Strongly regular types

Predrag Tanović

Wroclaw, June 2012.

A.Pillay, T. Generic stability, regularity, and quasiminimality, In: Models, Logics and Higher-Dimensional Categories, A Tribute to the Work of Mihály Makkai), CRM Proceedings and Lecture Notes, vol.53(2011), arXiv:0912.1115v1

Minimal first-order structures, Annals of Pure and Applied Logic vol.162(2011), pp.948-957.

Global level \bar{p} global, A-invariant type; \bar{p} is 'free' extension of $p = \bar{p} \mid A$.

Local level $p \in S(A)$. Is there an A-invariant global s.r. extension of p?

Global level \bar{p} global, A-invariant type; \bar{p} is 'free' extension of $p = \bar{p} \mid A$.

Local level $p \in S(A)$. Is there an A-invariant global s.r. extension of p?

We operate in the monster \bar{M} , \bar{p} is a global type. A, B, ... are small; $M \prec \bar{M}$ is small, while $N \prec \bar{M}$ can be large.

Invariant types

• $p \in S(B)$ does not split over $A \subset B$ if for all $\bar{b}_1, \bar{b}_2 \in B$ and ϕ over A:

$$ar{b}_1 \equiv ar{b}_2 \ (A) \quad \text{implies} \quad (\phi(ar{x}, ar{b}_1) \leftrightarrow \phi(ar{x}, ar{b}_2)) \in p(ar{x})$$

- A global type is invariant if it does not split over some small A
 (we say that it is A-invariant).
- A Morley sequence in \bar{p} over (a small) A is one that satisfies $a_{i+1} \models \bar{p} \mid (A, a_0, a_1, ..., a_i)$.
- If \bar{p} is A-invariant then Morley sequences over A are indiscernible over A; \bar{p}^n is well-defined.

Origins

There are two kinds of invariant types; let \bar{p} be A-invariant and let $\bar{a}_1, \bar{a}_2 \models \bar{p}^2$.

1 (Symmetric) When \bar{p}^2 is symmetric:

$$\bar{a}_1\bar{a}_2\equiv\bar{a}_2\bar{a}_1\;(\bar{M})$$

In this case every Morley sequence in \bar{p} over any $B \supset A$ is totally indiscernible.

② (Asymmetric) When $\bar{a}_1\bar{a}_2 \not\equiv \bar{a}_2\bar{a}_1(\bar{M})$

Generic stability

Definition

A non-algebraic global type $\bar{p}(\bar{x}) \in S(\bar{M})$ is generically stable if, for some small A, it is A-invariant and:

if $(\bar{a}_i:i<\alpha)$ (any α , not only ω) is a Morley sequence in \bar{p} over A then for any formula $\phi(\bar{x})$ (with parameters from \bar{M}) $\{i:\models\phi(\bar{a}_i)\}$ is either finite or co-finite.

Let $\bar{p}(\bar{x}) \in S(\bar{M})$ be generically stable and A-invariant. Then:

- \bullet \bar{p} is definable over A.
- ② Any Morley sequence of \bar{p} over A is totally indiscernible.
- **3** \bar{p} is the unique global nonforking extension of $p \mid A$.

Pregeometries

• (P, cl), where cl is an operation on subsets of P, is a pregeometry if for all $A, B \subseteq P$ and $a, b \in P$:

Monotonicity $A \subseteq B$ implies $A \subseteq cl(A) \subseteq cl(B)$;Finite character $cl(A) = \bigcup \{cl(A_0) \mid A_0 \subseteq A \text{ finite}\};$ Transitivitycl(A) = cl(cl(A));

Exchange (symmetry)

$$a \in \operatorname{cl}(A \cup \{b\}) \setminus \operatorname{cl}(A)$$
 implies $b \in \operatorname{cl}(A \cup \{a\})$.

• cl is called a (finitary) *closure operator* if it satisfies the first three axioms.

Weak orthogonality

Let $p(\bar{x}), q(\bar{y}) \in S(A)$.

