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Abstract. We present new versions of strong convergence results for
Banach-space-valued pramarts based on various tightness conditions com-
bined with uniform integrability conditions of Mazur type. They extend a
result of Egghe [7] stating that every Banach-space-valued pramart with
a Cesàro-mean convergent subsequence converges strongly almost surely.
Similar results are obtained for pramarts with values in the dual of a separa-
ble Banach space.
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1. INTRODUCTION

In [7] Egghe proved the following result:

THEOREM 1.1 ([7], Lemma 2.3). Let (fn)n­1 be a pramart in L1
X(F) satis-

fying the following condition:

(C) There exists a subsequence (f ′n) of (fn) the Cesàro mean norm of which
converges to a function f∞ ∈ L1

X(F), that is∫
Ω

∣∣∣∣ 1n i=n∑
i=1

f ′i − f∞

∣∣∣∣ dP → 0.

Then (fn) converges strongly a.s. to f∞.

In the above, (X, | · |) is a Banach space and L1
X(F) the space of (equivalence

classes of) Bochner integrable X-valued functions over a probability space
(Ω,F , P ).

Our goal in this paper is to extend Egghe’s result to Banach-space-valued pra-
marts satisfying various tightness conditions combined with uniform integrability
conditions of Mazur type. The paper is organized as follows. In Section 2 we give
our notation and definitions. In Section 3 we deal with the strong convergence of
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pramarts in the space L1
X(F). The main result of this section (Theorem 3.1) en-

sures almost sure strong convergence of pramarts (fn) under the following three
conditions.

(1) There exist a sequence (gn) with gn ∈ co{fi : i ­ n} (i.e. gn has the form
gn =

∑
i­n λ

n
i fi, where λn

i ­ 0 for all i ­ n and
∑

i­n λ
n
i = 1, but λn

i > 0 only
for a finite number of indices) and an R(Xw)-valued multifunction Γ : Ω ⇒ X
such that for almost all ω ∈ Ω we have

gn(ω) ∈ Γ(ω) for infinitely many indices n.

(2) For each y ∈ Y , there exists a sequence (hn) with hn ∈ co{fi : i ­ n}
such that

(⟨y, hn⟩) is uniformly integrable.

(3) There exist a sequence (h′n) with h′n ∈ co{fi : i ­ n} and an integrable
function φ from Ω into R+ such that

lim inf
n→∞

|⟨y, h′n⟩| ¬ φ a.s. for each y ∈ BY .

In the above, R(Xw) denotes the collection of all nonempty weakly closed
and weakly ball-compact subsets of X , Y is a norming subspace of X∗, and BY :=
Y ∩ BX∗ (X∗ being the topological dual of X , and BX∗ its closed unit ball) (see
Section 2).

We obtain this result by showing first that, under the above conditions (2)
and (3), every pramart is pointwise bounded almost surely (Lemma 3.1).

We then proceed with two significant variants of Theorem 3.1 (Theorems 3.2
and 3.3) where the uniform integrability of the sequence (gn) in condition (2) is
relaxed to equi-integrability; but the tightness condition given in (1) is reinforced.
The proofs depend on a new version of the well-known cluster point approximation
theorem (Lemma 3.3).

Finally, in Section 4, we present results similar to those given in Section 3 for
pramarts in the space L1

X∗ [X](Ω, F, P ) of X-scalarly measurable functions f such
that ω → ∥f(ω)∥ is P -integrable.

2. NOTATION AND PRELIMINARIES

In this paper, X stands for a Banach space, whose norm is denoted by | · |, X∗
for the topological dual of X , and BX∗ for the closed unit ball of X∗. We recall
that a subspace Y of X∗ is called norming if for every x ∈ X we have

|x| = sup{⟨x∗, x⟩ : x∗ ∈ BY },

where BY := Y ∩ BX∗ . By w we denote the weak topology of X . The space X
endowed with the topology w will be denoted by Xw. The collection of all subsets
of X is denoted by 2X . Further, recall that a subset C of X is said to be w-ball
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compact if the intersection of C with every closed ball is weakly compact. By
cwk(Xw) (resp. R(Xw)) we denote the space of all nonempty w-compact convex
subsets of X (resp. closed convex and w-ball compact subsets of X).

Next, let (Ω,F , P ) be a complete probability space, (Fn)n­1 be an increasing
sequence of sub-σ-algebras ofF such thatF is generated by

∪
nFn. We denote by

L0
X(F) (resp. L1

X(F)) the space of (equivalence classes of) F-measurable (resp.
Bochner integrable) X-valued functions. Recall that a sequence (fn)n­1 in L1

X(F)
is uniformly integrable if

lim
a→∞

sup
n­1

∫
{ω∈Ω:|fn(ω)|­a}

|fn| dP = 0.

It is well known that (fn) is uniformly integrable if it is bounded in L1
X(F) and

equicontinuous, i.e.
lim

P (A)→0
sup
n­1

∫
A

|fn| dP = 0.

A function τ : Ω→ N ∪ {+∞} is called a stopping time with respect to (Fn)
if for each n ­ 1, {τ = n} ∈ Fn. The set of all bounded stopping times with
respect to (Fn) is denoted by T . For τ ∈ T and (fn) an adapted sequence with
respect to (Fn), recall that

fτ :=
max(τ)∑

k=min(τ)

fk1{τ=k} and Fτ =
{
A ∈ F : A ∩ {τ = k} ∈ Fk,∀k ­ 1

}
.

An adapted sequence (fn)n­1 is a pramart in L1
X(F) if for every ϵ > 0 there

is σ0 ∈ T such that

∀σ, τ ∈ T,
(
τ ­ σ ­ σ0 ⇒ P ({|fσ −EFσfτ | > ϵ}) ¬ ϵ

)
,

where EFσ denotes the conditional expectation with respect to Fσ.
It is obvious that if (fn)n­1 is a pramart in L1

X(F), then for every x∗ in BX∗

the sequence (⟨x∗, fn⟩)n­1 is a pramart in L1
R(F).

We end this section by introducing several concepts of tightness which will
play a crucial role in this work. For this purpose, it will be convenient to say that a
multifunction Γ : Ω→ 2X is F-measurable if its graph Gr(X) defined by

Gr(X) := {(ω, x) ∈ Ω×X : x ∈ Γ(ω)}

belongs to F ⊗ B(X).
The following notion of tightness is given in [3]:

DEFINITION 2.1. Let C be a subcollection of 2X . A sequence (fn) in L0
X(F)

is S(C)-tight if there exists an F-measurable C-valued multifunction Γ : Ω⇒ X
such that for almost all ω ∈ Ω we have

(∗) fn(ω) ∈ Γ(ω) infinitely often (i.o.)

(that is, fn(ω) ∈ Γ(ω) for infinitely many indices n).
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REMARK 2.1. If the values of Γ are bounded, then it is easy to check that (∗)
is equivalent to

lim inf
n→+∞

d
(
0, fn(ω) ∩ Γ(ω)

)
< +∞.

REMARK 2.2. By the Eberlein–Šmulian theorem, the following implication

(fn) S
(
cwk(Xw)

)
-tight⇒ w-ls fn ̸= ∅ a.s.

holds true. Conversely, if w-ls fn ̸= ∅ a.s., then the condition (∗) in Definition 2.1
is satisfied, but the multifunction Γ can fail to be F-measurable.

It is also necessary to introduce stronger notions of the above tightness con-
dition, namely Ad-S(C)-tightness and Ad-(B)-S(C)-tightness. We need an extra
definition:

DEFINITION 2.2. A multifunction Γ : Ω ⇒ X is called adaptedly measur-
able (Ad-measurable for short) if there exists an increasing sequence (An)n­1 in
F adapted to (Fn) with limn→∞ P (An) = 1 such that for each n ­ 1 the multi-
function 1AnΓ is Fn-measurable.

DEFINITION 2.3. A sequence (fn) in L0
X(F) is Ad-S(C)-tight if there ex-

ists an Ad-measurable C-valued multifunction Γ : Ω⇒ X such that for almost all
ω ∈ Ω we have

fn(ω) ∈ Γ(ω) i.o.

