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Abstract. Necessary and sufficient conditions for the optimality 
of unbiased estimators in case of arbitrary finite convex loss functions 
are given. These conditions are dgrived f r ~ m  a theorem on subdif- 
ferentials of convex integral functionals on Orlicz spaces. The results 
obtained provide a basic tool for problemg concerning universal loss 
functions and considered in paper [12]. They are also related to 
Cramir-Rao type inequalities. 

1. Introduction The aim of this paper is to provide necessary and 
sufficient conditions for the attainment of a minimum by a convex integral 
functional over a linear manifold (Theorem 2). This theorem can be trans- 
formed into a general form of the Lebann-Scheffi-Rao lemma which yields 
a basic tool for the paper [I21 on universal loss functions. 

Both Theorem 2 and the Lehmann-Scheffi-Rao lemma are anal~gous 
to the corresponding known theorems ([13], Theorem 5.3, [18], Theorem 1, 
[14], [19]). Their novelty consists in thgtt neither assumptions of topological 
nature nor assumptions on the differentiability of convex integral functionals 
are explicitly required. That form is convenient for applications, e.g. in the 
estimation theory, because it needs np assumptions which are restrictive 
and unnatural for the considered prqblems. However, in the proof of. 
Theorem 2, an appropriate Orlicz space is construc&.d such that the con- 
sidered integral functional becomes continuous for the norm topology. This 
proof requires also using a theorem s n  decomposition of subdifferentials 
of convex integral functionals on Orlicz spaces (Theorem 1). An analogous 
theorem for Kothe spaces was proved jn C3j by Clauzure, however, Orlicz 
spaces are not contained in the class of &Gthe spaces [4]. Our proof of 
Theorem 1 is different from that given by Clauzure. 
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2. Convex integral functionals on Orlicz spaces. The theory of Orlicz 
spaces originated in works [I61 and [I73 by Orlicz and based on prop- 
erties of conjugate N-functions which were first introduced and investigated 
in [I] by Birnbaurn and Orlicz. Orlicz spaces that we shall consider 
represent one of the known extensions of those original results. 

Let X be a Banach space and let (T, d, C1) be a measure space, where 
T is a set, d a a-field of subsets of T, and p a a-finite complete 
measure on d, 

Definition 1 --(Rockafellar). A function f :  X x T + (- co, + mJ, not 
identically equal to + a ,  is called a normal integrand if 

(a) f is fg,@d)-measurable, where Bx stands for the a-field of Bore1 
subsets of X, 

- (b) for every t e T, f (-, tj is lower semicontinuous on X. 
If, in addition, 
(c) f ( 7 ,  t )  is convex on X for each t E T, 

then f is called a normal convex integrmd. 
Definition 2 (Kozek [a]) .  8: X x T + LO, a] is called an N-function 

if 8 is a normal convex integrand and if the following conditions are 
fulfilled for each t E T: 

(d) @(Of t) r 0, @(x, tj = @J(-x, t), 
(e) lim @(x, t )=  +m, 

flxll-+m 
(f) @J (., t )  is continuous at zero. 
We shall use 8 to denote N-functions, only. Moreover, let MX(d) 

denote the set of all strongly &-measurable functions from T into X. We 
shall identify functions which are equal ya.e. to each other. 

Definition 3. An Orlicz space La is a vector space of functions 
x ( .) E Mx (d) such that 

holds for some constant k > 0 and for a given N-function 8. 

LO can be endowed with two norm topologies and the corresponding 
norms N1 .and N2 are given by 

Norms N1 and N2 are equivalent on L@ because 

I N ,  (x (9) N ,  (x (9) 2Nz (x  (-1) 
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holds for each XI-)€ Lo. Remind that N 1  is called the Orlicz norm on Lo 
whereas N2 is called the Luxernburg norm on Ls. The space La endowed 
with the norm topology is a Banach space ([S], Theorem 2.4). 

