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SPACES OF 5-COTYPE p (0<p<2) AND p-STABLE MEASURES

BY

DANG HUNG THANG (Hanoi)

Abstract. The aim of the paper is to give necessary and sufficient
conditions for exp {—||Tul|'} to be the characteristic functional of a
Radon measure on E, where E is a Banach space with topological
dual E', T-linear continuous operator from E' into L, and
Osp<g2

L Introduction. Let E be a real Banach space with dual E'. For a real
number p (0 < p< 2) X, denotes a closed subspace of L,. Let Te L(E’, X,),
ie. T is a linear continuous operator from E’ into X,. Consider the
functional f: E’ — R defined by

f(a) = exp {—|| Tal|?}.

It is easy to see that f(a) is the characteristic functional (ch.f) of a
cylindrical stable measure p; on E. The set of all operators Te L(E’, X,) such
that ur can be extended into a Radon measure will be denoted by
A (E', Xp). IT°(E', X,) denotes the set of all operators Te L(E', X,) such
that T*ell (X}, E), ie. T* is a p-summing operator from X}, into E. In
general, neither A,(E', X,) = ITI;™(E', X,) nor the converse inclusion hold.
Our problem consists in characterizing those Banach E for which one of the
following inclusion is valid for each space X,:

(A) H%MH(EZ Xp) = Ap(Ets Xp)s
(B) A (E, X)) = I¥(E, X,).

For the case p=2 the problems (A) and (B) have been solved by
Chobanjan and Tarieladze [1]: (A) is always true for all Banach spaces E, (B)
is true if and only if E is of cotype 2.

For the case 1 <p <2 the problem (A) has been solved by Linde,
Mandrekar, Weron [5]: (A) is true if and only if E is of stable type p. Note that
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the authors of [5] also tried to solve the problem (B) but without complete
SUCCEss.

In this paper we shall try to solve the problem (B) for the case 0 < p< 2.
In Section 3 we introduce a definition of a space of S-cotype p(0 < p<2)
and note that the notion of §-cotype 2 coincides with the notion of cotype
2. We shall show that the inclusion 4, (E’, X,) < II"™(E'; X,) holds for each
space X, if and only if E is of S -cotype p. We also extend a result of Garling
[2] and Jain [3] on the structure of Gaussian measures on spaces of cotype
2 to the case of p-stable measures on spaces of S-cotype p(l < p<2). 1t is
interesting to note that the problem (A) is highly discontinuous in pe[1, 2]
but the problem (B) is continuous in pe[1,2]. Finally, in Section 4 we shall
show some properties of spaces of S-cotype p.

2. Notation and definition. Let E be a real Banach space with dual E". If u
is a Radon measure or, more generally, a cylindrical measure on E, then

@) = fexp(i ¢x, a))du(x), aeF,
E

denotes the characteristic functional {ch.f) of 4. A symmetric Radon measure
u is said to be p-siable (0 < p < 2) if, for given a, f > 0,

ji(oa) i(Ba) = f((aP+p7)'Pa)  for all acE'

R,(E) denotes the set of all p-stable measures on E. Throughout this
paper, X, denotes a closed subspace of L, (0 < p< 2). If Te L(E', X), then
functional f(a) defined by :

flay = expy—[|Tal|"}

is the characteristic functional (chf.) of a cylindrical stable measure y; on E.
The set of all operators T'such that py extends to a Radon measure on E is
denoted by A,(E', X). Of course, ureR,(E) if TeA,(E', X,). Conversely,
each measure peR,(E) can be written in this way. Let 6%, 0¥, ... be a
sequence of independent identically distributed random variables with the
chf. exp(—|t]"). Then we say that E is of stable type p if for each sequence
(x,) in E with the property Y ||x,JI” < cc the series ¥ x, 0% converges as. A
Banach space E is said to be of cotype 2 if for each sequence (x,) in E such
that the series Y x, 0% converges as. in E it follows that ) |[x,]|> < . If one
replaces the sequence (0%) by (8%”), then one obtains a definition of a space
of a space of stable - cotype p. However, because of the tail behavior of (61"), each
Banach space is of stable-cotype p if 0 < p < 2. A linear operator T from a
Banach space E into a Banach F is p-summing if there exists a positive
constant C > 0 such that

CHITn)” < C sup (Y 1¢x,, apPi”
flall =1 -
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for any finite sequence xy, X,, ..., X, in E. Alternatively, if (x,) is a sequence
in E such that ) [{x,, a)|” < o for each a in E’, then } ||Tx,J|® < cc. The
class of all p-summing from E into F is denoted by IT,(E, F). f 0 < p < g,
then I1,(E, F) < II ,(E, F). For more information about p-summing oper-
ators we refer the readers to [10].