DEFINITION 2.4. A sequence (fn) in L0
X(F) is called Ad-(B)-S(C)-tight if

there exists an Ad-measurable C-valued multifunction Γ : Ω⇒ X such that

fn(ω) ∈ Γ(ω) i.o.

and

(∗∗) sup
τ∈T

∫
{ω∈Ω:fτ (ω)∈Γ(ω)}

|fτ | dP <∞.

Let Y be a subset of X∗. If the condition (∗∗) is replaced with

(∗∗)′ sup
τ∈T

∫
{ω∈Ω:fτ (ω)∈Γ(ω)}

|⟨y, fτ ⟩| dP <∞ for all y ∈ Y,

then (fn) is called Y -scalarly Ad-(B)-S(C)-tight.

Notice that, for each τ ∈ T , the set {ω ∈ Ω : fτ (ω) ∈ Γ(ω)} isF-measurable.
Indeed, since (fn, n ­ 1) are strongly measurable, they are almost surely separably
valued, so we may assume that they all take values in a separable subspace F of X .
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If we set Γ′ := Γ ∩ F , then we have

(†) {ω ∈ Ω : fτ (ω) ∈ Γ′(ω)} = {ω ∈ Ω : fτ (ω) ∈ Γ(ω)} a.s. for all τ ∈ T

(because fτ (ω) ∈ F for all ω ∈ Ω). Further, the multifunction Γ′ has its graph in
F ⊗B(F ), since Gr(Γ′) = Gr(Γ)∩ (Ω×F ) and Gr(Γ) ∈ F ⊗B(X) (here recall
that F ⊗ B(F ) =

(
F ⊗ B(X)

)
∩ (Ω × F )). As Gr(fτ ) ∈ Fτ ⊗ B(F ), it is clear

that Gr(fτ ) ∩ Gr(Γ′) ∈ F ⊗ B(F ). Observing that {ω ∈ Ω : fτ (ω) ∈ Γ′(ω)} is
the projection of Gr(fτ ) ∩ Gr(Γ′) onto Ω, we conclude that the set {ω ∈ Ω :
fτ (ω) ∈ Γ′(ω)} is a member of F , and so is the set {ω ∈ Ω : fτ (ω) ∈ Γ(ω)}
(by (†)) in view of the completeness hypothesis on the probability space (Ω,F , P ),
the separability of F , and the classical projection theorem ([5], Theorem III.23).

3. STRONG CONVERGENCE OF PRAMARTS IN L1
X(F)

The following proposition shows that condition (C) of Theorem 1.1 can be
replaced with a (weaker) condition of Mazur type. This is the starting point of the
present paper.

PROPOSITION 3.1. Let (fn)n­1 be a pramart in L1
X(F) satisfying the follow-

ing condition:
(M) There exist a sequence (gn) with gn ∈ co{fi : i ­ n} and a function

f∞ ∈ L1
X(F) such that ∫

Ω

|gn − f∞| dP → 0.

Then (fn) converges strongly a.s. to f∞.

The proof of this proposition is based essentially on Theorem 4.1 in [9] and
the following lemma which will also be used on some other occasions.

LEMMA 3.1. Let (fn)n­1 be an adapted sequence in L1
X(F) satisfying the

above condition (M). Then, for every increasing sequence (τm) in T,

|fτm(ω)− EFτm (f∞)(ω)| ¬ sup
k­τm
|fτm(ω)− EFτm (fk)(ω)| a.s. for all m ­ 1

and

lim sup
m
|fτm(ω)− f∞(ω)| ¬ lim sup

m
sup
k­τm
|fτm(ω)− EFτm (fk)(ω)| a.s.

P r o o f. Let (τm) be an increasing sequence in T . Then writing

gn :=
pn∑
i=n

λn
i fi with

pn∑
i=n

λn
i = 1 and λn

i ­ 0,
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we get, for every m and for every n such that n ­ τm,

|fτm(ω)−EFτmgn(ω)| ¬
pn∑
i=n

λn
i |fτm(ω)− EFτm (fi)(ω)|

¬ sup
k­τm
|fτm(ω)− EFτm (fk)(ω)|

for almost all ω ∈ Ω. Consequently, we have the following estimation:

|fτm(ω)−EFτm (f∞)(ω)|
¬ |fτm(ω)− EFτm (gn)(ω)|+ |EFτmgn(ω)− EFτm (f∞)(ω)|
¬ sup

k­τm
|fτm(ω)− EFτm (fk)(ω)|+ |EFτmgn(ω)− EFτm (f∞)(ω)|

a.s. for every m and for every n such that n ­ τm. Now, since∫
Ω

|EFτm (gn)− EFτm (f∞)| dP ¬
∫
Ω

∥gn − f∞∥ dP → 0 for all m ­ 1,

using the diagonal method we find a subsequence of (gn), denoted similarly, such
that

lim
n
|EFτm (gn)(ω)− EFτm (f∞)(ω)| = 0 a.s. for all m ­ 1.

Therefore, passing to the limit as n→∞ in the estimation above, we get

|fτm(ω)− EFτm (f∞)(ω)| ¬ sup
k­τm
|fτm(ω)− EFτm (fk)(ω)|

a.s. for every m ­ 1, and hence, by the triangle inequality and the classical Lévy
theorem, we obtain

lim sup
m
|fτm(ω)− f∞(ω)| ¬ lim sup

m
sup
k­τm
|fτm(ω)− EFτmfk(ω)|

+ lim
m
|EFτm (f∞)(ω)− f∞(ω)|

= lim sup
m

sup
k­τm
|fτm(ω)− EFτm (fk)(ω)| a.s.

This completes the proof of Lemma 3.1. �

P r o o f o f P r o p o s i t i o n 3.1. By the cluster point approximation theo-
rem (Theorem 1 in [1]), we can choose a sequence (τm) in T with τm ­ m such
that

(3.1) lim sup
n
|fn(ω)− f∞(ω)| = lim

m
|fτm(ω)− f∞(ω)| a.s.



Strong convergence of pramarts 7

Then, by Lemma 3.1, we have

lim sup
m
|fτm(ω)− f∞(ω)| ¬ lim sup

m
sup
k­τm
|fτm(ω)− EFτm (fk)(ω)| a.s.

On the other hand, as (fn) is a pramart, by Theorem 4.1 in [9] (see also Theo-
rem I.3.5.5 in [8] or Lemma 2.1 in [7]) we have

(3.2) lim
m

sup
k­τm
|fτm(ω)− EFτm (fk)(ω)| = 0 a.s.

This equation together with (3.1) give

lim
n
|fn(ω)− f∞(ω)| = 0 a.s. �

Lemma 3.1 and the proof of Proposition 3.1 permit us also to formulate a
more general result in which the condition (M) can be replaced with the following
weaker one:

(SM) There exist a function f∞ ∈ L1
X(F) and a norming subspace Y of X∗

such that

(‡) ∀y ∈ Y, lim
n

inf
g∈co{fi:i­n}

∫
Ω

|⟨y, g⟩ − ⟨y, f∞⟩| dP = 0.

Obviously, condition (‡) has the following equivalent formulation:
For each y ∈ Y , there exists a sequence (gn) with gn ∈ co{fi : i ­ n} such

that
lim
n

∫
Ω

|⟨y, gn⟩ − ⟨y, f∞⟩| dP = 0.

PROPOSITION 3.2. Let (fn)n­1 be a pramart in L1
X(F) satisfying the above

condition (SM). Then (fn) converges strongly a.s. to f∞.

P r o o f. Since fn (n ­ 1) and f∞ are strongly measurable, they are a.s. sep-
arably valued, we can and do assume that X is separable. Consequently, BX∗ is
weak∗ metrizable, and hence weak∗ separable, since it is weak∗ compact. Now, let
f∞ be as mentioned in (SM) and let y be an arbitrary fixed element in BY . Then
there exists a sequence (gn) with gn ∈ co{fi : i ­ n} (which may depend on y)
such that ∫

Ω

|⟨y, gn⟩ − ⟨y, f∞⟩| dP → 0.