- p and q are weakly orthogonal, $p \stackrel{\text{\tiny w}}{\perp} q$, if $p(\bar{x}) \cup q(\bar{y})$ determines a complete type.
- 'p(x) has a unique extension over $B \supset A$ ' is denoted by $p \vdash p \mid B$.
- $p \vdash p \mid B$ is equivalent to $p^{w} \perp tp(B/A)$ and
- If $\bar{b} \models q$ then:

$$p(\bar{x})^{\text{w}}\perp q(\bar{y})$$
 iff $p(\bar{x})\vdash p\mid (A,\bar{b}).$

Strong regularity was built on strong minimality, where a natural pregeometry exists.

- \bullet (M, ...) is minimal if any definable (with parameters) subset of M is either finite or co-finite.
- A complete T is strongly minimal if any $M \models T$ is minimal.

Theorem (Marsh)

- (1) If M is minimal then (M, acl) is a pregeometry.
- (2) If $M \equiv N$ are both minimal then

$$M \cong N$$
 iff $\dim(M) = \dim(N)$.

T ω -stable

Preliminaries

Strong regularity should induce a natural pregeometry.

• A stationary non-algebraic type $p \in S(A)$ is strongly regular via $\phi(x) \in p$ (or (p, ϕ) is s.r.) if for any $B \supset A$ and $q \in S(B)$ containing $\phi(x)$

either
$$q = p|B$$
 or $p \perp q (p \mid B^w \perp q)$.

• There is a natural pregeometry on $\phi(\bar{M})$:

for
$$X \subset \phi(\bar{M})$$
: $\operatorname{cl}(X) = \{ a \in \phi(\bar{M}) \mid a \not\models p \mid X \cup A \}$

$$p \stackrel{\text{\tiny w}}{\perp} \operatorname{tp}(b/M)$$
 for all $b \in \phi(\bar{M}) \setminus p(\bar{M})$;

Equivalently: $p \vdash p \mid Mb$ for all $b \in \phi(\overline{M}) \setminus p(\overline{M})$

• If $p \in S_1(M)$ then (p, ϕ) is s.r. iff

$$p \stackrel{\text{\tiny w}}{\perp} \operatorname{tp}(b/M)$$
 for all $b \in \phi(\bar{M}) \setminus p(\bar{M})$;

Equivalently: $p \vdash p \mid Mb$ for all $b \in \phi(\overline{M}) \setminus p(\overline{M})$

• A non-algebraic type $p \in S_1(A)$, which is finitely satisfiable in A, is s.r. via $\phi(x)$ iff:

$$p \stackrel{\text{\tiny w}}{\perp} \operatorname{tp}(\bar{b}/A)$$
 for all $\bar{b} \in \phi(\bar{M}) \setminus p(\bar{M})$;

Equivalently: $p \vdash p \mid A\bar{b}$ for all $\bar{b} \in \phi(\bar{M}) \setminus p(\bar{M})$

Definition (any T)

Let $p \in S(A)$ and $\phi(x) \in p$. We say that (p, ϕ) satisfies [™] -condition if:

$$p \stackrel{\text{\tiny W}}{\perp} \operatorname{tp}(\bar{b}/A)$$
 for all $\bar{b} \subset \phi(\bar{M}) \setminus p(\bar{M})$;

Equivalently: $p \vdash p \mid A\bar{b}$ for all $\bar{b} \in \phi(\bar{M}) \setminus p(\bar{M})$

Definition

A non-algebraic type $p(x) \in S_1(A)$ is locally strongly regular via $\phi(x) \in p(x)$ if

- (1) p(x) is finitely satisfiable in A;
- $(p(x), \phi(x))$ satisfies $^{w}\!\!\perp$ -condition.

A non-algebraic type $p(x) \in S_1(A)$ is locally strongly regular via $\phi(x) \in p(x)$ if

- (1) p(x) is finitely satisfiable in A;
- (2) $(p(x), \phi(x))$ satisfies $^w\perp$ -condition.

