Integration of semialgebraic functions and antiderivatives of Nash functions

Wroclaw, June 2012 Tobias Kaiser

1. Motivation

In

Kontsevich, Zagier: Periods. Mathematics unlimited-2001 and beyond, Springer, Berlin, 2001 we find the following definition.

A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of rational functions with rational coefficients, over domains in \mathbb{R}^n given by polynomial inequalities with rational coefficients.

Applications:

- arithmetic geometry
- differential equations
- algebraic topology
- differential topology

Period = Integral of a semialgebraic function on \mathbb{R}^n (defined over \mathbb{Q})

→ Families of periods

We answer the following important question. What does one get when one integrates parameterized families of semialgebraic functions?

One has to leave the semialgebraic setting! Immediately:

1) global logarithm

$$\log x = \int_1^x \frac{dt}{t}.$$

2) (iterated) antiderivatives of germs of Nash functions at the origin as

$$\arctan x = \int_0^x \frac{dt}{1 + t^2}.$$

We show that 1) and 2) are enough to get a complete picture of our question!

We introduce the setting.

2. Setting

Definition

Let $m,n\in\mathbb{N}$ and let $f:\mathbb{R}^m\times\mathbb{R}^n\to\mathbb{R},(x,t)\mapsto f(x,t),$ be a semialgebraic function. We set

$$\infty(f) := \{ x \in \mathbb{R}^m \mid f(x, -) \text{ not integrable} \}$$

and

$$\operatorname{Int}(f): \mathbb{R}^m \setminus \infty(f) \to \mathbb{R}, x \mapsto \int_{\mathbb{R}^n} f(x,t) dt.$$

Theorem

 $\infty(f)$ is semialgebraic!

Goal:

Explicit description of $\operatorname{Int}(f)$ for $f:\mathbb{R}^m\times\mathbb{R}^n\to\mathbb{R}$ semialgebraic.

We start with 2)

3. Integrated algebraic power series

For $n \in \mathbb{N}$

$$N_n$$
 $\subset O_n = \mathbb{R}\{X_1, \dots, X_n\} \subset \mathbb{R}[[X_1, \dots, X_n]]$ algebraic power series convergent power series

$$\mathcal{N}_n = \text{germs of Nash (=analytic \& semialg.) functions at}$$

 $0 \in \mathbb{R}^n$

 $\mathcal{O}_n = \text{germs of analytic functions at } 0 \in \mathbb{R}^n$

Our goal is to enlarge the rings \mathcal{N}_n to rings \mathcal{IN}_n in such a way that the following holds:

- i) \mathcal{IN}_n is defined from \mathcal{N}_n by taking antiderivatives and 'innocent' algebraic operations.
- ii) \mathcal{IN}_n has 'good' properties.

Notation

- a) By $\operatorname{Int}_n(f)$ we denote the antiderivative of a power series $f(X) = f(X', X_n)$ with respect to the variable X_n such that $\operatorname{Int}_n(f)(X', 0) = 0$. For example $\operatorname{Int}_2(X_1 + X_2) = X_1X_2 + 1/2X_2^2$.
- b) For $R = (R_1, ..., R_n) \in \mathbb{R}^n_{>0}$ let $D^n_{\mathbb{R}}(R) := \prod_{1 \le j \le n}] R_j, R_j[$.
- c) Given $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ we define $f_a(X_1, \ldots, X_n) := f(a_1 + X_1, \ldots, a_n + X_n)$ for a function defined at a.

The following definition does the job.

Definition

We define by $\mathcal{IN} = (\mathcal{IN})_{n \in \mathbb{N}}$ the smallest class of subrings \mathcal{IN}_n of $\mathbb{R}[[X_1, \dots, X_n]]$ such that the following properties hold.

 $(\mathcal{IN}1) \mathcal{N}_n \subset \mathcal{IN}_n \text{ for all } n \in \mathbb{N}.$

 $(\mathcal{IN}2)$ If $f \in \mathcal{IN}_n$ with $f(0) \neq 0$ then $1/f \in \mathcal{IN}_n$.

 $(\mathcal{IN}3)$ If $f \in \mathcal{IN}_n$ and $h \in (\mathbb{R}[X_1, \dots, X_k])^n$ with h(0) = 0 then $f \circ h \in \mathcal{IN}_k$.

 $(\mathcal{IN}4)$ If $f \in \mathcal{IN}_n$ and $R \in \mathbb{R}^n_{>0}$ is a radius of convergence for f then $f_a \in \mathcal{IN}_n$ for all $a \in D^n_{\mathbb{R}}(R)$.

 $(\mathcal{IN}5)$ If $f \in \mathcal{IN}_n$ then $\operatorname{Int}_j(f) \in \mathcal{IN}_n$ for all $1 \leq j \leq n$.

We call \mathcal{IN}_n the ring of integrated algebraic power series in n variables.