Noting that each ⟨y, gn⟩ is a member of the set co{⟨y, fi⟩ : i ­ n}, it is possible to
apply Lemma 3.1 to the real-valued adapted sequences (⟨y, fn⟩), which gives

|⟨y, fτm(ω)− EFτm (f∞)(ω)⟩| ¬ sup
k­τm
|⟨y, fτm(ω)− EFτm (fk)(ω)⟩|

¬ sup
k­τm
|fτm(ω)−EFτm (fk)(ω)|
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a.s. for every m ­ 1, where (τm) is any increasing sequence in T satisfying (3.1).
Since Y is a norming space, BY is weak∗ dense in BX∗ . Consequently,

|⟨x∗, fτm(ω)− EFτm (f∞)(ω)⟩| ¬ sup
k­τm
|fτm(ω)− EFτm (fk)(ω)|

a.s. for each x∗ ∈ BX∗ . Using the weak∗ separability of BX∗ we get, by a routine
argument,

|fτm(ω)− EFτm (f∞)(ω)| ¬ sup
k­τm
|fτm(ω)− EFτm (fk)(ω)|

a.s. for every m ­ 1. Hence

|fτm(ω)− f∞(ω)| ¬ sup
k­τm
|fτm(ω)−EFτm (fk)(ω)|+ |EFτm (f∞)(ω)− f∞(ω)|

a.s. for every m ­ 1. Now, it remains only to use (3.1), (3.2) and the classical Lévy
theorem. �

As a consequence of Propositions 3.1 and 3.2 we have:

PROPOSITION 3.3. Let (fn)n­1 be a pramart in L1
X(F) and let Y be a norm-

ing subspace of X∗ such that the following conditions hold:
(a) There exists an S

(
cwk(Xw)

)
-tight sequence (gn) with gn∈co{fi : i­n}.

(b) For each y ∈ Y, there exists a sequence (hn) with hn ∈ co{fi : i ­ n},
such that (⟨y, hn⟩) is uniformly integrable.

(c) There exist a sequence (h′n) with h′n ∈ co{fi : i ­ n} and an integrable
function φ from Ω into R+ such that

lim inf
n→∞

|⟨y, h′n⟩| ¬ φ a.s. for each y ∈ BY .

Then there exists a function f∞ ∈ L1
X(F) such that

(fn) converges strongly a.s. to f∞.

P r o o f. Since the functions fn (n ­ 1) are almost surely separably valued,
we can assume without loss of generality that X is separable. Let y ∈ Y be fixed
and let (hn) be a sequence associated with y according to (b). As the sequence
(⟨y, hn⟩) is uniformly integrable, there exist a subsequence (hnk

) of (hn) and a
function φy ∈ L1

R(F) such that

(3.3) lim
k→∞

∫
Ω

|⟨y, hnk
⟩ − φy| dP.

Consequently, since hnk
∈ co{fi : i ­ nk} ⊂ co{fi : i ­ k}, the condition (SM)

is satisfied for the L1
R(F)-pramart (⟨y, fn⟩). So, by Proposition 3.1, we have

(3.4) lim
n→+∞

⟨y, fn⟩ = φy a.s.



Strong convergence of pramarts 9

On the other hand, by (a), there exist a sequence (gn) with gn ∈ co{fi : i ­ n} and
an F-measurable cwk(Xw)-valued multifunction Γ : Ω⇒ X such that for almost
all ω ∈ Ω we have

gn(ω) ∈ Γ(ω) for infinitely many indices n.

Then, for each ω outside a negligible set N ,
(
gn(ω)

)
admits a subsequence

(
g′n(ω)

)
whose members belong to the w-compact set Γ(ω). Therefore, by the Eberlein–
Šmulian theorem, one can find a subsequence of

(
g′n(ω)

)
, still denoted in the same

manner, and an element xω ∈ X such that(
g′n(ω)

)
w-converges to xω.

Define f∞(ω) := xω for ω ∈ Ω \N and f∞(ω) := 0 for ω ∈ N . Then, taking into
account (3.4), we get

(3.5) lim
n→+∞

⟨y, fn(ω)⟩ = lim
n→+∞

⟨y, g′n(ω)⟩ = ⟨y, f∞(ω)⟩ = φy(ω) a.s.

This implies the F-measurability of ⟨y, f∞⟩ for all y ∈ Y . Recalling that the
ball BY is weak∗ dense in BX∗ and X is separable, we conclude that f∞ is F-
measurable. Furthermore, (3.5) also shows that

⟨y, f∞⟩ = lim
n→+∞

⟨y, h′n⟩ a.s. for all y ∈ Y,

where (h′n) is a sequence as given in condition (c). This yields

|⟨y, f∞⟩| ¬ φ a.s. for all y ∈ BY .

Equivalently,
|⟨x∗, f∞⟩| ¬ φ a.s. for all x∗ ∈ BX∗ .

Using the weak∗ separability of BX∗ we get

|f∞| ¬ φ a.s.,

which, in view of the integrability of φ, shows that |f∞| is integrable. Thus, we
have f∞ ∈ L1

X(F). Finally, from (3.3) and (3.5) it follows that

lim
k→∞

∫
Ω

|⟨y, hnk
⟩ − ⟨y, f∞⟩| dP for all y ∈ Y.

Therefore the condition (SM) is satisfied. The conclusion then follows from Propo-
sition 3.2. �

REMARK 3.1. The above conditions (b) and (c) are implied by (SM).
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Indeed, let f∞ and Y be given as in the condition (SM). Then to each y ∈ Y
there corresponds a sequence (gn) with gn ∈ co{fi : i ­ n} such that

lim
n

∫
Ω

|⟨y, gn⟩ − ⟨y, f∞⟩| dP = 0,

which yields the uniform integrability of the sequence (⟨y, gn⟩), and so the condi-
tion (b) is satisfied. Furthermore, by the classical Fatou lemma we have

lim inf
n
|⟨y, gn⟩ − ⟨y, f∞⟩| = 0 a.s.,

which implies

lim inf
n
|⟨y, gn⟩| ¬ |⟨y, f∞⟩| ¬ |f∞| a.s. for all y ∈ BY .

Hence the condition (c) follows by taking φ := |f∞|. �

Surprisingly, the following theorem, which is our first main result, shows that
in the above condition (a) the collection cwk(Xw) can be replaced withR(Xw).

THEOREM 3.1. Let (fn)n­1 be a pramart in L1
X(F) and Y be a norming

subspace of X∗ such that the following conditions hold:
(a′) There exists an S

(
R(Xw)

)
-tight sequence (gn) with gn∈co{fi : i­n}.

(b) For each y ∈ Y, there exists a sequence (hn) with hn ∈ co{fi : i ­ n},
such that (⟨y, hn⟩) is uniformly integrable.

(c) There exist a sequence (h′n) with h′n ∈ co{fi : i ­ n} and an integrable
function φ from Ω into R+ such that

lim inf
n→∞

|⟨y, h′n⟩| ¬ φ a.s. for each y ∈ BY .

Then there exists a function f∞ ∈ L1
X(F) such that

(fn) converges strongly a.s. to f∞.

Before proceeding with the proof of Theorem 3.1, we note an immediate corol-
lary.

COROLLARY 3.1. Let (fn)n­1 be a pramart in L1
X(F) satisfying the follow-

ing conditions:
(a′) There exists an S

(
R(Xw)

)
-tight sequence (gn) with gn ∈ co{fi : i­n}.

(b′) There exists a uniformly integrable sequence(hn)withhn∈co{fi : i­n}.
Then there exists a function f∞ ∈ L1

X(F) such that

(fn) converges strongly a.s. to f∞.

P r o o f. This follows from the fact that the conditions (b) and (c) are implied
by (b′). �
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The proof of Theorem 3.1 uses the following important lemma (compare with
Lemma VIII 2.4.1 in [8]).

LEMMA 3.2. Let (fn)n­1 be a pramart in L1
X(F) and Y be a norming sub-

space of X∗ such that the conditions (b) and (c) hold. Then lim supn |fn| ∈ L1
R(F).

