W(K)$.

Axioms for G -TCF, G -finite

Let $G = \{\rho_1 = 1, \dots, \rho_e\}$ be a finite group and (K, ρ) be a G -field.

Definition of G -pair

A pair of varieties (V, W) is a **G -pair**, if:

- $W \subseteq^{\rho_1} V \times \dots \times^{\rho_e} V$;
- all projections $W \rightarrow^{\rho_i} V$ are dominant;
- **Iterativity Condition**: for any i , we have ${}^{\rho_i} W = \pi_i(W)$, where

$$\pi_i : {}^{\rho_1} V \times \dots \times^{\rho_e} V \rightarrow {}^{\rho_i \rho_1} V \times \dots \times^{\rho_i \rho_e} V$$

is the appropriate coordinate permutation.

Axioms for G -TCF, G finite (Hoffmann-K.)

The G -field (K, ρ) is e.c. if and only if for any G -pair (V, W) , there is $a \in V(K)$ such that

$$((\rho_1)_V(a), \dots, (\rho_e)_V(a)) \in W(K).$$

Our strategy 1

- Find a generalization of the known results (mentioned above) for free groups and finite groups.
- Natural class of groups for such a generalization: *virtually free* groups.
- For a fixed (G, ρ) , the general scheme of axioms should be as follows: for any G -pair (V, W) , there is $a \in V(K)$ such that

$$\rho_V(a) := ((\rho_1)_V(a), \dots, (\rho_m)_V(a)) \in W(K).$$

Hence one needs to find the right notion of a G -pair.

G -pairs in general

A pair of varieties (V, W) will be called a **G -pair**, if:

- $W \subseteq {}^{\rho}V := {}^{\rho_1}V \times \dots \times {}^{\rho_m}V$;
- all projections $W \rightarrow {}^{\rho_i}V$ are dominant;
- **Iterativity Condition**: to be found.

Our strategy 2

We need to find a good Iterativity Condition for a virtually free, finitely generated group (G, ρ) .

- G free: trivial Iterativity Condition.
- G finite: Iterativity Condition as before.

We need a procedure to obtain virtually free groups from finite groups, luckily such a procedure exists and gives the right Iterativity Condition.

Theorem (Karrass, Pietrowski and Solitar)

Let H be a finitely generated group. TFAE:

- H is virtually free,
- H is isomorphic to the **fundamental group** of a finite **graph of finite groups**.

Graph of groups (slightly simplified)

A **graph of groups** $G(-)$ is a connected graph $(\mathcal{V}, \mathcal{E})$ together with:

- a group G_i for each vertex $i \in \mathcal{V}$;
- a group A_{ij} for each edge $(i, j) \in \mathcal{E}$ together with monomorphisms $A_{ij} \rightarrow G_i, A_{ij} \rightarrow G_j$.

Fundamental group

For a fixed maximal subtree \mathcal{T} of $(\mathcal{V}, \mathcal{E})$, the **fundamental group** of $(G(-), \mathcal{T})$ (denoted by $\pi_1(G(-), \mathcal{T})$) can be obtained by successively performing:

- one free product with amalgamation for each edge in \mathcal{T} ;
- and then one HNN extension for each edge not in \mathcal{T} .

$\pi_1(G(-), \mathcal{T})$ does not depend on the choice of \mathcal{T} (up to \cong).

Let $G = G_1 * G_2$, where G_i are finite. We define $\rho = \rho_1 \cup \rho_2$, where $\rho_i = G_i$ and the neutral elements of G_i are identified in ρ . We also define the projection morphisms $p_i : {}^\rho V \rightarrow {}^{\rho_i} V$.

Iterativity Condition for $G_1 * G_2$

- $W \subseteq {}^\rho V$ and dominance conditions;
- $(V, p_i(W))$ is a G_i -pair for $i = 1, 2$ (up to Zariski closure).

Let $G = \pi_1(G(-))$, where $G(-)$ is a tree of groups. We take $\rho = \bigcup_{i \in \mathcal{V}} G_i$, where for $(i, j) \in \mathcal{E}$, G_i is identified with G_j along A_{ij} .

Iterativity Condition for fundamental group of tree of groups

- $W \subseteq {}^\rho V$ and dominance conditions;
- $(V, p_i(W))$ is a G_i -pair for all $i \in \mathcal{V}$ (up to Zariski closure).

Iterativity Condition for HNN extensions

Let $C_2 \times C_2 = \{1, \sigma, \tau, \gamma\}$ and consider the following:

$$\alpha : \{1, \sigma\} \cong \{1, \tau\}, \quad G := (C_2 \times C_2) *_{\alpha}.$$

Then the crucial relation defining G is $\sigma t = t\tau$. We take:

- $\rho := (1, \sigma, \tau, \gamma, t, t\sigma, t\tau, t\gamma);$
- $\rho_0 := (1, \sigma, \tau, \gamma);$
- $t\rho_0 := (t, t\sigma, t\tau, t\gamma).$

Iterativity Condition for $(C_2 \times C_2) *_{\alpha}$

- ${}^t(p_{\rho_0}(W)) = p_{t\rho_0}(W).$
- $(V, p_{\rho_0}(W))$ is a $(C_2 \times C_2)$ -pair.

We find a complicated Iterative Condition for virtually free groups using the conditions from the two previous slides as building blocks.

Theorem (Beyarslan-K.)

If G is finitely generated and virtually free, then G -TCF exists.

Properties of G -TCF

- If G is finite, then G -TCF is supersimple of finite rank($=|G|$).
- If G is infinite and free, then G -TCF is simple.
- Sjögren: for any G , if (K, ρ) is an e.c. G -field then K is PAC and K^G is PAC.
- Chatzidakis: for a PAC field K , the theory $\text{Th}(K)$ is simple iff K is bounded (i.e. $\text{Gal}(K)$ is small).

New theories are not simple

Theorem (Beyarslan-K.)

Assume that G is finitely generated, virtually free, infinite and not free. Then the following profinite group

$$\ker \left(\widetilde{\hat{G}} \rightarrow \hat{G} \right)$$

is not small.

Corollary

Putting everything together, we get the following.

- If G is finitely generated virtually free, then the theory G -TCF is simple if and only if G is finite or G is free.
- If G is finitely generated, virtually free, infinite and not free, then the theory G -TCF is not even NTP_2 .

Maybe these theories are NSOP...

Negative results

- Hrushovski showed that $(\mathbb{Z} \times \mathbb{Z})$ -TCF does not exists.
- Modifying his proof, we show that $(\mathbb{Z} \rtimes \mathbb{Z})$ -TCF does not exists.
- Actually, in both cases the proof gives that there is no \aleph_0 -saturated e.c. model.
- The proof is quite mysterious. The action of our group on primitive 3rd roots of unity in a saturated model yields a contradiction.
- Hrushovski has also an argument for (as I learnt this morning): if $\mathbb{Z} \times \mathbb{Z}$ embeds into G , then G -TCF does not exist.

Two conjectures

Conjecture 1

Suppose that G is finitely generated. Then the theory $G\text{-TCF}$ exists iff G is virtually free.

- There is a surprisingly long list of equivalent conditions for a group to be virtually free. It would be interesting to have one more coming from model theory.
- Main challenge for a proof: infinite Burnside groups (finitely generated and of bounded exponent).

Conjecture 2

Let G be an arbitrary group (e.g. $G = (\mathbb{Q}, +)$). Then the theory $G\text{-TCF}$ exists iff G is locally virtually free.

Remark

$\mathbb{Q}\text{-TCF}$ exists (Medvedev).