Elementary properties

- a) $\mathcal{N}_n \subset \mathcal{I}\mathcal{N}_n \subset \mathcal{O}_n$
- b) \mathcal{IN}_n is a local ring with $(\mathcal{IN}_n)^* = \{ f \in \mathcal{IN}_n \mid f(0) \neq 0 \}.$

To show that a property (*) holds for all $f \in \mathcal{IN}_n$ and all $n \in \mathbb{N}$, it is enough, by the defining axioms $(\mathcal{IN}1)$ - $(\mathcal{IN}5)$, to show the following steps.

- $S1_*$ All elements of \mathcal{N}_n have property (*).
- $S2_*$ If $f, g \in \mathcal{IN}_n$ have property (*) then f+g, fg and, for $f(0) \neq 0, 1/f$ have property (*).
- $S3_*$ If $f \in \mathcal{IN}_n$ has property (*) and $h \in (\mathbb{R}[X_1, \dots, X_k])^n$ with h(0) = 0 then $f \circ h \in \mathcal{IN}_k$ has property (*).
- $S4_*$ If $f \in \mathcal{IN}_n$ has property (*) and $R \in \mathbb{R}_{>0}^n$ is a radius of convergence for f then f_a has property (*) for all $a \in D^n_{\mathbb{R}}(R)$.
- $S5_*$ If $f \in \mathcal{IN}_n$ has property (*) then $Int_j(f)$ has property (*) for all $1 \leq j \leq n$.

Proposition

$$f \in \mathcal{IN}_n \Longrightarrow \partial f/\partial X_j \in \mathcal{IN}_n$$
 for all j

Reminder:

Complexification:

$$f(X) = \sum a_{\alpha} X^{\alpha} \in \mathcal{O}_{n}$$

$$\implies f(Z) = \sum a_{\alpha} Z^{\alpha} \in \mathcal{O}_{n}^{\mathbb{C}}$$

$$\implies \operatorname{Re} f, \operatorname{Im} f \in \mathcal{O}_{2n}$$

Theorem

 \mathcal{IN}_n is closed under complexification:

$$f(X) \in \mathcal{IN}_n \Longrightarrow \operatorname{Re} f, \operatorname{Im} f \in \mathcal{IN}_{2n}$$

Corollary (Complex integration along piecewise polynomial curves)

Let $f \in \mathcal{IN}$ and let γ be a piecewise polynomial curve. Let

$$g(x') := \int_{\gamma} f(x', \zeta) d\zeta.$$

Then $g \in \mathcal{IN}_{n-1} \oplus i\mathcal{IN}_{n-1}$.

Proof: Axioms of \mathcal{IN} and complexification

Using this we can prove

Weierstraß preparation theorem

Let $f \in \mathcal{IN}$ be regular in X_n of order d (i.e. $f(0, X_n) = aX_n^d + \ldots$). Then there are unique $P \in \mathcal{IN}_{n-1}[X_n]$ with degree d and $P(0, X_n) = aX_n^d$ and $u \in \mathcal{IN}$ with $u(0) \neq 0$ (i.e. a unit) such that

$$f = P \cdot u.$$

Also: Weierstraß division theorem

Corollary 1

 \mathcal{IN}_n is a regular (in particular noetherian) local ring. Its maximal ideal is generated by X_1, \ldots, X_n .

Corollary 2

$$f \in \mathcal{IN}_n, h = (h_1, \dots, h_n) \in (\mathcal{IN}_k)^n \text{ with } h(0) = 0$$

$$\implies f \circ h \in \mathcal{IN}_k$$

4. Main result

Restricted integrated Nash functions

For $n \in \mathbb{N}$ let \mathcal{RIN}_n be the collection of all functions $f : \mathbb{R}^n \to \mathbb{R}$ of the form

$$f(x) = \begin{cases} \tilde{f}(x) & x \in [-1, 1]^n \\ & \text{if} \\ 0 & x \notin [-1, 1]^n \end{cases}$$

for some $\tilde{f} \in \mathcal{IN}_n$ that converges on a neighbourhood of $[-1,1]^n$.

Let

- $\mathcal{RIN} := \bigcup_{n \in \mathbb{N}} \mathcal{RIN}_n$
- $\mathbb{R}_{IN} := \mathbb{R}((f)_{f \in \mathcal{R}IN})$ the structure generated by $\mathcal{R}IN$ over \mathbb{R}
- $\mathcal{L}_{\mathcal{IN}}^{\mathbb{Q}} := \{ <, +, -, 0, 1, (r)_{r \in \mathbb{R}}, (f)_{f \in \mathcal{RIN}}, (x^q)_{q \in \mathbb{Q}} \}$

Proposition

The structure $\mathbb{R}_{\mathcal{I}\mathcal{N}}$ is o-minimal, has quantifier elimination in $\mathcal{L}_{\mathcal{I}\mathcal{N}}^{\mathbb{Q}}$, and definable functions are piecewise given by $\mathcal{L}_{\mathcal{I}\mathcal{N}}^{\mathbb{Q}}$ -terms.

