
POSITIVE CHARACTERISTIC AX-SCHANUEL

PIOTR KOWALSKI♠

Abstract. This expository paper is written in celebration of Boris
Zilber’s 75th birthday. We discuss Ax-Schanuel type statements
focusing on the case of positive characteristic.

1. Introduction

During the Spring 2005 Isaac Newton Institute Program “Model
Theory and Applications to Algebra and Analysis” in Cambridge, I
learnt that I will be a MODNET postdoc with Boris Zilber in Oxford
for the academic year 2005/2006. Still in Cambridge, Boris suggested
to me to start thinking on “positive characteristic versions of Ax’s the-
orem”. In this expository paper, I will describe what has happened
next.

It may be a good moment for a general disclaimer. This is an expos-
itory paper representing my experience with respect to the Boris’ sug-
gestion above and I do not claim that this paper describes adequately
the state of the art in the vast area of Ax-Schanuel type problems. In
particular, comparatively very little will be said about the amazing de-
velopments of Jonathan Pila (and many others) regarding the modular
version of Ax-Schanuel and its applications to diophantine problems,
most notable the André-Oort conjecture. I will write more about it in
Section 2.

This paper is organized as follows. In Section 2, we describe the
history of this circle of problems in the case of characteristic 0. In
Section 3, we focus on the positive characteristic case and present some
of the results I obtained regarding to the Boris’ suggestion above. In
Section 4, we speculate on some recent ideas regarding general forms
of Ax-Schanuel and its Hasse-Schmidt differential versions.

I would like to thank Jakub Gogolok for his comments and to the
referee for the very careful and useful report.
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2. Characteristic zero

In this section, we summarize the characteristic 0 situation regarding
the Ax-Schanuel problems. The disclaimer from the Introduction above
applies mostly here.

2.1. Results. In 1960’s Schanuel formulated two conjectures [21, pages
30–31]: one about transcendence of complex numbers [3, (S)] and one
about transcendence of power series [3, (SP)]. We state them below.

Schanuel’s Conjecture (Complex Numbers)
Let x1, . . . , xn P C be linearly independent over Q. Then

trdegQpx1, . . . , xn, e
x1 , . . . , exnq ¥ n.

Schanuel’s Conjecture (Power Series)
Let x1, . . . , xn P XCJXK be linearly independent over Q. Then

trdegCpXqpx1, . . . , xn, e
x1 , . . . , exnq ¥ n.

Complex Numbers Schanuel’s Conjecture is open even for n � 2,
since (using Euler’s identity eiπ � 1 � 0) it covers the open problem of
algebraic independence of π and e and it is even still unknown whether
π � e is irrational (it is phrased as a “Candidate for the Most Embar-
rassing Transcendence Question in Characteristic Zero” in [8])! Power
Series Schanuel’s Conjecture was proved by Ax ([3, (SP)]).

Ax also showed in [3] the following differential version of Power Se-
ries Schanuel’s Conjecture, which was actually used by Ax to show the
other statements from [3].

Differential Ax-Schanuel Theorem [3, (SD)]
Let pK, Bq be a differential field of characteristic 0 and C be its field of
constants. For x1, . . . , xn P K and y1, . . . , yn P K

�, if

Bx1 �
By1
y1
, . . . , Bxn �

Byn
yn

and Bx1, . . . , Bxn are Q-linearly independent, then

trdegCpx1, . . . , xn, y1, . . . , ynq ¥ n� 1.

Remark 2.1. There are the following passages between the power
series and the differential version of Ax’s theorem above.

(1) Since the ring of power series has a natural differential structure,
the differential version implies the power series version.



POSITIVE CHARACTERISTIC AX-SCHANUEL 3

(2) Going the other way is more subtle. Seidenberg’s embedding
theorem [28] says that any finitely generated differential field of
characteristic 0 differentially embeds into the differential field
of meromorphic functions on an open subset of C. Using this
theorem, one can reduce the differential version of Ax’s theo-
rem to the power series one (this is explained in detail around
Theorem 4.1 in [14] and in Section 2.5 in [26]).

These passages apply to the more complicated cases of analytic (or
formal) Ax-Schanuel statements versus the differential ones as well.
Such more complicated cases will be described below.

In a subsequent paper written one year later [4], Ax proved the fol-
lowing general geometric result about the dimension of intersections of
algebraic subvarieties of complex algebraic groups with analytic sub-
groups.