Example 1. The generic type of a minimal structure is loc.s.r via x = x ('generic' is the unique nonalgebraic type in $S_1(M)$).

Example 2. The generic type of a quasiminimal structure is loc.s.r via x = x. (Corollary 7.1 from [PT]).

Let $\bar{p}(\bar{x})$ be a global non-algebraic type and let $\phi(\bar{x}) \in \bar{p}(\bar{x})$. We say that $(\bar{p}(\bar{x}), \phi(\bar{x}))$ is *strongly regular* if, for some small A over which $\phi(\bar{x})$ is defined:

- (1) \bar{p} is A-invariant; and
- (2) $\bar{p} \mid B$ satisfies $^{\text{w}}\!\!\perp$ -condition for all $B \supseteq A$.
 - A global s.r. type is locally s.r.
 - We will be mainly interested in 1-types over a model which are locally s.r. via x = x.

Where does the pregeometry come from?

In a minimal structure definable subsets are either 'small' (finite) or 'large' (co-finite). 'Large' ones determine a complete type: the unique non-algebraic 1-type (generic).

Definition (T any complete first-order theory)

For $p(x) \in S_1(N)$ and $X \subset N$ define

$$\operatorname{cl}_p(X) = \bigcup \{\phi(N) \mid \phi(x) \text{ is over } X \text{ and } \phi(x) \notin p(x)\}$$

- Also, define $\operatorname{cl}_{p}^{A}(X) = \operatorname{cl}_{p}(X \cup A)$ for any $A \subset N$ and $X \subseteq N$.
- $\operatorname{cl}_p(X) = \{a \mid a \not\models p \mid X\}$.
- In minimal structures: $acl(X) = cl_p(X)$.

Proposition

Origins

Let $\bar{p}(x)$ be an A-invariant global type. Then $(\bar{p}(x), x = x)$ is strongly regular if and only if $\operatorname{cl}_{\bar{p}}^A$ is a closure operator.

Origins

Let $\bar{p}(x)$ be an A-invariant global type. Then $(\bar{p}(x), x = x)$ is strongly regular if and only if $\operatorname{cl}_{\bar{p}}^A$ is a closure operator.

Example $(\omega, <)$ is minimal; let p be the generic.

- The pregeometry is trivial $acl(\emptyset) = cl_p(\emptyset) = \omega$.
- p is definable and if \bar{p} is the global heir, then $(\bar{p}, x = x)$ is s.r.
- $(M, \operatorname{cl}_{\bar{p}})$ is not a pregeometry; it is an 'infinite-dimensional' closure operator (\bar{M}) is not the closure of a finite subset).
- Any model of $\mathsf{Th}(\omega,<)$ uniquely determines a linear order with minimal element(after factoring out 'x, y are at finite distance').
- p has unique global coheir \bar{q} and $(\bar{q}, x = x)$ is s.r.

Homogeneous pregeometries

Reformulated Theorem 4.1 from [PT].

Theorem

- (1) Suppose that $A \subset N$ and $p \in S_1(N)$. If $(N, \operatorname{cl}_p^A)$ is an infinite-dimensional pregeometry then p is definable over A, its global heir \bar{p} is generically stable and $(\bar{p}(x), x = x)$ is strongly regular (in particular, it is A-invariant and symmetric).
- (2) Let $\bar{p}(x)$ be a global, A-invariant, symmetric type such that $(\bar{p}(x), x = x)$ is strongly regular. Then \bar{p} is generically stable and $(\bar{M}, \operatorname{cl}_{\bar{p}}^A)$ is an infinite-dimensional pregeometry.

Note: In (1) we do *not* assume that p is A-invariant!