Consequently, (fn) is pointwise bounded almost surely.

P r o o f. As in the preceding proofs, we may suppose that X is separable.
According to the cluster point approximation theorem (Theorem 1 in [1]), we can
choose an increasing sequence (τm) in T with τm ­ m such that

(3.6) lim sup
n
|fn(ω)| = lim

m
|fτm(ω)| a.s.

Now, from the condition (b) and the proof of Proposition 3.3 we know that for each
y ∈ BY the L1

R(F)-pramart (⟨y, fn⟩) satisfies (3.3) and (3.4). Therefore, by (3.3)
and Lemma 3.1, we have

|⟨y, fτm(ω)⟩ − φy(ω)|
¬ sup

k­τm
|⟨y, fτm(ω)−EFτm (fk)(ω)⟩|+ |EFτm (φy)(ω)− φy(ω)|

¬ sup
k­τm
|fτm(ω)− EFτm (fk)(ω)|+ EFτm (|φy|)(ω) + |φy(ω)|

a.s. for every m ­ 1. This implies

|⟨y, fτm(ω)⟩| ¬ sup
k­τm
|fτm(ω)−EFτm (fk)(ω)|+EFτm (|φy|)(ω)+ 2|φy(ω)| a.s.

Further, let (h′n) be a sequence as given in the condition (c). Since, by (3.4) we
have

|φy(ω)| = lim
n→+∞

|⟨y, h′n(ω)⟩| ¬ φ(ω) a.s.

and φ ∈ L1
R(F) (by (c)), we get

|⟨y, fτm(ω)⟩| ¬ sup
k­τm
|fτm(ω)− EFτm (fk)(ω)|+ EFτm (φ)(ω) + 2φ(ω) a.s.

Hence, by the weak∗ denseness of BY in BX∗ and the weak∗ separability of BX∗ ,

|fτm(ω)| ¬ sup
k­τm
|fτm(ω)− EFτm (fk)(ω)|+ EFτm (φ)(ω) + 2φ(ω)

a.s. for every m ­ 1. Using (3.2), (3.6), and the classical Lévy theorem we get

lim sup
n
|fn(ω)| ¬ 3φ(ω) a.s.

Thus lim supn |fn| ∈ L1
R(F). �
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P r o o f o f T h e o r e m 3.1. By conditions (b), (c), and Lemma 3.2, (fn) is
pointwise bounded. Noting that a sequence whose members are convex combina-
tions of a pointwise bounded sequence is still pointwise bounded, we conclude that
(fn) satisfies condition (a), since it satisfies (a′). Thus we return to the situation of
Proposition 3.3. �

REMARK 3.2. For Proposition 3.3 as well as for Theorem 3.1 and its Corol-
lary 3.1, the measurability of the multifunction Γ that appears in Definition 2.1 is
not essential.

Before passing to the next result, we provide an interesting corollary. For the
convenience of the reader, recall first the following classical notion of tightness:

A sequence (fn) in L0
X(F) is C-tight if, for every ϵ > 0, there is a C-valued

F-measurable multifunction Γϵ : Ω⇒ X such that

inf
n

P
(
{ω ∈ Ω : fn(ω) ∈ Γϵ(ω)}

)
­ 1− ϵ.

REMARK 3.3. If a sequence (fn) in L0
X(F) is C-tight, then it is S(C)-tight.

Indeed, consider ϵq := 1/q, q ­ 1. Then there is an F-measurable C-valued
multifunction Γϵq : Ω⇒X , denoted simply by Γq, such that infn P (An,q)­1− ϵq,
where we put An,q := {ω ∈ Ω : fn(ω) ∈ Γq(ω)}. Now, we define the sequence
(Ωq)q­1 by Ωq = lim supn→+∞An,q and the multifunction Γ on Ω by Γ = 1Ω′1 Γ1

+
∑

q­2 1Ω′q Γq, where Ω′1 = Ω1 and Ω′q = Ωq \
∪

i<q Ωi for all q > 1. Then the
inequality infn P (An,q) ­ 1− ϵq implies

P (Ωq) = lim
n→∞

P
( ∪
m­n

Am,q

)
­ 1− ϵq → 1.

Further, for each ω ∈ Ωq we have ω ∈ An,q i.o. This means fn(ω) ∈ Γq(ω) i.o.,
in view of the definition of An,q. Since Ω′q ⊂ Ωq,

∪
q Ωq =

∪
q Ω
′
q = Ω a.s., and

Γ(ω) = Γq(ω) on Ω′q, it follows that fn(ω) ∈ Γ(ω) i.o. for almost all ω ∈ Ω. �

COROLLARY 3.2. Let (fn)n­1 be a pramart in L1
X(F) such that the condi-

tions (a′′), (b), and (c) hold, where
(a′′) There exists anR(Xw)-tight sequence (gn) with gn ∈ co{fi : i ­ n}.
Then there exists a function f∞ ∈ L1

X(F) such that

(fn) converges strongly a.s. to f∞.

Conditions (b) and (c) can be replaced with (b′).

P r o o f. It is a consequence of Remark 3.3 and Theorem 3.1. �

REMARK 3.4. An inspection of the preceding proofs reveals that in conditions
(a), (a′), (a′′), (b), (b′) and (c), we may change co{fi : i­n} into co{fτi: i­n},
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where (τn) is an arbitrary cofinal increasing sequence in T corresponding to each
condition. Without loss of generality, these new (weaker) conditions will be de-
noted in a similar way.

We now deal with the case of Ad-S(C)-tight pramarts. An approximation
lemma that may be of independent interest is obtained first. (Compare with Theo-
rem 1 in [1].)

LEMMA 3.3. Let (fn)n­1 be an Ad-S(C)-tight adapted sequence in L1
X(F).

Then there exists an increasing sequence (τn) in T with τn ­ n such that for each
ω outside a negligible set there exists a positive integer nω such that

∀n ­ nω, fτn(ω) ∈ Γ(ω),

where Γ is the multifunction which appears in the σ-S(C)-tightness condition.

P r o o f. Ad-S(C)-tightness entails the existence of a σ-measurable C-valued
multifunction Γ : Ω⇒ X such that

(3.7) fn(ω) ∈ Γ(ω) i.o.

Now, by the Ad-measurability of Γ, one can choose an increasing sequence
(An)n­1 in F adapted to (Fn) with limn→∞ P (An) = 1 such that the multi-
function 1AnΓ is Fn-measurable for each n ­ 1. For each m,n ­ 1 let us define
the set

Fm
n :=

{
{ω ∈ Am : fn(ω) ∈ Γ(ω)} if n ­ m,

∅ otherwise

and the function
θmn := 1Fm

n
.

Then (θmn )n is adapted with respect to (Fn) and, by (3.7), we have

ω ∈ Fm
n i.o.

for every m ­ 1 and for every ω ∈ Am outside a negligible set N . This means that
there exists an increasing sequence (nk) of positive integers such that ω ∈ Fm

nk
for

all k ­ 1. Equivalently, for each m ­ 1 and for each ω ∈ Am \ N , 1Am(ω) is a
cluster point of the sequence

(
θmn (ω)

)
. Consequently, using the cluster point ap-

proximation theorem one can find an increasing sequence (τmn ) in T with τmn ­ n
such that

1Am = lim
n→+∞

θmτmn a.s.,

and hence in probability. Thus it is possible to find two strictly increasing se-
quences

(
α(n)

)
and

(
β(n)

)
of positive integers with α(n) ­ β(n) for all n ­ 1
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such that if we set τn := τ
β(n)
α(n) , then

lim
n→+∞

θβ(n)τn − 1Aβ(n)
= 0 a.s.,

and so
lim

n→+∞
θβ(n)τn = 1 a.s.,

since Aβ(n) ↑ Ω a.s. Note that τn ∈ T and τn = τ
β(n)
α(n) ­ α(n) ­ β(n) ­ n for all

n ­ 1. So, by the definition of the Fm
n ’s, we have

θβ(n)τn (ω) = 1{ω′∈Aβ(n):fτn(ω)(ω
′)∈Γ(ω′)}(ω)

for all ω ∈ Ω and for all n ­ 1. Further, passing to a subsequence, if necessary, we
may suppose τn+1 ­ τn for all n ­ 1. Finally, from the two previous equalities,
the fact that Aβ(n) ↑ Ω a.s. and the following decomposition

1{ω′∈Ω:fτn(ω)(ω
′)∈Γ(ω′)}(ω)

= 1{ω′∈Ω\Aβ(n):fτn(ω)(ω
′)∈Γ(ω′)}(ω) + 1{ω′∈Aβ(n):fτn(ω)(ω

′)∈Γ(ω′)}(ω)

= 1{ω′∈Ω\Aβ(n):fτn(ω)(ω
′)∈Γ(ω′)}(ω) + θβ(n)τn (ω) (ω ∈ Ω)

it follows that
lim

n→+∞
1{ω′∈Ω:fτn(ω)(ω

′)∈Γ(ω′)}(ω) = 1 a.s.