Let us note that condition (e) in the definition of N-function is satisfied 
if and only if Lo is complete for the norm topology. Moreover, condition (f) 
is fulfilled if and only if Lo is topologically decomposable, i.e. if there 
exist sets T,E d, 

such that an embedding of the strict inductive limit of Banach spaces 
L ,  (T, p) into & is continuous (x(.)EL, (T ,  p) is identified with a function 
defined on T which equals x (-) on and equals zero outside of T )  ( [ 5 ] ,  
ThGorCme 1.1.4). 

Let Y be the dual space of X. Assume that Y, the conjugate of @, 
is a function from Y x T into [ O ,  a] given by 

Y(y,t) = sup {(x,y)-@(x,t):  EX), 

where (x, y) = y(x). If X is separable, then Y is an N-function ([HI, 
Proposition 4.6) and Ly is a Banach space. If, moreover, Y is separable 
(i.e., if Y has the Radon-Nikodym property), then L;, the dual space of 
Lo, admits a representation 

C@ = Lw@A. 

The function y (.) E Lly is identified here with a continuous functional 
rp E L;b given by 

c p ( x ( . ) ) = S ( x ( t ) ~ ~ ( t ) ) ~ ( d t ) ~  x ( - ) ~ L o .  

Elements of A are called singular functionals. For each rp E A there exists 
a decreasing sequence of sets (A,), 

m 

A ~ E ~ ,  P (  n A,)=o ,  
k =  I 

such that cp (I*,- (-) x ( a ) )  = 0 for every k and for each x (.) E Lo, A, being 
the complement of A, ([5j, Corollaire 1.4.6 and ThiorEtme 1.5.2, [lo], The- 
orem 2.2 and Proposition 2.1). 

Iff  is a normal convex integrand, then if given by 

(1) If(x(.)) = Sf (x(t), t ) ~ ( d t ) ,  x C a ) ~ L 0 ,  

is a convex functional on Lo. If t is fixed and x , ~  dom f (., t), then af (x,, t) 
consists of all functionals Y E  Y such that the inequality 
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holds for every x E X .  Then af (x,, t) is called a subdjg~rential of f ( a ,  t) 
at x, and elements of af (xo, t) are called subgrudients of f ( a ,  t) at x,. 
Similarly, if xo (. ) E La and xo (. ) E dom I f ,  then 31, (x, (.I) is called the 
subdigerential of if at x,(-) and it consists of all functionals q E L& such 
that the inequality 

I,(x(-1) 2 I,(xo(,))+cp(x(.)-x, (9) 
holds for every x (.) E La. - 

Denote by Df(xo(-)) the set of all elements y ( . )  of Ly such that 
y (t) E df(x, (t), t) p-a.e. Moreover, let Kf (xo (e)) be the set of all singular 
functionals cp E A such that rp(x(-)-x,(.)) < O for each x ( - ) ~ d o m  I,. 

We prove a theorem on representation of the subdifferential of I,. 
This theorem extends Theorems 3.1 and 3.2 in [lo]. 

THEOREM 1. Let X and Y = X' be separable Banach spaces and let 
f be a normal convex integrand on X x T. If If is a convex functional on 
Lo given by (1) and x, ( - )  E dorn IS, then 

and dI,-(x,(-)) is empty $ ~f (x, (.)) is empty. 
If, moreover, x, (a) E int dom If (xo (-I), then 81, (x, (a)) is non-empty, 

K~ (xo (-1) = (0) and each d-measurable function y (-)  such that y (t) E df (x,, (t), t )  
is an element of L,, and hence y (.) E Df (x, (.)). 

Proof. It is clear that O E  Kl (xO(-)). Thus aI,(x,  (.)) is empty if and 
only if Df (x, (.)) is empty. If y (t) E af (x, (t), t) for every t E T, then 

holds for each x E X and t E T. Thus, if (.) E Df (x, (.)) and rp E K~ (x, (-)), 
then the definitions of Df (x, ( -)) and K, (x, (-)) imply that y ( - )  + g, E 31, (x, (-)). 