Hytinnen, Lessmann, Shelah, *Interpreting groups and fields in some nonelementary classes*, Journal of Mathematical Logic 5(1), 2005

Origins

Theorem (Dichotomy of global, invariant s.r. types)

Let $(\bar{p}(x), x = x)$ be strongly regular, where $\bar{p}(x)$ is A-invariant. Then $(\bar{M}, \operatorname{cl}_{\bar{p}}^{A})$ is a closure operator and:

- (1) If \bar{p} is symmetric then \bar{p} is generically stable and $(\bar{M}, \operatorname{cl}_{\bar{p}}^A)$ is an infinite-dimensional pregeometry.
- (2) If \bar{p} is asymmetric then there is a finite extension A_0 of A and an A_0 -definable partial order \leq such that every Morley sequence in \bar{p} over A_0 is strictly increasing. Moreover, if $A_0 \subset M$ and $C_1, C_2 \subset M$ are maximal (under inclusion) Morley sequences in \bar{p} over A_0 then $(C_1, \leq) \cong (C_1, \leq)$.

Reformulated Theorem 3.1 from [PT]

Theorem (Dichotomy of global, invariant s.r. types)

Let $(\bar{p}(x), x = x)$ be strongly regular, where $\bar{p}(x)$ is A-invariant. Then $(\bar{M}, \operatorname{cl}_{\bar{p}}^A)$ is a closure operator and:

- (1) If \bar{p} is symmetric then \bar{p} is generically stable and $(\bar{M}, \operatorname{cl}_{\bar{p}}^A)$ is an infinite-dimensional pregeometry.
- (2) If \bar{p} is asymmetric then there is a finite extension A_0 of A and an A_0 -definable partial order \leq such that every Morley sequence in \bar{p} over A_0 is strictly increasing. Moreover, if $A_0 \subset M$ and $C_1, C_2 \subset M$ are maximal (under inclusion) Morley sequences in \bar{p} over A_0 then $(C_1, \leq) \cong (C_1, \leq)$.

Remark: in the asymmetric case \bar{p} may not be definable (the coheir in $(\omega, <)$).

General dichotomy

Let $p \in S(N)$. Consider cl_p (or any other monotone, finitary operation on subsets of N). Define:

- N is finitely cl_p -generated over A if $N = cl_p(A\bar{n})$ for some $\bar{n} \in N$.
- A sequence $\{a_i \mid i \in \omega\} \subset N$ is cl_p -free over $A \subset N$ if for all n $a_{n+1} \notin \operatorname{cl}_p(A, a_0, ..., a_n)$
- Similarly we define cl_p-free sequences indexed by a linear order.
- If N is not finitely cl_p -generated over A then infinite cl_p -free sequences over A exist.

For $p \in S_1(N)$ we can define the smallest closure operator extending cl_p :

$$\operatorname{cl}_p^0(X)=X$$
 and $\operatorname{cl}_p^{n+1}(X)=\operatorname{cl}_p(\operatorname{cl}_p^n(X))$
$$\operatorname{Cl}_p(X)=\bigcup_{n\in\omega}\operatorname{cl}_p^n(X)$$

If N is quasiminimal and p the generic type, then Cl_p is Zilber's ccl-operator.

Local regularity

For $p \in S_1(N)$ we can define the smallest closure operator extending cl_n :

$$\operatorname{cl}_p^0(X) = X$$
 and $\operatorname{cl}_p^{n+1}(X) = \operatorname{cl}_p(\operatorname{cl}_p^n(X))$
$$\operatorname{Cl}_p(X) = \bigcup_{n \in \omega} \operatorname{cl}_p^n(X)$$

If N is quasiminimal and p the generic type, then Cl_p is Zilber's ccl-operator.

Definition

 $p \in S_1(N)$ is based on $A \subset N$ if p does not split over A, and N is not finitely Cl_p -generated over A.

Theorem

Suppose that p(x) is based on $A \subset N$. Then cl_p^A is a closure operator and we have two cases:

- (1) p^2 is symmetric; cl_p^A is a pregeometry operator on N, p is definable, \bar{p} (its unique global heir) is generically stable and $(\bar{p}(x), x = x)$ is strongly regular.
- (2) p^2 is asymmetric; there is a finite extension A_0 of A and an A_0 -definable partial order \leq such that every cl_p -free sequence over A_0 is strictly increasing.