Obviously, this means that for each ω outside a negligible set, there exists a positive
integer nω such that fτn(ω) ∈ Γ(ω) for all n ­ nω, which is the desired conclu-
sion. �

We can now prove the following significant variant of Theorem 3.1.

THEOREM 3.2. Let (fn)n­1 be a pramart in L1
X(F) and Y be a norming

subspace of X∗ such that the following conditions hold:
(a)+ (fn) is Ad-S

(
cwk(Xw)

)
-tight.

(b)− For every y ∈ Y and for every increasing sequence (τn) in T there exists
a sequence (hn) with hn ∈ co{fτi : i ­ n} such that (⟨y, hn⟩) is equi-integrable.

(c) There exist an increasing sequence (τn) in T, a sequence (h′n) with
h′n ∈ co{fτi : i ­ n}, and an integrable function φ from Ω into R+ such that

lim inf
n→∞

|⟨y, h′n⟩| ¬ φ a.s. for each y ∈ BY .

Then there exists a function f∞ ∈ L1
X(F) such that

(fn) converges strongly a.s. to f∞.
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P r o o f. By the Ad-S(C)-tightness assumption and Lemma 3.3, there exist
an Ad-measurable cwk(Xw)-valued multifunction Γ : Ω⇒ X and an increasing
sequence (τn) in T , with τn ­ n, such that for each ω outside a negligible set N
one can find an integer nω ­ 1 satisfying:

(3.8) ∀n ­ nω, fτn(ω) ∈ Γ(ω).

Now, let y ∈ Y be arbitrarily fixed and let (hn) be a sequence associated with y
according to (b)−. We claim that the sequence (⟨y, hn⟩) is bounded in L1

R(F). To
prove this let

Bm := {ω ∈ Ω : sup
n
|fτn(ω)| ¬ m}.

From (3.8) and the fact that the sets Γ(ω) (ω ∈ Ω) are bounded it follows that
limm→∞ P (Bm) = 1. As the sequence (⟨y, hn⟩) is equi-integrable, there exists an
integer m0 ­ 1 such that

(3.9) sup
n

∫
Ω\Bm0

|⟨y, hn⟩| dP ¬ 1.

Further, again by (3.8), it is not difficult to check that for each ω in Ω \N

hn(ω) ∈ Γ(ω) for all n ­ nω

since Γ is convex-valued. Equivalently,

lim
n→∞

1{ω∈Ω:hn(ω)∈Γ(ω)} = 1 a.s.,

which implies
lim
n→∞

P
(
{ω ∈ Ω : hn(ω) ∈ Γ(ω)}

)
= 1,

and so, again using the equi-integrability of (⟨y, hn⟩), we obtain

lim
n→∞

∫
{ω∈Ω:hn(ω)/∈Γ(ω)}

|⟨y, hn⟩| dP = 0.

This equation together with the decomposition∫
Bm0

|⟨y, hn⟩| dP =
∫

Bm0∩{ω∈Ω:hn(ω)∈Γ(ω)}
|⟨y, hn⟩| dP

+
∫

Bm0∩{ω∈Ω:hn(ω)/∈Γ(ω)}
|⟨y, hn⟩| dP

imply

lim sup
n→∞

∫
Bm0

|⟨y, hn⟩| dP ¬
∫

Bm0

sup
n
|fτn(ω)| dP ¬ m0P (Bm0).
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Hence
sup
n

∫
Bm0

|⟨y, hn⟩| dP <∞.

Putting this formula together with (3.9), we get

sup
n

∫
Ω

|⟨y, hn⟩| dP <∞,

as claimed. Consequently, the sequence (⟨y, hn⟩) is uniformly integrable, so that
condition (b) is satisfied. Conditions (a) and (c) are also satisfied. Therefore, tak-
ing into account Remark 3.4, we see that Theorem 3.2 is a consequence of Theo-
rem 3.1. �

COROLLARY 3.3. Let (fn)n­1 be a pramart in L1
X(F) satisfying the follow-

ing two conditions:
(a)+ (fn) is Ad-S

(
cwk(Xw)

)
-tight.

(b′)− For every increasing sequence (τn) in T, there exists a sequence (hn)
with hn ∈ co{fτi : i ­ n} such that (|hn|) is equi-integrable.

Then there exists a function f∞ ∈ L1
X(F) such that

(fn) converges strongly a.s. to f∞.

P r o o f. Following mutatis mutandis the arguments of the proof above by
replacing |⟨y, fτn⟩| with |fτn |, and by using (b′)− instead of (b)−, we show that
the sequence (|fτn |) is uniformly integrable. So, by Remark 3.4, condition (b′) is
satisfied. Condition (a′) is also satisfied, since it is implied by (a)+. Thus, we return
to the situation of Corollary 3.1. �

We conclude this section by providing a version of Theorem 3.2 for C =
R(Xw), but this time under the Ad-(B)-S(C)-tightness condition.

THEOREM 3.3. Let (fn)n­1 be a pramart in L1
X(F) and Y be a norming

subspace of X∗ such that the conditions (a′)+, (b)−, and (c) hold, where
(a′)+ (fn) is Ad-(B)-S

(
R(Xw)

)
-tight.

Then there exists a function f∞ ∈ L1
X(F) such that

(fn) converges strongly a.s. to f∞.

P r o o f. We will show that condition (b) is satisfied; once this is done we
can use Theorem 3.1 and Remark 3.4 to get the desired conclusion. By the Ad-
(B)-S

(
R(Xw)

)
-tightness assumption and Lemma 3.3, there exist a σ-measurable

R(Xw)-valued multifunction Γ : Ω ⇒ X and an increasing sequence (τn) in T
with τn ­ n such that for each ω outside a negligible set N one can find an integer
nω ­ 1 satisfying (3.8) and

(3.10) ∀y ∈ Y, sup
n

∫
{ω∈Ω:fτn∈Γ(ω)}

|⟨y, fτn⟩| dP <∞.
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Next, let y ∈ Y be arbitrarily fixed and let (hn) be a sequence associated with
y according to (b)−. We want to show that the sequence (⟨y, hn⟩) is bounded in
L1
R(F). First, observe that (3.8) can be expressed as follows:

lim
n→∞

1{ω∈Ω:∪p­n{fτp (ω)}⊂Γ(ω)} = 1 a.s.,

which implies

lim
n→∞

P
({

ω ∈ Ω :
∪
p­n
{fτp(ω)} ⊂ Γ(ω)

})
= 1.

As the sequence (⟨y, hn⟩) is equi-integrable (by (b)−), we deduce that

lim
n→∞

∫
Ω\{ω∈Ω:∪p­n{fτn (ω)}⊂Γ(ω)}

|⟨y, hn⟩| dP = 0.

This equation together with the decomposition∫
Ω

|⟨y, hn⟩| dP =
∫

{ω∈Ω:∪p­n{fτp (ω)}⊂Γ(ω)}
|⟨y, hn⟩| dP

+
∫

Ω\{ω∈Ω:∪p­n{fτp (ω)}⊂Γ(ω)}
|⟨y, hn⟩| dP

imply

lim sup
n→∞

∫
Ω

|⟨y, hn⟩| dP ¬ sup
n

∫
{ω∈Ω:∪p­n{fτp (ω)}⊂Γ(ω)}

|⟨y, hn⟩| dP.

