Galois actions of finitely generated groups rarely have model companions (joint work with Özlem Beyarslan)

Piotr Kowalski

Instytut Matematyczny Uniwersytetu Wrocławskiego

Logic Colloquium Universität Wien 14 December 2023.

Existentially closed models

Let us fix a language L and let T be an L-theory.

Definition

Let $M \models T$. We say that M is an existentially closed (abbreviated e.c.) model of T, if for any quantifier free L_M -formula $\chi(x)$ and any *L*-extension $M \subseteq N$ of models of T, we have that:

$$N \models \exists x \chi(x)$$
 implies $M \models \exists x \chi(x)$.

Intuitively, all solvable in an extension of M "systems of (in)equations" (parameters from M) can be already solved in M.

Example

- E.c. fields are algebraically closed fields.
- E.c. linear orders are dense linear orders without endpoints.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A theory T is inductive, if for each chain of models of T, its union is also a model of T.

Classical results

- A theory is inductive if and only if it can be axiomatized by ∀∃-sentences.
- ② Assume that *T* is inductive and $M \models T$. Then, there is an *L*-extension $M \subseteq N$ such that *N* is an e.c. model of *T*.

Definition

For an inductive *L*-theory *T*, we call an *L*-theory T^* a model companion of *T* if the class of models of T^* coincides with the class of e.c. models of *T*.

Model companions and non-companionable theories

- The (empty) theory of sets has a model companion, which is the theory of infinite sets.
- The theory of linear orders has a model companion, which is the theory of dense linear orders without endpoints.
- The theory of fields has a model companion, which is the theory of algebraically closed fields.
- The theory of fields with an automorphism has a model companion, which is called ACFA.
- The theory of fields with a derivation has a model companion, which is called DCF.
- The theory of commutative groups has a model companion, which is the theory of commutative divisible groups having infinitely many elements of order p for every prime p.
- The theory of groups has no model companion.
- **③** The theory of commutative rings has no model companion.

Theory of G-fields

- Let us fix a group G.
- We use the following terminology: we call a pair consisting of a ring together with a *G*-action on this ring by a *G*-ring. Similarly, we consider *G*-fields, *G*-ring/*G*-field extensions, etc.
- We define the following language of *G*-rings:

$$L_G := L_{\operatorname{ring}} \cup \{\lambda_g \mid g \in G\},\$$

where each λ_g is a unary function symbol.

• The theory of *G*-fields, abbreviated *G*-TF, is the following:

Theory of fields $\cup \{\lambda_g \circ \lambda_h = \lambda_{gh} \mid g, h \in G\} \cup \{\lambda_e = id_G\}$

 $\cup \{\lambda_g \text{ is a field automorphism } | g \in G\}.$

伺 ト イヨト イヨト

Existence of G-TCF

• The main question is:

Does a model companion of the theory G-TF exist?

- If "Yes", then we call this model companion *G*-TCF and we say that "*G*-TCF exists".
- If G = Z, then Z-TF corresponds to the theory of difference fields and Z-TCF exists (the theory ACFA).
- If G = Z × Z, then (Z × Z)-TF corresponds to the theory of fields with two commuting automorphisms. Quite surprisingly, (Z × Z)-TCF does *not* exist (Hrushovski).
- If we drop the commutativity assumption (that is, we consider actions of the free group F_2), then a model companion exists. Similarly, for any free group F.
- If G is finite, then G-TCF exists (Sjögren and independently Hoffmann, K.).

• The following statement is true.

If the group G is finite or free, then G-TCF exists.

- Therefore, Özlem and I asked: what about virtually free G? (That is: G has a free subgroup of finite index.)
- We also "answered".

Thm 3.26 Model theory of fields w/ v.f. group actions PLMS 2019

If G is finitely generated and virtually free, then G-TCF exists.

Unfortunately

- The proof of "Thm 3.26" above is wrong.
- The statement of "Thm 3.26" above is (very) false.

We often used the following false claim:

A (fibered) product of K-irreducible K-varieties is K-irreducible.

It is true only when ${\cal K}$ is algebraically closed and when the product is not fibered.

Example

Since

$$\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}\cong\mathbb{C}\times\mathbb{C},$$

it is not a domain!

 $\mathbb{C} \iff \operatorname{Spec}(\mathbb{R}[X]/(X^2+1))$: \mathbb{R} -irreducible \mathbb{R} -variety.