3. Spaces of S-cotype p (0 < p<2) and p-stable measures.

3.1. Definition. A Banach space E is said to be of S-corype p (0
< p< 2) if, for each sequence (x,) in E, such that

1—exp{—3 |{x,, DI’} < 1-ji(a)

for all ae E’' and some peR,(E), we have ) ||x,]|” < 0.

3.2. ProrositioN. The following are eguivalent:

(1) E is of S-corype 2.

(2) E is of cotype 2.

Proof. (1)=(2) Let (x,) be a sequence in E such that the series  x, 3
converges a.s. We have to show that ) ||x,J|* < co. Let u be the distribution
of ¥ x,0?. Then peR,(E) and

fila) = exp{—} |¢x,, a)l*}.

From definition 3.1. it follows that Y [ix,||* < co.
(2y==(1) Let (x,) be a sequence in E such that

1 —CXp { mz !(“xm a‘)‘P} < I— ﬁ(a)

for all aeE' and some pueR,(E). Let v be a Gaussian cylindrical measure
with the covariance function R, defined by

(3.1) Ry (a, a) = Y |<X, ad?.

From (3.1) we have R,{(a, a) < (R,a, a), where R, is the covariance
operator of the Gaussian measure y. By a known result in [14] we conclude
that v is in fact a Radon Gaussian measure. From this it follows that the
series ) x, 07 converges as. Since E is of cotype 2, we have ¥ [IxJi* < <.

Now we investigate operators Tfrom E’ into a closed subspace X, of L,
(1 < p<?2 for which exp?—||Tall*} is the chf of a Radon measure on E.
The set of all those operators is denoted by A4,(E', X,).

3.3. TueoreM. Let 1 < p < 2. Then the following are equivalent:

(1) E is of 8-cotype p.

(2) For each space X, we have

Aﬁ {El-‘ Jf,,) - H%uM(Ea’ XI_J-

Proof. (1)=(2). Let Te 4,(E', X,) and let (g,) be a sequence in X, such
that ¥’ {{g,, x)|” < oo for each xe X »- We have to show that Y [[T*g,/|" < o0.
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Consider the operator §: X, I, defined by Sx = ({g,, x));> . Evidently, §
is a linear continuous operator and we have S*e, =g, where (g,) is the
sequence of unit vectors in I, (p™*+q~ ' =1). We have

(3.2) (S Tall” < [ISI1” |1 Tal”.

On the other hand
(33) ISTall? = 3 [KSTh, e,)I” =} [{(T*S*e,, a)|".

From (3.2) and (3.3) we have
(34) I‘“EXD{"‘Z!(T*S* €ps a}”} < lﬁﬁ(a)s
where p is the p-stable measure with the chf

fi(a) = exp { — IS 1| Tul|"} -
By assumption that E is of S-cotype p, ffom (3.4) it follows that
YUT*S*e JIP =3 [ T* g,lI” < 0.

(2) = (1). Assume that E is not of §-cotype p. Then there exist pe R, (E)
and a sequence (x,) in E satisfying
(3.5) 1—exp {—Y IKx,, a)|P} < 1—ji(a) for all aeF,
‘but ) [[x,]|F = 0. ‘

Suppose that fi(a) = exp{—||Tal|"} where Tis a linear continuous oper-
ator from E' into L,. Put X, = TE'; we have Te A,(E’, X). Now we shall
show that T¢ IT3"(E', X,) i.e. T* is not p-summing. Define a linear operator
B: E'— I, by Ba =({x,, a));%. We shall now construct a linear continuous
operator V. X,— I, such that B=V,T.

At first, we define an operator V. T(E)— I, by V(Ta) = Ba.

V is well defined. Indeed, by inequality (3.5) we have

1B(ay—ax)l < ||T(ay—a)ll, ay, a;€E".

Hence, Ta, = Ta, implies Ba; = Ba,.

Evidently, Vis linear and continuous. Since T(E') is dense in X ,, V admits
the unique exténsion to X, and we have B= V¥, T.

Suppose in contrary that T*ell (X}, E). Then BFf = T*V*ell, (l, E).
Therefore ) ||B*e,|l” =3 |IxI” < co. A contradiction. Thus we have T* is
‘not p-summing as desired.

Remark. The above proof has some resemblance to the proof of Theo-
rem 3.5 in [13].

Theorem 3.3 and Theorem 2 in [S5] allow us to characterize spaces E
where Te A,(E', X} if and only if T*elI (X}, E). In the case p = 2 these are
exactly spaces E of cotype 2 [1].
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3.4. CoroLLArY. Let 1 < p < 2. Then the following are equivalent:

(1) E is of stable type p and S-cotype p.