Since each hn is of the form

hn :=
∑
i∈Jn

µn
i fτi+n with

∑
i∈Jn

µn
i = 1 and µn

i ­ 0,

we get

lim sup
n→∞

∫
Ω

|⟨y, hn⟩| dP ¬ sup
n

∑
i∈Jn

µn
i

∫
{ω∈Ω:∪p­n{fτp (ω)}⊂Γ(ω)}

|⟨y, fτi+n⟩| dP

¬ sup
n

sup
m­n

∫
{ω∈Ω:∪p­n{fτp (ω)}⊂Γ(ω)}

|⟨y, fτm⟩| dP

¬ sup
m

∫
{ω∈Ω:fτm (ω)∈Γ(ω)}

|⟨y, fτm⟩| dP,

where the last inequality follows from the fact that{
ω ∈ Ω :

∪
p­n
{fτp(ω)} ⊂ Γ(ω)

}
⊂ {ω ∈ Ω : fτm(ω) ∈ Γ(ω)} for all m ­ n.
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Thus, by (3.10), we obtain

sup
n

∫
Ω

|⟨y, hn⟩| dP <∞.

Consequently, the sequence (⟨y, hn⟩) is uniformly integrable, so that condition (b)
is satisfied. �

Under the condition (b′)−, Theorem 3.3 has the following formulation:

COROLLARY 3.4. Let (fn)n­1 be a pramart in L1
X(F) such that the condi-

tions (a′)+ and (b′)− hold. Then there exists a function f∞ ∈ L1
X(F) such that

(fn) converges strongly a.s. to f∞.

P r o o f. If we replace in the proof of Theorem 3.3 the sequence (|⟨y, fτn⟩|)
with (|fτn |), we obtain the uniform integrability of (fτn), and so the condition (b′)
is satisfied. The conclusion then follows from Corollary 3.1 and Remark 3.4. �

4. THE CASE OF PRAMARTS WITH VALUES IN A DUAL SPACE

In this section (X, | · |) is a separable Banach space and (xℓ)ℓ­1 is a fixed
dense sequence in the closed unit ball BX of X . We denote by X∗ the topological
dual of X , and the dual norm by ∥ · ∥. The closed unit ball of X∗ is denoted
by BX∗ . If t is a topology on X∗, the space X∗ endowed with t is denoted by
X∗t . Three topologies will be considered on X∗, namely the norm topology s∗,
the weak topology w = σ(X∗, X∗∗), and the weak-star topology w∗ = σ(X∗, X).
The collection of all subsets of X∗ is denoted by 2X

∗
.

Let (Cn)n­1 be a sequence of subsets of X∗. The sequential weak upper limit
w-ls Cn of (Cn) is defined by

w-lsCn = {x∗ ∈ X∗ : x∗ = w- lim
j→+∞

x∗nj
, x∗nj

∈ Cnj}

and the topological weak upper limit w-LSCn of (Cn) is denoted by w-LSCn and
is defined by

w-LSCn =
∩
n­1

w-cl
∪
k­n

Cn,

where w-cl denotes the closed hull operation in the weak topology. The following
inclusion is easy to check:

w-lsCn ⊆ w-LSCn.

Conversely, if the Cn are contained in a fixed weakly compact subset, then both
sides coincide.
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As in the previous section, (Ω,F , P ) stands for a complete probability space
and (Fn)n­1 for an increasing sequence of sub-σ-algebras of F such that F is the
σ-algebra generated by

∪
nFn. The set of all bounded stopping times with respect

to (Fn) is denoted by T . A function f : Ω → X∗ is said to be X-scalarly F-
measurable (or, simply, scalarly F-measurable) if the real-valued function ω →
⟨x, f(ω)⟩ is measurable with respect to the σ-field F for all x ∈ X . We say also
that f is weak∗-F-measurable. Recall that if f : Ω→ X∗ is a scalarly F-measura-
ble function such that ⟨x, f⟩ ∈ L1

R(F) for all x ∈ X , then for each A ∈ F there is
x∗ ∈ X∗ such that

∀x ∈ X, ⟨x, x∗⟩ =
∫
A

⟨x, f⟩ dP.

The vector x∗ is called the weak∗ integral (or Gelfand integral) of f over A
and is denoted simply by

∫
A
f dP . We denote by L0

X∗ [X](F) (resp. L1
X∗ [X](F))

the space of all (classes of) scalarly F-measurable functions (resp. scalarly F-
measurable functions f such that ω → ∥f(ω)∥ is P -integrable).

Next, let (fn)n­1 be a sequence in L1
X∗ [X](F). If each fn is Fn-scalarly

measurable, we say that (fn) is adapted with respect to (Fn). For τ ∈ T and (fn)
an adapted sequence with respect to (Fn), recall that

fτ :=
max(τ)∑

k=min(τ)

fk1{τ=k} and Fτ =
{
A ∈ F : A ∩ {τ = k} ∈ Fk,∀k ­ 1

}
.

It is readily seen that fτ is Fτ -scalarly measurable.

DEFINITION 4.1. An adapted sequence (fn)n­1 in L1
X∗ [X](F) is a pramart

if for every ϵ > 0 there is σ0 ∈ T such that for every σ and τ in T with τ ­ σ ­ σ0
we have

P ({∥fσ − EFσfτ∥ > ϵ}) < ϵ,

where EFn denotes the (Gelfand) conditional expectation with respect to Fn. It
should be noted that conditional expectation of a Gelfand function in L1

X∗ [X](F)
always exists (see [11], Proposition 7, p. 366, and [13], Theorem 3).

It is obvious that if (fn)n­1 is a pramart in L1
X∗ [X](F), then for every x in

BX , the sequence (⟨x, fn⟩)n­1 is a pramart in L1
R(F).

Now it is convenient to reformulate the tightness conditions introduced in Sec-
tion 3 in the space L0

X∗ [X](F). For this purpose, let C = cwk(X∗w) or R(X∗w),
where cwk(X∗w) (resp. R(X∗w)) denotes the space of all nonempty σ(X∗, X∗∗)-
compact convex subsets of X∗w (resp. closed convex subsets of X∗w such that their
intersections with any closed ball are weakly compact). A C-valued multifunction
Γ : Ω⇒ X∗ is F-measurable if its graph Gr(Γ), defined by

Gr(Γ) := {(ω, x∗) ∈ Ω×X∗ : x∗ ∈ Γ(ω)},

belongs to F ⊗ B(X∗w∗).
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Let (fn) be a sequence in L0
X∗ [X](F).

• (fn) is said to be S(C)-tight if there exists an F-measurable C-valued mul-
tifunction Γ : Ω⇒ X∗ such that for almost all ω ∈ Ω we have

fn(ω) ∈ Γ(ω) i.o.

• (fn) is said to be C-tight if for every ϵ > 0 there is a C-valuedF-measurable
multifunction Γϵ : Ω⇒ X∗ such that

inf
n

P
(
{ω ∈ Ω : fn(ω) ∈ Γϵ(ω)}

)
­ 1− ϵ.

Next, let us introduce the following notion of σ-measurability (see [10]).

DEFINITION 4.2. A function f in L0
X∗ [X](F) is said to be σ-measurable if

there exists an adapted sequence (Γn)n­1 (that is, for each integer n ­ 1, Γn is
Fn-measurable) ofR(X∗w)-valued multifunctions such that

f(ω) ∈ s∗-cl co
(∪

n
Γn

)
a.s.

The sequence (Γn) given in this definition can be assumed to be adapted with
respect to a subsequence of (Fn).

PROPOSITION 4.1 ([10], Proposition 4.2). Let (fn)n­1 be an adapted se-
quence in L0

X∗ [X](F) and f∞ be a function in L0
X∗ [X](F) such that

(i) (fn) is S
(
cwk(X∗w)

)
-tight;

(ii) limn→∞⟨xℓ, fn⟩ = ⟨xℓ, f∞⟩ a.s. for all ℓ.
Then f∞ is σ-measurable.