Proof: \mathcal{IN} is a Weierstraß system in the sense of

D. Miller: A preparation theorem for Weierstrass systems. Trans. Amer. Math. Soc. 358, no. 10 (2006), 4395-4439.

We can apply the results of the paper.

Main theorem

Let $m, n \in \mathbb{N}$ and let $f : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ be definable in $\mathbb{R}_{\mathcal{IN}}$. Then there are functions $\varphi_1, \ldots, \varphi_r : \mathbb{R}^m \to \mathbb{R}$ definable in $\mathbb{R}_{\mathcal{IN}}$ and there is a polynomial $P(X_1, \ldots, X_r, Y_1, \ldots, Y_r) \in \mathbb{R}[X_1, \ldots, X_r, Y_1, \ldots, Y_r]$ such that

$$Int(f) = P(\varphi_1, \dots, \varphi_r, \log \varphi_1, \dots, \log \varphi_r).$$

Proof: The methods of Lion, Rolin and Comte on integration of subanalytic functions can be adapted. By Dan Miller, the Lion-Rolin preparation theorem holds for Weierstraß systems:

Let $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, (x,y) \mapsto f(x,y)$, be definable in \mathbb{R}_{IN} . Then piecewise f can be written as

$$f(x,y) = a(x)|y - \theta(x)|^r u(x,y)$$

where $r \in \mathbb{Q}$ and $a(x), \theta(x), u(x, y)$ are definable in $\mathbb{R}_{\mathcal{IN}}$ with u being a unit and additional properties.

In our system the Lion-Rolin splitting holds:

Let $f \in \mathcal{IN}_{n+2}$. Then there are $f_+, f_- \in \mathcal{IN}_{n+2}$ such that for all sufficiently small x, y/z and $z \neq 0$

$$f(x, y/z, z) = f_{+}(x, y, z) + (y/z)f_{-}(x, y, y/z).$$

5. Definability results

Let
$$\mathbb{R}_{\text{Int}} := \mathbb{R}((\text{Int}(f))_{f \text{ semialg.}}).$$

Remark

 \mathbb{R}_{Int} is o-minimal and a reduct of $\mathbb{R}_{IN,exp}$.

Goal:

To understand the structure \mathbb{R}_{IN} and its relation to \mathbb{R} resp. \mathbb{R}_{Int} .

Let \mathcal{M} be a structure on \mathbb{R} . We denote by $C_{\mathcal{M},n}^{\omega}$ the set of germs at $0 \in \mathbb{R}^n$ of analytic functions definable in \mathcal{M} .

Examples

a)
$$C_{\mathbb{R},n}^{\omega} = \mathcal{N}_n$$

b)
$$C_{\mathbb{R}_{\mathrm{an}},n}^{\omega} = \mathcal{O}_n$$

Theorem

$$C_{\mathbb{R}_{\mathcal{I}\mathcal{N}},n}^{\omega} = \mathcal{I}\mathcal{N}_n \text{ for all } n \in \mathbb{N}$$

Definition

Let \mathcal{M} be a structure on \mathbb{R} . We say that \mathcal{M} is analytically exhausting if the following holds for all $n \in \mathbb{N}$:

$$f \in C^{\omega}_{\mathcal{M},n}, R \in \mathbb{R}^n_{>0}$$
 radius of convergence for f
$$\Longrightarrow f_a \in C^{\omega}_{\mathcal{M},n} \ \forall a \in D^n_{\mathbb{R}}(R)$$

Examples

The structures \mathbb{R} , \mathbb{R}_{an} and \mathbb{R}_{IN} are analytically exhausting.

Definition

Let \mathcal{M}, \mathcal{N} be structures on \mathbb{R} . We say that \mathcal{N} is a *local analytic antiderivative closure* of \mathcal{M} if the following holds.

I. \mathcal{N} is an expansion of \mathcal{M} .

II.
$$f \in C_{\mathcal{N},n}^{\omega} \Rightarrow \operatorname{Int}_{j}(f) \in C_{\mathcal{N},n}^{\omega} \ \forall 1 \leq j \leq n \ \forall n \in \mathbb{N}.$$

III. \mathcal{N} is analytically exhausting.

IV. If \mathcal{N}' satisfies I. - III. then \mathcal{N}' is an expansion of \mathcal{N} .

Theorem

The local analytic antiderivative closure of a structure exists and is unique.

Example

 \mathbb{R}_{an} is the local analytic antiderivative closure of itself.

Theorem

 $\mathbb{R}_{\mathcal{IN}}$ is the local analytic antiderivative closure of \mathbb{R} .