Ax’s theorem on the dimension of intersections [4, Theorem
1]
Let G be an algebraic group over the field of complex numbers C. Let
A be a complex analytic subgroup of GpCq and V be an irreducible
algebraic subvariety of G over C. We assume that K :� A X V pCq is
Zariski dense in V pCq. Then there is an analytic subgroup B � GpCq
containing V pCq and A such that

dimpBq ¤ dimpAq � dimpV q � dimpKq.

This theorem implies Power Series Schanuel’s Conjecture by taking:

 G as the product of the vector group Gn
a and the torus Gn

m,
 A as the n-th Cartesian power of the graph of the exponential

map,
 V as the algebraic locus of the tuple px1, . . . , xn, e

x1 , . . . , exnq.

Ax’s theorem on the dimension of intersections applies also (more gen-
erally) to the case of the exponential map on a semi-abelian variety [4,
Theorem 3]. The consequences of Ax’s theorem on the dimension of
intersections go beyond the case of the exponential map, for example
this theorem applies to the case of analytic maps between the mul-
tiplicative group and an elliptic curve. We state it precisely below,
since this statement is amenable for a possible transfer to the positive
characteristic case (see Remark 2.4).

Theorem 2.2. Let

γ : GmpCq Ñ EpCq
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be an analytic epimorphism where E is an elliptic curve. Let x1, . . . , xn P
1 �XCJXK be multiplicatively independent. Then

trdegCpXq px1, . . . , xn, γpx1q, . . . , γpxnqq ¥ n.

After Ax’s work in 1970’s, Brownawell and Kubota [9] proved a ver-
sion of the differential Ax’s theorem in the case of elliptic curves, and
then Kirby [17] generalized it to arbitrary semi-abelian varieties. These
results were not included in [4], however they are closely related using
the “passages” from Remark 2.1. Bertrand [6] extended [4, Theorem
3] to commutative algebraic groups not having vector quotients (e.g. a
maximal non-split vectorial extensions of a semi-abelian variety).

Differential Ax’s theorem [3, (SD)] is generalized further to “very
non-algebraic formal maps” in [18, Theorem 5.5]. This generalization
includes a differential version of Bertrand’s result and a differential
Ax-Schanuel type result about raising to non-algebraic powers on an
algebraic torus [18, Theorem 6.12]. We state it below in the power series
case (see Remark 2.1), since this statement has a positive characteristic
interpretation (see Remark 2.4). Before the statement, we note that
for x P 1 �XCJXK and α P C, we define

xα :� exppα logpxqq,

where exp, log P QJXK are the standard formal power series corre-
sponding to the exponential and the logarithmic maps.

Theorem 2.3. Suppose that α P C is such that rQpαq : Qs ¡ n, Let
x1, . . . , xn P 1 �XCJXK be multiplicatively independent. Then

trdegCpXq px1, . . . , xn, x
α
1 , . . . , x

α
nq ¥ n.

We will describe now briefly modular analogues of Ax’s theorem. Our
disclaimer from the Introduction applies very much here. Ax-Schanuel
statements may go beyond the context of group homomorphisms, the
first example here is the j-function map:

j : H Ñ C,

where H is the upper half plane. The linear independence assump-
tion from Ax’s theorem is replaced with modular independence. Pila’s
notes [25] contain an excellent comprehensive survey of the state of the
art in this field up to Year 2013. Such results have very important
diophantine applications such as:

 another proof of the Manin-Mumford conjecture ([33]);
 the first unconditional proof of the André-Oort conjecture for
Cn ([24]);
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 a recent proof of the full André-Oort conjecture for Shimura
varieties ([27]);

Following a suggestion by the referee, we would like to point out that
only the Ax-Lindemann-Weierstrass type of results are needed in Manin-
Mumford and André-Oort, while Ax-Schanuel (in fact, a weak form of
it) is used in Zilber-Pink type problems.

In [11], the Ax-Lindemann-Weierstrass theorem with derivatives for
the uniformizing functions of genus zero Fuchsian groups of the first
kind is shown. This result is used in [11] to answer a question of
Painlevé from 1895.