(2) For each space X,, A,(E', X,) = I%\(E', X,).

Remark. (1) is equivalent to:

(I') E imbeds in L, (p < g < 2) (see Corollary 4.8 below).

Next, we shall prove the following Theorem which gives information on
the structure of p-stable measures on spaces of S-cotype p.

3.5. TuroreM. (1) Suppose that E is of §-cotype p, in addition X, is of
stable type p (1 < p < 2). Then each p-stable measure yur where Te A,(E', X )
is a continuous image of a p-stable measure v on some closed subspace of L,.

(2) If each p-stable measure p on a Banach space E is a continuous image
of a p-stable measure v on some closed subspace of L,, then E must be of
S -cotype p.

Proof. (1) Let u= uy where Te A,(E’, X ). Becguse E is of §-cotype p,
by Theorem 3.3 T*ell, (X, _) By the factorization theorem [10]

*: X;ﬂS««*E,

where S is a closed subspace of L,, Ve L(S, E) and UeIT,(X,, S). Let y, be
the canonical cylindrical measure on X, with the chf. expmmllx”x } We
have pr = T*(y,) = V[ U (y,)]. Since X, is Qf stable type p by MaureymPlsier 3
Theorem [6] the opcrdmr U which is p-summing is also r- summmg for
1 <r < p. Because y, is a cylindrical measure of type r for r < p then in view
of Schwartz’s Theorem [12] v = U(y,) is a Radon measure on S. Evidently, v
is p-stable and we have pp = V(v).

(2) Using the above Theorem 3.3 we shall show that A,(E, X,
< Iy°(E', X,) for each space X,. Let TeA,(E', X,). By hypothesis, there
exist a closed subspace § of L,, a p-stable measure v on § and a continuous
linear V. §— E such that pu; = V(v). We may clearly suppose that Vis 1-1
and thus V*(F') is dense in §'. Suppose that #(s') = exp{ —|| T, 517} for s'e §".
Then

(3.6 fir (a) = exp{— | Tall"} = exp{ — || T, V*al["}.
We shall now construct a linear continuous operator W: §'— X, such

that T=W,V* At first, we define an operator W: V*(E')— X, by
W(V*a) = Ta. Wis well defined. Indeed, by equality (3.6) we have

I Tlay —a)ll = | T(V*a,—V*ay)ll, ay, aeE'

Then V*a, = V*a, implies Ta, = Ta,.
Evidently, W is linear and continuous. Since V*(E') is dense in S, W
admits a unique extension to § and we have T= W V¥, It is easily seen that

7(s') = exp {— || T, s'lI"} = exp {—||W&?}.
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Thus WeA,(S, X,). Since § is of §-cotype p (see Corollary 4.3 below),
W*ell,(X,, S) by Theorem 3.3. Consequently, 7% = VW* is p-summing
and the proof is finished.

3.6 CororLary [2]. E is of cotype 2 if and only if each Gaussian measure
on E is a continuous image of some Gaussian measure on the Hilbert space H.

4. Some properties of spaces of S-cotype p.

4.1 Tueorem. If a Banach space E is of S-cotype p, then it is also of
S-cotype q for 0 <p<gq. s

Proof. Applying Theorem 3.1 we shall show that A,(E, X
< O3*(E', X,) for each space X,. Let Te A, (E', X ). Then expjmui?“aﬂi“‘ 1s
chf. of a Racion measure on E By Theorem 2 [8] f(a) = exp|—|Tal|"}
is also the chf. of a Radon measure on E. Thus Te 4, (E, X ) (since L, QLI,
if p<g<2 X, is considered as a closed subspace of L,). Since E is of
S-cotype p by Theorem 3.3 T* is p-summing. Because of the inclusion
property of the ideals of p-summing operators [10] T* is also ¢-summing.

4.2. Tueorem. If E is an (S)-space, then it is of S-cotype p for 0 < p< 2.

Recall that E is an (S) -space if there exists a topology 7 on E’ such that a
functional f: E' - C is positive definitive, t-continuous with f(0) =1 if and
only if f is the chf. of a probability measure u on E. The topology z is called
S -topology. It is known that (see [9], [7]) a Banach space E with the
approximation property is an §-space if and only if E can imbed in some
Lo. Each closed subspace of L, (1<p<2) is an (S)-space. For more
information about (S)-spaces we refer the reader to [%], [7].

Proof of Theorem 4.2. In view of Theorem 4.1 it remains for us to
prove for 0 < p <2 Let (x,) be a sequence in E such that

(4.1) 1—exp |~ {x, a)lP} < 1—ji(a)
for all ae E' and some peR,(E).
Let v be the stable cylindrical measure with chf.
v(a) =exp{—) |<x,, a)f"}.