Theorem

Suppose that p(x) is based on $A \subset N$. Then cl_p^A is a closure operator and we have two cases:

- (1) p^2 is symmetric; cl_p^A is a pregeometry operator on N, p is definable, \bar{p} (its unique global heir) is generically stable and $(\bar{p}(x), x = x)$ is strongly regular.
- (2) p^2 is asymmetric; there is a finite extension A_0 of A and an A_0 -definable partial order \leq such that every cl_p -free sequence over A_0 is strictly increasing.

Question If M is asymmetric, quasiminimal must there exist a definable partial order on singletons, which has uncountable increasing chain?

Local regularity

In the definable case the dichotomy applies (Proposition 7.1 from [PT]).

Proposition

Suppose that $p(x) \in S_1(A)$ is definable and locally strongly regular via $\phi(x) \in p(x)$. Let $\bar{p}(x)$ be its global heir. Then $(\bar{p}(x), \phi(x))$ is strongly regular (and of course definable).

What is a 'free' A-invariant extension of a loc.s.r $p \in S_1(A)$?

- By an A-type we mean a non-algebraic type which is f.s. in A.
- $\{\bar{a}_i \mid i \in \omega\}$ is an A-sequence over B if $tp(\bar{a}_n/(B, \bar{a}_0, ..., \bar{a}_{n-1}))$ is an A-type for all n.
- 'Semiisolated' is opposite to 'being a coheir': $a \in Sem_p(X)$ iff:

there is
$$\theta(x) \in \operatorname{tp}(a/X \cup A)$$
 such that $\theta(x) \vdash p(x)$

• if \bar{p} is f.s. in A then $\operatorname{Sem}_p(X) \subseteq \operatorname{cl}_{\bar{p}}^A(X)$; = holds in the gen.stable s.r. case.

Let $p \in S(A)$ be locally s.r. via x = x. We say that p is symmetric if there exists an infinite, totally indiscernible A-sequence of realizations of p. Otherwise p is asymmetric.

Proposition 7.2 from [PT]:

Proposition

Suppose that $p(x) \in S_1(A)$ is locally strongly regular via x = x. Then p has a global A-invariant extension \bar{p} such that $(\bar{p}(x), x = x)$ is strongly regular and generically stable if and only if p is symmetric

Minimal structures

Let (M,...) be a minimal first-order structure and let $p \in S_1(M)$ be the unique non-algebraic 1-type.

Dichotomy of minimal structures

There are two types of minimal structures:

Symmetric p is definable, its unique global heir \bar{p} is generically stable and $(\bar{p}(x), x = x)$ is strongly regular.

Asymmetric There is an infinite $C \subseteq M$ directing a type over some finite $A \subset \overline{M}$.

Minimal structures

Let (M,...) be a minimal first-order structure and let $p \in S_1(M)$ be the unique non-algebraic 1-type.

Dichotomy of minimal structures

There are two types of minimal structures:

Symmetric p is definable, its unique global heir \bar{p} is generically stable and $(\bar{p}(x), x = x)$ is strongly regular.

Asymmetric There is an infinite $C \subseteq M$ directing a type over some finite $A \subset \overline{M}$.

In the asymmetric case we do not claim the existence of a global, invariant, strongly regular extension of p

- We say that an infinite set $C \subset \operatorname{dcl}(A)$ directs a type over A if there is an A-definable partial ordering \leq on \bar{M} such that:
 - (1) $\{x \in C \mid c \le x\}$ is a co-finite subset of C (for all $c \in C$),
 - (2) (C, \leq) is an initial part of (\overline{M}, \leq) .

- We say that an infinite set $C \subset dcl(A)$ directs a type over A if there is an A-definable partial ordering \leq on \bar{M} such that:
 - (1) $\{x \in C \mid c \leq x\}$ is a co-finite subset of C (for all $c \in C$),

- (2) (C, \leq) is an initial part of (\bar{M}, \leq) .
- Condition (1) can be replaced by:
 - (D1) Any C-sequence over A is decreasing: if (a, b) is a C-sequence over A then $b \le a$;
- Let $p_C(x)$ be the set of all nonalgebraic formulas over A which are satisfied by co-finitely many $c \in C$. We say that $p_{C}(x)$ is C-directed over A.
- Any C-type over A extends $p_C(\bar{M})$.