Remark 2.4. We analyze now which statements of the Ax-Schanuel
results discussed above are transferrable to the positive characteristic
case. We would like to mention that all the analytic Ax-Schanuel type
results over C may be replaced with their formal counterparts over an
arbitrary field C, which was already done by Ax: the reader is advised
to compare Ax’s theorem on the dimension of intersections with its
formal counterpart [4, Theorem 3], which will be stated in a more
general form in Section 3. Let us recall the set-up first.

Definition 2.5 (Bochner [7]). An n-dimensional formal group (law)
over C is a tuple of power series F P CJX, Y K�n (|X| � |Y | � |Z| � n)
satisfying:

 F p0, Xq � F pX, 0q � X,
 F pX,F pY, Zqq � F pF pX, Y q, Zq.

A morphism from an n-dimensional formal groupG into anm-dimensional
formal group F is a tuple of power series f P CJXK�m such that:

 F pfpXq, fpY qq � fpGpX, Y qq.

There is a well-known formalization functor G ÞÑ pG (see pages 5 and 13
in [22]) from the category of algebraic groups to the category of formal
groups.

Such characteristic 0 formal statements seem to be transferrable to
the positive characteristic context in the cases when the corresponding
formal maps exist.

(1) The very original version of Ax-Schanuel does not look transfer-
able, since there are no reasonable exponential maps in positive
characteristic (we will briefly touch on the Drinfeld context at
the end of Section 3).

(2) Therefore, other analytic maps need to be considered. “Ana-
lytic” may be replaced with “formal” (as mentioned above) and
then the closest one to the exponential map which survives in
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the case of positive characteristic seems to be the formal iso-
morphism between the multiplicative group and an ordinary
elliptic curve.

(3) The other types of such maps come from raising to powers in
the multiplicative group.

Items p2q and p3q above will be discussed in the positive characteristic
context in Section 3.

2.2. Motivations and applications. In [35], Zilber used Differential
Ax’s Theorem to prove Weak CIT, which is a weak version of Con-
jecture on Intersection with Tori (CIT), which was also stated in [35].
CIT is a finiteness statement about intersections of subtori of a given
torus with certain subvarieties of this torus. Weak CIT was used in [5]
to produce a characteristic 0 bad field. The existence of such a field
was an open problem in model theory for almost 20 years.

Regarding the positive characteristic case, Weak CIT does not hold
and Zilber formulated a conjectural statement in [34] (the very last
statement of [34]). It is still open whether a bad field in the posi-
tive characteristic case exists, however, Wagner showed [31] that its
existence in the case of characteristic p ¡ 0 implies the existence of in-
finitely many p-Mersenne primes, which is an open problem in number
theory, but it is widely believed that there are finitely many of them
(for each individual prime p). Therefore, the existence of bad fields
in positive characteristic looks very unlikely. However, pursuing the
following path of research still looks interesting:

(1) prove positive characteristic versions of Ax-Schanuel;
(2) show a version of Weak CIT in positive characteristic using Item

p1q;
(3) construct a version of a bad field in positive characteristic using

Item p2q;
(4) check the possible number-theoretic consequences of results ob-

tained in Item p3q.

As was mentioned in the previous subsection, Jonathan Pila and others
used Ax-Schanuel type results to show different versions of the André-
Oort conjecture, see e.g. [24], [29], [11], and [27].

There are also model-theoretic consequences of results of Ax-Schanuel
type and we would like to point out some of them.

 In [17], Kirby used his version of an Ax-Schanuel statement
to obtain the complete first order theories of the exponential
differential equations of semiabelian varieties which arise from
an amalgamation construction in the style of Hrushovski.
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 In [2], Aslanyan did a version of the above for the j-function in
place of the exponential function on semiabelian varieties.

 Freitag and Scanlon used Ax-Lindemann-Weierstrass to estab-
lish strong minimality and triviality of the differential equation
of the j-function in [14]. This was generalized by Aslanyan in
[1] to a more general and formal setting.

 In [11] and [10], the authors go in a quite an opposite way: they
first establish strong minimality using differential Galois theory,
then use Zilber’s trichotomy to prove triviality, then use that
to establish Ax-Lindemann-Weierstrass and later Ax-Schanuel.
That is, they give a new proof to Ax-Schanuel for the j-function
and in fact for all Fuchsian automorphic functions.

3. Positive characteristic

The first (to my knowledge) positive characteristic Ax-Schanuel re-
sult concerns additive power series. Interestingly, it is not included in
the cases considered in Remark 2.4, because such formal maps have
no counterpart in the characteristic 0 case, since any additive formal
power series in characteristic zero is linear, so it is “not interesting”.
This positive characteristic additive Ax-Schanuel result is explained in
detail below.