The following version of Lévy’s theorem in the framework of a dual space
will be crucial in the sequel.

THEOREM 4.1 ([10], Proposition 4.5). Let f be a function in L1
X∗ [X](F).

Then the following two statements are equivalent:
(i)

(
EFn(f)

)
converges strongly a.s. to f .

(ii) f is σ-measurable.

REMARK 4.1. Condition (i) of Theorem 4.1 can be replaced with the following
(i)′ For every increasing sequence (τn) in T(

EFτn (f)
)

converges strongly a.s. to f.

The implication (i)′⇒ (i) is obvious, whereas (i)⇒ (i)′ follows from the next
lemma, which is an easy adaptation of Theorem VII.2.4 in [8].

LEMMA 4.1. Let f ∈ L1
X∗ [X](F). Then for every τ ∈ T and every n ­ 1

EFn(f) = EFτ (f) a.s. on {τ = n}.
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REMARK 4.2. To prove the existence of a scalarly measurable function that is
not σ-measurable suppose that X is a separable Banach space whose dual X∗ is not
strongly separable (equivalently, X∗ does not have the Radon–Nikodym property,
by a theorem of Stegall; see [6], p. 195). Then Theorem II.2.2.1 in [8] allows us
to show the existence of a probability space (∆,G, µ) and a uniformly integrable
martingale (gn,Gn) in L1

X∗(∆,G, µ) which diverges in the L1
X∗(∆,G, µ)-norm.

Noting that the functions gn are also members of L1
X∗ [X](∆,G, µ) and invoking

Theorem 6.1 (4) of [4], it is possible to find a subsequence (gnk
) of (gn) and a

function g∞ ∈ L1
X∗ [X](∆,G, µ) such that

lim
k→∞

∫
A

⟨xℓ, gnk
⟩ dP =

∫
A

⟨xℓ, g∞⟩ dP

for all ℓ ­ 1 and A ∈ F . Now, since for each ℓ ­ 1, (⟨xℓ, gn⟩)n is a martingale in
L1
R(F), we have ∫

A

⟨xℓ, gnk
⟩ dP =

∫
A

⟨xℓ, gm⟩ dP

for all m ­ 1, k ­ m, and A ∈ Fm. Therefore,∫
A

⟨xℓ, gm⟩ dP =
∫
A

⟨xℓ, g∞⟩ dP for all A ∈ Fm,

which is equivalent to

⟨xℓ, gm⟩ = EFm(⟨xℓ, g∞⟩) = ⟨xℓ, EFm(g∞)⟩ a.s for all m ­ 1.

This holds for all ℓ ­ 1. Hence

∀m ­ 1, gm = EFm(g∞) a.s.

By Theorem 4.1, it follows that g∞ is not σ-measurable. Otherwise, (gm) s∗-con-
verges almost surely to g∞ and also strongly in L1

X∗(∆,G, µ). �

Now we are ready to extend the results of the preceding section to the space
L1
X∗ [X](F). Before going further, we need the following L1

X∗ [X](F)-extension
of Lemma 3.1.

LEMMA 4.2. Let (fn)n­1 be an adapted sequence in L1
X∗ [X](F) satisfying

the following condition:
(M)∗ There exist a sequence (gn) with gn ∈ co{fi : i ­ n} and a function

f∞ ∈ L1
X∗ [X](F) such that ∫

Ω

∥gn − f∞∥ dP → 0.

Then, for every increasing sequence (τm) in T,

(i) ∥fτm(ω)− EFτmf∞(ω)∥
¬ sup

k­τm
∥fτm(ω)− EFτmfk(ω)∥ a.s. for all m ­ 1
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and

(ii) lim sup
m
∥fτm(ω)− f∞(ω)∥ ¬ lim sup

m
sup
k­τm
∥fτm(ω)− EFτmfk(ω)∥ a.s.

P r o o f. Inequality (i) is an easy adaptation of the corresponding one in Lem-
ma 3.1. It remains to verify (ii). Since

∫
Ω
∥gn − f∞∥ dP → 0, one can find a sub-

sequence of (gn) whose norm converges a.s. to f∞. Therefore, noting that (gn)
is adapted with respect to a subsequence of (Fn), we conclude that f∞ is σ∞-
measurable. Conversely, by Theorem 4.1, this ensures the a.s. s∗-convergence of
EFτm (f∞) to f∞. Thus, as in the proof of Lemma 3.1, (ii) is a consequence of (i),
the triangle inequality, and the classical Lévy theorem. �

The following is an L1
X∗ [X](F)-version of Proposition 3.1.

PROPOSITION 4.2. Let (fn)n­1 be a pramart in L1
X∗ [X](F) satisfying the

following condition:

(M)∗ There exist a sequence (gn) with gn ∈ co{fi : i ­ n} and a function
f∞ ∈ L1

X∗ [X](F) such that ∫
Ω

∥gn − f∞∥ dP → 0.

Then (fn) converges strongly a.s. to f∞.

P r o o f. By the cluster point approximation theorem, we can choose an in-
creasing sequence (τm) in T with τm ­ m such that

(4.1) lim sup
n
∥fn(ω)− f∞(ω)∥ = lim

m
∥fτm(ω)− f∞(ω)∥ a.s.

Then, by Lemma 4.2,

lim
m
∥fτm(ω)− f∞(ω)∥ ¬ lim sup

m
sup
k­τm
∥fτm(ω)− EFτm (fk)(ω)∥ a.s.

On the other hand, as (fn) is a pramart, by repeating mutatis mutandis the tech-
niques of Millet and Sucheston developed in [9], Theorem 4.1, we continue to have

(4.2) lim
m

sup
k­τm
∥fτm(ω)− EFτm (fk)(ω)∥ = 0 a.s.

This equation together with (4.1) give

lim
n
∥fn(ω)− f∞(ω)∥ = 0 a.s. �

Unlike the first case, it is interesting to note that Proposition 4.2 need not hold
if one replaces condition (M)∗ with
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(SM)∗ There exists a function f∞ ∈ L1
X∗ [X](F) such that

∀x ∈ X, lim
n

inf
g∈co{fi:i­n}

∫
Ω

|⟨x, g⟩ − ⟨x, f∞⟩| dP = 0

(just consider a regular martingale associated with the member of L1
X∗ [X](F) that

is not σ-measurable, see Remark 4.2 and its proof). However, we can prove:

PROPOSITION 4.3. Let (fn)n­1 be a pramart in L1
X∗ [X](F) satisfying the

above condition (SM)∗. Then

∥fn − EFn(f∞)∥ → 0 a.s. and (fn) w∗-converges to f∞ a.s.

P r o o f. Let f∞ be a function as given in condition (SM)∗. Then to each ℓ ­ 1
there corresponds a sequence (gn) with gn ∈ co{fi : i ­ n} such that

(4.3) lim
n

∫
Ω

|⟨xℓ, gn⟩ − ⟨xℓ, f∞⟩| dP = 0.

Further, by the cluster approximation theorem, one can choose an increasing se-
quence (τm) in T with τm ­ m for all m ­ 1 such that

(4.4) lim sup
n→∞

∥fn(ω)− EFn(f∞)(ω)∥ = lim
m→∞

∥fτm(ω)−EFτm (f∞)(ω)∥.

By (4.3), it is possible to apply Lemma 3.1 to the real-valued adapted sequences
(⟨xℓ, fn⟩) (ℓ ­ 1), which gives

|⟨xℓ, fτm(ω)− EFτm (f∞)(ω)⟩| ¬ sup
k­τm
|⟨xℓ, fτm(ω)− EFτm (fk)(ω)⟩|

a.s. for every m ­ 1 and every ℓ ­ 1. Taking the supremum on ℓ ­ 1 we get

(4.5) ∥fτm(ω)− EFτm (f∞)(ω)∥ ¬ sup
n­τm
∥fτm(ω)− EFτm (fn)(ω)∥

a.s. for every m ­ 1. Since (fn) is a pramart, equation (4.2) together with (4.4)
and (4.5) imply

(4.6) lim
n→∞
∥fn(ω)− EFn(f∞)(ω)∥ = 0 a.s.,

and then, by the classical Lévy theorem,

(4.7) lim
n→∞
⟨x, fn(ω)⟩ = ⟨x, f∞(ω)⟩ a.s. for all x ∈ X.

