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Existentially closed models

Let us fix a language L and let T be an L-theory.

Definition

Let M |= T . We say that M is an existentially closed (abbreviated
e.c.) model of T , if for any quantifier free LM -formula χ(x) and
any L-extension M ⊆ N of models of T , we have that:

N |= ∃xχ(x) implies M |= ∃xχ(x).

Intuitively, all solvable in an extension of M “systems of
(in)equations” (parameters from M) can be already solved in M.

Example

E.c. fields are algebraically closed fields.

E.c. linear orders are dense linear orders without endpoints.
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Inductive theories and model companion

Definition

A theory T is inductive, if for each chain of models of T , its union
is also a model of T .

Classical results

1 A theory is inductive if and only if it can be axiomatized by
∀∃-sentences.

2 Assume that T is inductive and M |= T . Then, there is an
L-extension M ⊆ N such that N is an e.c. model of T .

Definition

For an inductive L-theory T , we call an L-theory T ∗ a model
companion of T if the class of models of T ∗ coincides with the
class of e.c. models of T .
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Model companions and non-companionable theories

1 The (empty) theory of sets has a model companion, which is
the theory of infinite sets.

2 The theory of linear orders has a model companion, which is
the theory of dense linear orders without endpoints.

3 The theory of fields has a model companion, which is the
theory of algebraically closed fields.

4 The theory of fields with an automorphism has a model
companion, which is called ACFA.

5 The theory of fields with a derivation has a model companion,
which is called DCF.

6 The theory of commutative groups has a model companion,
which is the theory of commutative divisible groups having
infinitely many elements of order p for every prime p.

7 The theory of groups has no model companion.

8 The theory of commutative rings has no model companion.
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Theory of G -fields

Let us fix a group G .

We use the following terminology: we call a pair consisting of
a ring together with a G -action on this ring by a G -ring.
Similarly, we consider G -fields, G -ring/G -field extensions, etc.

We define the following language of G -rings:

LG := Lring ∪ {λg | g ∈ G},

where each λg is a unary function symbol.

The theory of G -fields, abbreviated G -TF, is the following:

Theory of fields ∪ {λg ◦λh = λgh | g , h ∈ G} ∪ {λe = idG}

∪ {λg is a field automorphism | g ∈ G}.
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Existence of G -TCF

The main question is:

Does a model companion of the theory G -TF exist?

If “Yes”, then we call this model companion G -TCF and we
say that “G -TCF exists”.

If G = Z, then Z-TF corresponds to the theory of difference
fields and Z-TCF exists (the theory ACFA).

If G = Z×Z, then (Z×Z)-TF corresponds to the theory of
fields with two commuting automorphisms. Quite surprisingly,
(Z×Z)-TCF does not exist (Hrushovski).

If we drop the commutativity assumption (that is, we consider
actions of the free group F2), then a model companion exists.
Similarly, for any free group F .

If G is finite, then G -TCF exists (Sjögren and independently
Hoffmann, K.).
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Our mistake

The following statement is true.

If the group G is finite or free, then G -TCF exists.

Therefore, Özlem and I asked: what about virtually free G?
(That is: G has a free subgroup of finite index.)

We also “answered”.

Thm 3.26 Model theory of fields w/ v.f. group actions PLMS 2019

If G is finitely generated and virtually free, then G -TCF exists.

Unfortunately

The proof of “Thm 3.26” above is wrong.

The statement of “Thm 3.26” above is (very) false.
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Why the proof is wrong?

We often used the following false claim:

A (fibered) product of K -irreducible K -varieties is K -irreducible.

It is true only when K is algebraically closed and when the product
is not fibered.

Example

Since
C⊗R C ∼= C× C,

it is not a domain!
C ! Spec(R[X ]/(X 2 + 1)): R-irreducible R-variety.

The fibered product A1 ×A1 A1 with maps x 7→ x2 coincides
with {(x , y) ∈ A2 | x2 = y2} which is the union of two lines.
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What is true?

Theorem (Beyarslan, K; BLMS; published online 7 Dec. 2023)

Assume that G is finitely generated and virtually free. Then:
G -TCF exists if and only if G is finite or G is free.

Therefore, in all “new” cases G -TCF does not exist!

Strong negation

If α is a sentence of the form ∀xϕ(x), then let us call the
sentence ∀x¬ϕ(x) a strong negation of α.

Names like a “common folk negation” or a “politician’s
negation” were suggested as well.

The BLMS statement is a strong negation of the PLMS
statement if the universal quantifier means:
“For all ‘new’ cases”.
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Proof 1: profinite groups

For a perfect field K , we denote by Gal(K ) the absolute
Galois group Aut(K alg/K ) of K . It is a profinite group.

We are interested in Gal(K ) for e.c. G -fields (some fixed G ).

To describe them, we need the notion of a Frattini cover
f : G � H (no proper closed G0 < G such that f (G0) = H).

There is a universal Frattini cover G̃ → G, e.g. Zp = Z̃/pZ.

Theorem (Sjögren)

If G is finitely generated and K is an e.c. G -field, then there is:

Gal(K )� KG := ker

(˜̂
G → Ĝ

)
,

where Ĝ is the profinite completion of G .
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Proof 2: two lemmas

Lemma 1

If G is finitely generated and KG is not small (there is n > 0 s. t.
there are infinitely many closed subgroups of KG if index n), then
Gal(K ) is not small.

Lemma 2

If G is countable and K is an e.c. G -field, then Gal(K ) is a
separable topological space (Gal(K ) has a countable dense subset).

Morally:

Lemma 1 says that “Gal(K ) is large”;

Lemma 2 says that “Gal(K ) is not large”.
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Proof 3: Main result and strong negation

Theorem (Beyarslan, K.)

If G is finitely generated and KG is not small, then G -TCF does
not exist.

Proof

Assume that G -TCF exists. Lemma 1 gives an e.c. G -field K s.t.

|Gal(K )| > i2 := 22ℵ0 .

Lemma 2 says that |Gal(K )| 6 i2, since i2 is the maximal
cardinality of a separable Hausdorff topological space.

The above theorem provide a general criterion for
non-companionability which is not common (and nice!).
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Proof 4: Strong negation

Corollary

If G is infinite, finitely generated, virtually free and not free, then
G -TCF does not exist.

It follows from the last theorem and the following.

Lemma 3 (PLMS paper!)

If G is infinite, finitely generated, virtually free and not free, then
KG is not small.

We “used” Lemma 3 in the PLMS paper to “show” how the
(non-existing) theory G -TCF fits to Shelah’s dividing lines.

Now, the dividing lines are much stronger: existence vs
non-existence.
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Nilpotent case and Hrushovski’s result

Theorem (Beyarslan, K.)

If N is finitely generated, infinite, nilpotent and not cyclic, then
KN is not small.

Corollary

For N as above, N-TCF does not exist. In particular, we get
another proof of Hrushovski’s result about the non-existence of
(Z×Z)-TCF (or: the theory of fields with two commuting
automorphisms has no model companion).
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Questions and the commutative torsion case

Assume that G is infinite and finitely generated. Is it true
that:

G -TCF exists if and only if G is free?

It is true for G virtually free or for G nilpotent.
Problematic cases: “strange groups” like Tarski monsters.

Suppose that H < G and G -TCF exists. Is it true that
H-TCF exists?

Regarding other types of groups, we proved the following.

Theorem (Beyarslan, K.; J. Inst. Math. Jussieu 2023)

If A is a commutative torsion group, then:
A-TCF exists if and only if for each prime p, the p-primary part of
A is either finite or it is the Prüfer p-group.
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