For any commutative algebraic group G, we have the following two
(usually non-commutative) rings:

(1) the ring of algebraic endomorphisms (that is: endomorphisms
of G in the original category of algebraic groups), denoted
EndalgebraicpGq;

(2) the ring of formal endomorphisms (that is: endomorphisms of
the formalization of G, as below Definition 2.5, in the category
of formal groups), denoted EndformalpGq.

Let C be a field of characteristic p ¡ 0 and Ga denote the additive
group scheme over C. We consider the following two rings.

 The ring of additive polynomials over C (with composition),
which we denote by CrFrs. This is also the skew polynomial
ring over C and we have the following ring isomorphism:

EndalgebraicpGaq � CrFrs.

 The ring of additive power series over C (with composition),
which we denote by CJFrK. We have the following ring isomor-
phism:

EndformalpGaq � CJFrK.



8 P. KOWALSKI

These rings are commutative if and only if C � Fp and then they are
also domains (isomorphic to the rings of polynomials or the ring of
power series). We denote the fraction field of FprFrs by FppFrq. We
state below the main theorem of [19].

Ax-Schanuel for additive power series [19, Theorem 1.1]
Let F be an additive power series over Fp and assume that

rFppFrqpF q : FppFrqs ¡ n.

Let x1, . . . , xn P tFpJtK be linearly independent over FprFrs. Then we
have:

trdegFp
px1, . . . , xn, F px1q, . . . , F pxnqq ¥ n� 1.

We will describe a general Ax-Schanuel result from [20], which is valid
in all characteristics. We need two technical assumptions. Before stat-
ing them, we will try to motivate them. One of the crucial properties
(used in the proofs in [4]) of analytic homomorphisms between alge-
braic groups is that they take invariant algebraic differential forms into
invariant algebraic differential forms. The first technical assumption
below, which is absolutely necessary, is both formalizing and gener-
alizing this crucial property. Regarding the second assumption, the
exponential map gives a formal isomorphism between any commuta-
tive algebraic (and even formal) group in the case of characteristic
zero and a Cartesian power of the additive group. This is false in the
positive characteristic case, for example there is no formal isomorphism
between the additive and the multiplicative group (no exponential map
in positive characteristic!). To make the proofs work, we still need to
impose an additional assumption in the positive characteristic case, to
mimic the above characteristic 0 situation. The 1-dimensional group
H in this assumption plays the role of Ga and we need to put some
extra conditions on H which are true for Ga. We would prefer to avoid
this second assumption, however, we were unable to do so in [20].

(1) We define a special formal map as one which “resembles a ho-
momorphism” in the sense that it takes invariant differential
forms into the “usual” differential forms (before taking the com-
pletion, see [20, Def. 3.10]). In the positive characteristic case,
the notion of differential forms has to be replaced by the Vo-
jta’s notion ([30]) of higher differential forms, see [20, Remark
5.18(3)].

(2) We say that a commutative algebraic group A defined over the
field C of characteristic p is “good” (see [20, Def. 3.4]), if there is
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a one-dimensional algebraic group H over C such that we have
the following (in the case of p � 0, we drop Item (c) below).

(a) pA � xHn.

(b) The map Endp pHq Ñ EndCpΩ
inv
H q(� C) is onto.

(c) H is Fp-isotrivial i.e. H � HFr.

To motivate the next result and give a general feeling regarding “what
is it about”, we quote from [20] the following, where “The main theo-
rem of this paper” refers to Theorem 3.1.

“A continuous map between Hausdorff spaces which is constant on
a dense set is constant everywhere. The same principle applies to an
algebraic map between algebraic varieties and to the Zariski topol-
ogy (which is not Hausdorff). However, if we mix categories there is
no reason for this principle to hold, e.g. there are non-constant ana-
lytic maps between algebraic varieties which are constant on a Zariski
dense subset. The main theorem of this paper roughly says that the
principle above can be saved for certain formal maps (resembling ho-
momorphisms) between an algebraic variety and an algebraic group at
the cost of replacing the range of the map with its quotient by a formal
subgroup of the controlled dimension.”