Theorem (T small)

Suppose that C directs a type over A. Then there is an infinite $C_0 \subset C$ which directs a type over a finite extension $A_0 \supset A$ and such that for all $M \supset A_0$ the (linear) order type of a maximal C_0 -sequence over A_0 in M is uniquely determined.

Asymmetric local regularity

Main Question. If p is asymmetric loc.s.r via x = x must there exist a specific partial order 'directing' in some sense a type?

Local regularity

Preliminaries

Fix a countable M and $p \in S_1(M)$ which is loc.s.r. via x = x.

Two-step strategy

Try to prove

- 2 $p \mid Ma$ is loc.s.r. via x=x for any a realizing p.

Hope that any obstruction will be caused by some partial order.

The first step is successful

 p^2 should be the type of a coheir sequence (a, b).

Proposition

Suppose that there are two distinct types of coheir pairs. Then there is a directed type over Me for any $e \models p$.

The first step is successful

 p^2 should be the type of a coheir sequence (a, b).

Proposition

Suppose that there are two distinct types of coheir pairs. Then there is a directed type over Me for any $e \models p$.

Let $\Psi(x) = \bigvee_{n \in \omega} \psi_n(x)$ be over A and let q(x) defines the topological boundary of $\bigcup [\psi_n(x)]$.

We say that Ψ directs q iff:

- (1) $\Psi(\bar{M}) < a$ for all $a \models q$;
- (2) If (a, b) is a $\Psi(\overline{M})$ -sequence of realizations of q then $b \leq a$; and
- (3) If $a \models q$ and $b \le a$ then either $b \in \Psi(\overline{M})$ or $b \models q$.

The second step

Assume that p^2 is symmetric, $a \models p$. We divide this step into two sub-steps:

Eliminate

$$p^2 \not\perp^w \operatorname{tp}(\bar{b}/M)$$
 for some $\bar{b} \subset \bar{M} \setminus p(\bar{M})$;

equivalently

$$p \mid Ma \not\perp^w \operatorname{tp}(\bar{b}/M)$$
 for some $\bar{b} \subset \bar{M} \setminus p(\bar{M})$.

Assuming that the previous is eliminated, eliminate:

$$p \mid Ma \not\perp^w \operatorname{tp}(\bar{b}/M)$$
 for some $\bar{b} \subset \bar{M} \setminus (p|Ma)(\bar{M})$.

The first elimination is probably not possible in general, but the second is: there must be a directed type around.

Theorem

Suppose that $p \in S_1(M)$ is an asymmetric loc.s.r. via x = x type and that there is a coheir sequence $\{a_i \mid i \in \omega\}$ such that

Then there is a directed type around.

Countable models of theories with Skolem functions

Assumption: T has built-in Skolem functions and $I(\aleph_0, T) < 2^{\aleph_0}$. In particular, T is small.

Proposition

There are no directed types around.

Countable models of theories with Skolem functions

Assumption: T has built-in Skolem functions and $I(\aleph_0, T) < 2^{\aleph_0}$. In particular, T is small.

Proposition

There are no directed types around.

The first elimination of the second step becomes possible.

Proposition

Every locally strongly regular type (via x = x) is symmetric.

Question Is every minimal (Cantor-Bendixson rank 1) type definable?

Theorem

Assume T is NIP or NSOP, has built-in Skolem functions and $I(\aleph_0, T) < 2^{\aleph_0}$. Then T is ω -stable, (nmd and) finite-dimensional, $I(\aleph_0, T) = \aleph_0$.

Assume T is NIP or NSOP, has built-in Skolem functions and $I(\aleph_0, T) < 2^{\aleph_0}$. Then T is ω -stable, (nmd and) finite-dimensional,

 $I(\aleph_0, T) = \aleph_0.$

THANK YOU