Since uis a Radon measure, fi{a) is 7-continuous where 7 is S - topology
on E'. From (4.1) it follows that ¥(a) is 7 -continuous and thus it is the chf.
of a Radon measure on E. Then by Ito- Nisio’s Theorem we conclude that
the series ) x,0 converges a.s. Since p < 2, we have ) [|x/|” < .

4.3. Cororrary. Each closed subspace of L, (1 <p<2)isof S-cotype p
for 0<p<2 '

Theorem 4.1 and Theorem 4.2 lead us to introduce the following

44. Definition. An (S)-space is said to be of S-cotype 0.
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4.5 Tueorem. If a Banach space is of stable type p and of S-cotype p
(0 < p<2) then it imbeds in L.

Proof. According to the Lindenstrauss - Pelczynski’s criterion of imbed-
ding a Banach in L, [11] we shall show that if (x,) and (y,) are two
sequences in E such that

42D Y| P <TIm adl?  for all aeE and Yyl < oo,

then Y [jx,/I” < co.

Indeed, let (x,) and (y,) be two sequencas in E sansfymg (4.2). Since E is
of stable type p we find that the series ) y, 0" wnverges as. Let u be the
distribution of ) y,0{. Then pe R,(E) and f(a) = exp { =) |{Vm adl’}. From
(4.2) we have

1—exp {— [{xn adI?} < 1—ji(a).

By the assumption that E is of S-cotype p we have ) ||Ix[I” < co.

4.6. CoroLLary. A Banach space of S-cotype p <1 can imbed in L,.

Indeed, since every Banach space is of stable type pif 0 < p < 1 [6]. In the
case p=0 this is a known result about (S)-spaces (see [9]).

4.7. CoroLLARY. If a Banach space with the approximation property is of
S-cotype p <1 then it is of §-cotype 0.

The following proposition gives the description of those spaces which are
of stable type p and S-cotype p for 1<p<2.

4.8. ProrosiTioN. Let 1 < p< 2. Then the following are equivalent:

(1) E is of stable type p and S-cotype p.

(2) E imbeds in L, where q=2 if p=2, p<qg<2if p<2

In the case p =1 (1) is equivalent to

(1) E is isomorphic to a reflexive subspace of L, (see [11].

Proof. The inclusion (1)—(2) follows from Theorem 4.5 and a
Rosenthal's Theorem [11] which states that a closed subspace of L, is of
stable type p (1 < p < 2) if and only if it imbeds in L,(p < g). The inclusion
(2) > (1) follows from Corollary 43 and the fact that L, (p<g)
is of stable type p

4.9. Pﬁomsmoﬂ. Each Banach space of M -cotype p in the sense of
Mouchtari is of S-cotype p.

The notion of M -cotype p was introduced by Mouchtari in [8]. Let o,
denote the coarest topology on E' for which all the chf. of p-stable measures
are continuous. A Banach space E is said to be of M -cotype p (0 <p<2)
if for a cylindrical measure v on E to be extended into a Radon measure
it suffices that the chf. V(a) is ¢,-continuous.

Proof. In the case p = 2 the notion of M -cotype 2 is identical with the
notion of cotype 2 [8] and thus it is identical with the notion of §-cotype 2
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by Proposition 3.2. It remains to prove the case 0 < p <2 Let (x,) be a
sequence in E such that

(4.3) 1—exp {=) |<x, a)f?} < 1-f(a)
for all acE' and some peR,(E).

Let v be the cylindrical measure with the ch.f.
V(a) = exp | =} [{x,, a)’}.

From (4.3) it follows that ¥(a) is o,-continuous. By the assumption that
E is of M-cotype p, ¥{a) is a chi. of a Radon measure on E. From [to-
Nisio’s Theorem it follows that the series ) x,0% converges as. Since p <2
we have Y [Ix/I° < co.

4.10. ProrosiTiON. If p < g, g > 1, then there exist spaces of S -cotype g
which are not of §-cotype p.

Proof. Consider the space I, (), where ¢ > s>t > p, t > 1. By Theorem
7 in [8] L (1) is of M -cotype g hence it is of S-cotype g in view of
Proposition 4.9. Assume that [ (1) is of §-cotype p. By Proposition 8 in [8]
I; (1) is of stable type p. Therefore, by Theorem 4.5, [ () imbeds in L,. But
this contradicts the Proposition 9 in [8]. ’

Problem. Are spaces of S-cotype p exactly spaces of M -cotype
ri<p<2)?
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