Theorem 3.1. Let V be an algebraic variety, K a Zariski dense formal

subvariety of V , A a “good” commutative algebraic group and F : pV ÑpA a special formal map. Assume F vanishes on K. Then there is a

formal subgroup C ¤ pA such that FppV q � C and

dimpCq ¤ dimpV q � dimpKq.

As a consequence of Theorem 3.1, we obtained in [20] a result which
is parallel to Ax-Schanuel for additive power series, where an additive
power series (that is: a formal endomorphism of the additive group)
is replaced with a “multiplicative” power series (that is: a formal en-
domorphism of the multiplicative group). Let Zp denote the ring of
p-adic integers. By [16, Theorem 20.2.13(i)], we have the following
ring isomorphism:

EndformalpGm,Gmq � Zp.

We obtain an interesting positive characteristic version (see Example
4.15(3) and Theorem 4.16 in [20]) of raising to powers Ax-Schanuel (see
Theorem 2.3). For x P 1 �XCJXK and α P Zp (charpCq � p ¡ 0), we
represent α as

°8
i�0 αip

i for some αi P t0, 1, . . . , p� 1u and we have

xα :� lim
n

n¹
i�0

xαip
i

.
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Theorem 3.2. Suppose that α P Zp and rQpαq : Qs ¡ n, Let x1, . . . , xn P
1 �XCJXK be multiplicatively independent. Then

trdegCpXq px1, . . . , xn, x
α
1 , . . . , x

α
nq ¥ n.

There is a general set-up including the additive and multiplicative
cases, which we describe below following [20]. Let us fix a positive inte-
ger n and a one-dimensional algebraic group H over C. We introduce
the following notation from [20].

 Let R :� EndalgebraicpHq and S :� EndformalpHq.
 We restrict our attention to algebraic groups H such that S is

a commutative domain. We regard R as a subring of S.
 Let K denote the field of fractions of R and L be the field of

fractions of S. We regard K as a subfield of L.

Example 3.3. In the case of the characteristic 0, we always have S �
C, so the commutativity assumption is satisfied and we can consider
any one-dimensional algebraic group as H. We give some examples
below.

(1) If H � Ga and characteristic is 0, then R � S � C.
(2) If H � Ga and characteristic is p ¡ 0, then R � CrFrs and

S � CJFrK (see the notation introduced in the beginning of this
section). This is why we needed to take C � Fp to ensure that
S is commutative.

(3) If H � Gm and characteristic is 0, then R � Z. In the case
of characteristic p ¡ 0, we have S � Zp as it was mentioned
above.

Below is our transcendental statement about formal endomorphisms
(see [20, Theorem 4.16.]). We need to introduce the following notions
from [20]. Let A be a commutative algebraic group over the field C of
characteristic p ¡ 0.

 A formal map into pA is an A-limit map, if it can be “strongly
approximated” by a sequence of polynomial maps pfnqn in the
sense that the differences fn�1 � fn are in the image of the n-
th power of the appropriate Frobenius map. For example, any

formal endomorphism of xGa is a Ga-limit map (approximated

by additive polynomials) and any formal endomorphism of xGm

is a Gm-limit map (approximated by multiplicative polynomi-
als appearing in the description of xα before the statement of
Theorem 3.2).

 We fix a complete C-algebra R with the residue field C such
that R is linearly disjoint from Calg over C and in the case of
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characteristic p such that Lp
8

� C, where L is the fraction field
of R (e.g. R may be the power series algebra).

 For x P ApRq, we call x subgroup independent, if for any proper
algebraic subgroup A0   A defined over C, we have x R A0pRq.

 The formal locus of x P ApRq over C is defined as the formal

subscheme of pA corresponding to the image of the map pOA,0 Ñ
R.

 The number andegpxq denotes the dimension of the formal locus
of x over C.

Theorem 3.4. Take γ P S such that rKrγs : Ks ¡ n and γ : pH Ñ pH
is an H-limit map. Let E : pA Ñ pA be the n-th cartesian power of γ,
where A � Hn. Then for any subgroup independent x P ApRq� we have

trdegCpx, EKpxqq ¥ n� andegCpxq.

We showed in [20] that an unproved version of Theorem 3.1 without the
“goodness” assumptions implies the following conjecture. This conjec-
ture is important for the following reasons.

 If the field C has characteristic 0, then this conjecture is a
theorem of Ax ([4, Theorem 1F]).