• The fibered product $\mathbb{A}^1 \times_{\mathbb{A}^1} \mathbb{A}^1$ with maps $x \mapsto x^2$ coincides with $\{(x, y) \in \mathbb{A}^2 \mid x^2 = y^2\}$ which is the union of two lines.

Theorem (Beyarslan, K; BLMS; published online 7 Dec. 2023)

Assume that G is finitely generated and virtually free. Then: G-TCF exists if and only if G is finite or G is free.

Therefore, in all "new" cases G-TCF does not exist!

Strong negation

- If α is a sentence of the form ∀xφ(x), then let us call the sentence ∀x¬φ(x) a strong negation of α.
- Names like a "common folk negation" or a "politician's negation" were suggested as well.
- The BLMS statement is a strong negation of the PLMS statement if the universal quantifier means: "For all 'new' cases".

Proof 1: profinite groups

- For a perfect field K, we denote by Gal(K) the absolute Galois group Aut(K^{alg}/K) of K. It is a profinite group.
- We are interested in Gal(K) for e.c. *G*-fields (some fixed *G*).
- To describe them, we need the notion of a Frattini cover $f : \mathcal{G} \twoheadrightarrow \mathcal{H}$ (no proper closed $\mathcal{G}_0 < \mathcal{G}$ such that $f(\mathcal{G}_0) = \mathcal{H}$).
- There is a universal Frattini cover $\widetilde{\mathcal{G}} \to \mathcal{G}$, e.g. $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$.

Theorem (Sjögren)

If G is finitely generated and K is an e.c. G-field, then there is:

$$\operatorname{Gal}(\mathcal{K}) \twoheadrightarrow \mathcal{K}_{\mathcal{G}} := \ker \left(\widetilde{\widehat{\mathcal{G}}} \to \widehat{\mathcal{G}}\right),$$

where \widehat{G} is the profinite completion of G.

Lemma 1

If G is finitely generated and \mathcal{K}_G is not small (there is n > 0 s. t. there are infinitely many closed subgroups of \mathcal{K}_G if index n), then $Gal(\mathcal{K})$ is not small.

Lemma 2

If G is countable and K is an e.c. G-field, then Gal(K) is a separable topological space (Gal(K) has a countable dense subset).

Morally:

- Lemma 1 says that "Gal(K) is large";
- Lemma 2 says that "Gal(K) is not large".

Theorem (Beyarslan, K.)

If G is finitely generated and \mathcal{K}_G is not small, then G-TCF does not exist.

Proof

Assume that G-TCF exists. Lemma 1 gives an e.c. G-field K s.t.

$$|\operatorname{Gal}(K)| > \beth_2 := 2^{2^{\aleph_0}}.$$

Lemma 2 says that $|\operatorname{Gal}(K)| \leq \beth_2$, since \beth_2 is the maximal cardinality of a separable Hausdorff topological space.

The above theorem provide a general criterion for non-companionability which is not common (and nice!).

Corollary

If G is infinite, finitely generated, virtually free and not free, then G-TCF does not exist.

It follows from the last theorem and the following.

Lemma 3 (PLMS paper!)

If G is infinite, finitely generated, virtually free and not free, then \mathcal{K}_G is not small.

- We "used" Lemma 3 in the PLMS paper to "show" how the (non-existing) theory *G*-TCF fits to Shelah's dividing lines.
- Now, the dividing lines are much stronger: existence vs non-existence.

Theorem (Beyarslan, K.)

If N is finitely generated, infinite, nilpotent and not cyclic, then \mathcal{K}_N is not small.

Corollary

For *N* as above, *N*-TCF does not exist. In particular, we get another proof of Hrushovski's result about the non-existence of $(\mathbb{Z} \times \mathbb{Z})$ -TCF (or: the theory of fields with two commuting automorphisms has no model companion).

Questions and the commutative torsion case

• Assume that G is infinite and finitely generated. Is it true that:

G-TCF exists if and only if G is free?

It is true for G virtually free or for G nilpotent. Problematic cases: "strange groups" like Tarski monsters.

• Suppose that *H* < *G* and *G*-TCF exists. Is it true that *H*-TCF exists?

Regarding other types of groups, we proved the following.

Theorem (Beyarslan, K.; J. Inst. Math. Jussieu 2023)

If A is a commutative torsion group, then: A-TCF exists if and only if for each prime p, the p-primary part of A is either finite or it is the Prüfer p-group.