Since
sup
n­1
∥EFn(f∞)(ω)∥ ¬ EFn∥f∞∥(ω) <∞ a.s.,
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equality (4.6) implies
sup
n­1
∥fn(ω)∥ <∞ a.s.

Using the separability of X , (4.7) and the pointwise boundedness of (fn) we infer,
by a routine argument, that(

fn(ω)
)
w∗-converges to f∞(ω) a.s.

Thus the proof is completed. �

A version of Proposition 4.3 for L1
X∗ [X](F)-bounded mil is available in [2],

Corollary 3.1 (see also [10]).

As a direct consequence of Theorem 4.1 and Proposition 4.3 we have:

COROLLARY 4.1. Let (fn)n­1 be a pramart in L1
X∗ [X](F) satisfying the

following condition:
(SM)∗+ There exists a σ-measurable function f∞ ∈ L1

X∗ [X](F) such that

lim
n

inf
g∈co{fi:i­n}

∫
Ω

|⟨x, g⟩ − ⟨x, f∞⟩| dP = 0 for all x ∈ X.

Then (fn) converges strongly a.s. to f∞.

Now towards a dual version of Theorem 3.1, it is useful to reformulate Lem-
ma 3.2 for pramarts in L1

X∗ [X](F).

LEMMA 4.3. Let (fn)n­1 be a pramart in L1
X∗ [X](F), which satisfies the

following two conditions:
(b)∗ For each x ∈ X, there exists a sequence (hn) with hn ∈ co{fi : i ­ n},

such that (⟨x, hn⟩) is uniformly integrable.
(c)∗ There exists a sequence (h′n) with h′n ∈ co{fi : i ­ n} such that

sup
ℓ­1

lim inf
n→∞

|⟨xℓ, h′n⟩| ∈ L1
R(F).

Then lim supn ∥fn(ω)∥ ∈ L1
R(F). Consequently, (fn) is pointwise bounded

almost surely.

P r o o f. It is an easy adaptation of Lemma 3.2. �

Proceeding as in the proof of Remark 3.1, note that the condition (SM)∗ im-
plies (b)∗ and (c)∗.

In the next result we provide a version of Proposition 4.3 where the con-
dition (SM)∗ may be replaced with (b)∗ and (c)∗. The proof follows the same
lines as those of Proposition 3.3 with appropriate modifications, but involves w∗-
compactness instead of w-compactness via Lemma 4.3.
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PROPOSITION 4.4. Under the assumptions of Lemma 4.3 there exists a func-
tion f∞ ∈ L1

X∗ [X](F) such that

∥fn − EFn(f∞)∥ → 0 a.s. and (fn) w∗-converges to f∞ a.s.

P r o o f. Let ℓ ­ 1 be fixed and let (hn) be a sequence associated with ℓ ac-
cording to (b)∗. As the sequence (⟨xℓ, hn⟩) is uniformly integrable, there exist a
subsequence (hnk

) of (hn) and a function φℓ ∈ L1
R(F) such that

(4.8) lim
k→∞

∫
Ω

|⟨xℓ, hnk
⟩ − φℓ| dP = 0.

Since hnk
∈ co{fi : i ­ k} and (⟨xℓ, fn⟩)n is a pramart, by Proposition 3.1, we

have

(4.9) lim
n→+∞

⟨xℓ, fn⟩ = φℓ a.s. for all ℓ ­ 1.

On the other hand, by Lemma 4.3, the sequence (fn) is pointwise bounded in X∗

almost surely; hence it is relatively w∗-sequentially compact (the weak star topol-
ogy being metrizable on bounded sets). Therefore, for each ω outside a negligible
set N , there exist a subsequence of (fkn) (possibly depending upon ω) and an
element x∗ω ∈ X∗ such that(

fkn(ω)
)
w∗-converges to x∗ω.

Define f∞(ω) := x∗ω for ω ∈ \Ω and f∞(ω) := 0 for ω ∈ N . Then, taking into
account (4.9) we get

(4.10) lim
n→+∞

⟨xℓ, fn⟩ = ⟨xℓ, f∞⟩ = φℓ a.s. for all ℓ ­ 1.

This implies the scalar F-measurability of f∞. Furthermore, we have

∥f∞∥ ¬ sup
ℓ­1

lim inf
n→+∞

|⟨xℓ, fn⟩| a.s.,

which, in view of (c)∗, shows that ∥f∞∥ is integrable. Thus f∞ ∈ L1
X∗ [X](F).

Replacing in (4.8) φℓ by ⟨xℓ, f∞⟩ (because of the second equality of (4.10)) we
get

lim
k→∞

∫
Ω

|⟨xℓ, hnk
⟩ − ⟨xℓ, f∞⟩| dP = 0.

The desired conclusion follows then from Proposition 4.3. �

Now we are ready to state the analogue of Theorem 3.1 in the framework
of L1

X∗ [X](F)-space, which is a direct consequence of Propositions 4.1–4.4 and
Theorem 4.1. It can also be seen as a pramart version of Proposition 5.2 in [10].
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THEOREM 4.2. Let (fn)n­1 be a pramart in L1
X∗ [X](F). Suppose the fol-

lowing conditions are satisfied:
(a)∗ There exists an S

(
R(X∗w)

)
-tight sequence (gn) with gn ∈ co{fi : i­n}.

(b)∗ For each ℓ ­ 1, there exists a sequence (hn) with hn ∈ co{fi : i ­ n}
such that (⟨xℓ, gn⟩) is uniformly integrable.

(c)∗ There exists a sequence (h′n) with h′n ∈ co{fi : i ­ n} such that

sup
ℓ­1

lim inf
n→∞

|⟨xℓ, h′n⟩| ∈ L1
R(F).

Then there exists a function f∞ ∈ L1
X∗ [X](F) such that

(fn) converges strongly a.s. to f∞.

Conditions (b)∗ and (c)∗ can be replaced with the following:
(b′)∗ There exists a uniformly integrable sequence (hn) with hn ∈ co{fi :

i ­ n}.

P r o o f. By Proposition 4.5, there exists a function f∞ ∈ L1
X∗ [X](F) such

that

∥fn − EFn(f∞)∥ → 0 a.s.,(i)

(fn) w∗-converges to f∞ a.s.(ii)

We have to show that f∞ is σ-measurable. To this purpose, let (gn) be as given
in the condition (a)∗. Since (fn) is pointwise bounded, so is the sequence (gn).
Hence (gn) is S

(
cwk(X∗w)

)
-tight, since it is S

(
R(X∗w)

)
-tight. Further, (gn) w∗-

converges almost surely to f∞ (by (i)). Consequently, by Proposition 4.1, f∞ is
σ-measurable. By Theorem 4.1 and (ii), the proof is complete. �

Theorem 4.2 extends Theorem 3.1 to the space L1
X∗ [X](F). Along the way,

we get the following L1
X∗ [X](F)-extension of Corollary 3.2.

COROLLARY 4.2. Let (fn)n­1 be a pramart in L1
X∗ [X](F) such that the con-

ditions (a′′)∗, (b)∗, and (c)∗ hold, where
(a′′)∗ There exists anR(X∗w)-tight sequence (gn) with gn ∈ co{fi : i ­ n}.
Then there exists a function f∞ ∈ L1

X∗ [X](F) such that

(fn) converges strongly a.s. to f∞.

Conditions (b)∗ and (c)∗ can be replaced with (b′)∗.

P r o o f. Arguing as in Remark 3.3, we show that every C-tight sequence in
L0
X∗ [X](F) is S(C)-tight, so that the condition (a′′)∗ implies (a)∗. �

Finally, it is worth mentioning that it is possible to obtain dual versions of
Theorems 3.2 and 3.3 and their corollaries, but for the sake of brevity we refrain
from giving the details.
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