 Ax showed in [4, Section 3] that, in the case of characteris-
tic 0 (Ax did not consider the positive characteristic case), [4,
Theorem 1F] implies the Ax-Schanuel statements regarding the
differential equation of the “appropriate” formal/analytic ho-
momorphisms between algebraic groups (Ax focused on the ex-
ponential maps on semi-abelian varieties). The corresponding
implication holds in the positive characteristic case as well.

Main Conjecture (arbitrary characteristic)
Let G be an algebraic group over a field C of arbitrary characteristic,pG the formalization of G at the origin and A a formal subgroup of pG.
Let K be a formal subscheme of A and let V be the Zariski closure of

K in G. Then there is a formal subgroup B of pG which contains A andpV such that

dimpBq ¤ dimpV q � dimpAq � dimpKq.

We formulate below a specific statement which would follow from
the Main Conjecture above.

Specific Conjecture (arbitrary characteristic)
Suppose that charpCq � p ¡ 0 and let

γ : xGm Ñ pE
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be a formal isomorphism where E is an ordinary elliptic curve. Let
x1, . . . , xn P 1 �XCJXK be multiplicatively independent. Then

trdegCpXq px1, . . . , xn, γpx1q, . . . , γpxnqq ¥ n.

This case seems to be related to the “interesting research paths (1)–
(4)” from Section 2.2. More precisely, the formal map appearing in the
Specific Conjecture looks “closest” to the exponential map from the
original Ax’s Theorem, which was used by Zilber to show Weak CIT
(see Section 2.2).

We finish this section with a brief discussion of the case of the Drin-
feld modules. Drinfeld introduced in [13] elliptic modules, which are
now called Drinfeld modules. Drinfeld modules can be understood as
certain homomorphisms between FqrXs and KrFrs, where q is a power
of p and K � Fqppθqq is the non-Archimedean field of Laurent series
over Fq. An additive power series over K is associated to each Drin-
feld module and this series is entire on K. A number of transcendence
results for such additive power series was obtained, see e.g. [32]. To
the best of my knowledge, such results never include a version of the
full Ax-Schanuel statement. For a survey of this theory, we refer the
reader to [8]. Before the invention of Drinfeld’s modules, a special case
of such a series was introduced by Carlitz, which is called now the
Carlitz exponential and has the following form:

expC � X �
8̧

i�1

Xpi

pθpi � θqpθpi � θpq . . . pθpi � θpi�1q
.

There are several Schanuel type results for the Carlitz exponential (see
[12]) and a Carlitz exponential version of the (still open) conjecture on
algebraic independence of logarithms of algebraic numbers was proved
in [23, 1.2.6]. The power series we consider do not fit to the Drinfeld’s
module framework, since we consider power series with constant coef-
ficients, that is, there is no transcendental element θ in the coefficients
of our additive power series.

4. Recent ideas and speculations

In this section, we describe some recent early stage developments
concerning Ax-Schanuel type problems. One of them regards combin-
ing the results from [10] with Ax’s theorem on the dimension of inter-
sections. The other one is about differential versions of Ax-Schanuel in
positive characteristic.
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4.1. Towards a general statement of Ax-Schanuel. Ax-Schanuel
statements for analytic/formal homomorphisms in the case of charac-
teristic 0 have one “umbrella statement” from which they all follow,
which is Ax’s theorem on the dimension of intersections from Section
3. No such an “umbrella statement” was known for Ax-Schanuel state-
ments for the maps like the j-invariant map, until the recent preprint
[10], where a general form of an Ax-Schanuel type result is given ([10,
Theorem A]). In this statement, the algebraic group G is again back
in the picture (e.g. G � PGL2pCq in the case of the j-invariant map),
but the statement is quite technical and it is phrased in terms of leaves
of flat connections on G-principal bundles, where such a leaf plays a
role of the analytic subgroup A from Ax’s theorem on the dimension
of intersections from Section 3.

Connection version of Ax-Schanuel ([10, Theorem A])
Let ∇ be a G-principal flat connection on the algebraic bundle P Ñ Y
such that:

 the algebraic group G is sparse;
 the Galois group of ∇ coincides with G.

Let V be an algebraic subvariety of P and L be a horizontal leaf of ∇.
If

dimV   dimpV X Lq � dimG

then the projection of V XL in Y is contained in a ∇-special subvariety
of Y .

Sparsity of the algebraic group G above means that there are no
proper Zariski dense complex analytic subgroups of G. The notion of
a “∇-special” is more technical, it is phrased in terms of the Galois
group of a connection (see [10, Definition 2.4]).

Unlike in the case of [4, Theorem 1], no analytic subgroup appears
in [10, Theorem A], so this theorem does not generalize [4, Theorem
1]. We propose such a generalization which encompasses both the
Connection version of Ax-Schanuel and [4, Theorem 1]. It will appear
in [15].

Connection and subgroup Ax-Schanuel
Let ∇ be a G-principal flat connection on the algebraic bundle P Ñ Y
such that the Galois group of ∇ coincides with G and

 V be an algebraic subvariety of P ,
 A be an analytic subgroup of G,
 L be a horizontal leaf of ∇.
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Suppose that V is an analytic submanifold of A which is Zariski dense
in V . If

dimV   dimpV X Lq � dimG

then there is an analytic subgroup H of G such that

dimH   dimpV q � dimpVq
and V � AH.

The results mentioned above concern the case of characteristic zero.
In the “Main Conjecture” from Section 3, the notion of “analytic” is re-
placed with the notion of “formal” (see Remark 2.4) which makes sense
in the case of arbitrary characteristic. The connection version of Ax-
Schanuel ([10, Theorem A]) mentioned above has not been considered
in the positive characteristic case before, since it requires an appropri-
ate version of the notion of a connection in positive characteristic. This
is work in progress ([15]).

4.2. Hasse-Schmidt differential Ax-Schanuel. Positive character-
istic versions of the differential Ax’s theorem have not been studied
yet. It is clear that we can not consider the usual derivations anymore,
since the constants of differential fields of positive characteristic con-
tain the image of the Frobenius map, hence there is no room for any
transcendence. It looks natural in this case to replace the derivations
with iterative Hasse-Schmidt derivations and the field of constants with
the field of absolute constants, we give the necessary definitions below.

 A sequence B � pBn : R Ñ RqnPN of additive maps on a ring
is called an HS-derivation if B0 is the identity map, and for all
n P N and x, y P R, we have:

Bnpxyq �
¸

i�j�n

BipxqBjpyq.

 An HS-derivation B is called iterative if for all i, j P N we have

Bi � Bj �

�
i� j

i



Bi�j.

 If pK, Bq is a field with a Hasse-Schmidt derivation, then its field
of absolute constants is the following intersection:

8£
i�1

ker pBiq .

The passages between the differential Ax-Schanuel and the power series
Ax-Schanuel (described in Remark 2.1) work only one way for positive
characteristic case, since the power series ring has a natural iterative
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Hasse-Schmidt derivation on it. However, it is not clear how to proceed
in the opposite way, so Hasse-Schmidt differential Ax-Schanuel type
results need to be proved separately. This is work in progress ([15]).

We state below two such results which will appear in [15] to give a
flavour of these kind of Ax-Schanuel conditions. Assume that pK, Bq is
a field of characteristic p ¡ 0 with a Hasse-Schmidt derivation and C
is a field contained in the field of absolute constants of pK, Bq.

Additive Hasse-Schmidt differential Ax-Schanuel

Let

F �
8̧

m�0

cmX
pm P FpJFrK

and assume that the algebraic degree of F over FppFrq is greater than
n. Take x1, . . . , xn, y1, . . . , yn P K such that x1, . . . , xn are linearly
independent over FprFrs and for all i P t1, . . . , nu:

D1 pyi � c0xiq � 0,

Dp pyi � c0xi � c1x
p
i q � 0,

. . .

Dpm
�
yi � c0xi � c1x

p
i � . . .� cmx

pm
�
� 0,

. . .

Then we have:

trdegFp
px1, y1 . . . , xn, ynq ¥ n� 1.

Multiplicative Hasse-Schmidt differential Ax-Schanuel

Let

γ �
¸

cip
i P Zp

and assume that the algebraic degree of γ over Q is greater than n.
Take x1, . . . , xn, y1, . . . , yn P K such that x1, . . . , xn are multiplicatively
independent and for all i P t1, . . . , nu:

D1

�
yix

�c0
i

�
� 0,

Dp

�
yix

�c0�c1p
i

�
� 0,

. . .

Dpm

�
yix

�c0�c1p�...�cmpm

i

	
� 0,

. . .
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Then we have:

trdegCpx1, y1 . . . , xn, ynq ¥ n� 1.
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