Conversely, let rp E 81, (xo (-)). Then, in view of the decomposition of 
Lh, we have cp = y(-)+q' ,  where y ( . ) ~  Lip and (P'EA. 

We show that y (t) E 3f (x, (t), t) p-a.e. and that V'E Kl(x0 (-)). Suppose 
to  the contrary that the set 

is not p-null. By Theorems L3.B.4 and 1.3.3.5 in [ti] (p. 8 and 9) the graph 
of y (.) belongs to By Q d .  Hence and since the graph of the multifunction 
t + df(xo (t), t )  is (ay @ &)-measurable (it is equal to the set {(y , t): f (x, (t), t) + 
+f * (y, t)-(x, (t), y) < 0), where f * (,, t )  is the conjugate of f (., t)), ? is 
d-measurable (1201, Theorem 4.2g v, vii). Therefore, p(?) 2 E > 0 holds. 
We can assume p(?) < oo, for - otherwise - we can take instead of ?any 
d-measurable subset of ? of a finite p-measure. Let us consider a multi- 
function 

t + ( x ~ ~ : f ( ~ , t ) - ( ~ - ~ o ( t ) , ~ ( t ) ) < f ( x o C t ) , t ) ) ,  t ~ f .  



Minima of convex functionals 19 

(W, @3 &)-measurability of functions inside of the brackets yields 
(g,@d)-measurability of the graph of this multifunction. Thus, by 
Theorem 5.10 in [20], there exists an d-measurable selector XI.) which 
satisfies the condition 

f (WI, t )  < f  (x,(t), t)+(W)-xo(t), ~ ( 0 )  
i 

p-a.e, for t E ?. Let us take numbers N and n such that 

3 
! 

p ( t ~  ?: iE[t)ll G N and f(?(t), t) 2- - N )  > -e, 
4 

1 1 
P ( A , ~ ? ) < - E  and ~ ( T , - n p ) < - & ,  .. 

. , . - -  4 4 

where A, and T, are elements of the sequences of sets characterizing cp' and 
the decomposability of L,, respectively. Now, we put 

'T = { t ~ ? n ~ , n ~ ; :  IlZ(t)tl 6 N and f(x"(t), t )  2 - N ) .  

Clearly, p(F) > > c. Define To (.) by 

xo (t) if t $ ?; a, ( t )  = 
Z(t) i f t ~ ? :  

Then, x", ( - )  E La. Moreover, 2, (-) E dom If and we have 

Hence, y ( + ) +  q' cannot be an element of alf(xo ( a ) )  and this yields 
a contradiction. 

Finally, suppose that cp' $ Kf (x, (.)). Then there exists x ( - )  E dom If such 
that cpl(x(-)-x, (-)) 2 E > 0. Let us take n such that 

and 

where A, is an appropriate element of the sequence of sets characterizing rp'. 
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Z(t) = xo (0 if t f# A,, 
x(t) i f t ~ A , .  

t 

I 
Clearly, Z (-) E Lm and f ( .) E dom If. Moreover, we have 

I 
E 

I If (x~(- ) ) - I , (W))+ f (~( t ) -xo@),  Y@)) ~jdt)+rp'(W-x,(.)) > - 3 

I and, therefore, y (.) +-q' cannot be an element of aI, (x, (-1). 
I 
I So, we conclude that y (-)  E Df (xo ( - 1 )  and V'E K ,  (x, ( -  1). 

If x o ( - ) ~ i n t  dom I,, then if is continuous at xo(.), and hence I, is 
subdifferentiable at x, (7) ([I5 3, Propositions Sf and 10c), i.e.; 81, (x, ( a ) )  # 0. 
The equality KJ(xo (.)) = (0) follows now trivially from the definition of 
Kf (xo(-1). 

We show that every &-measurable function y ( .) such that y (t) E df (x, (t), t) 

I 
is an element of LY . To this end it is enough to prove that j (x(t), y (t)) p (dt) 

I 1s finite for each x(.)E Lo {[8], Proposition 4.4). Indeed, by the convexity 

1 of f, for each t E T, x E X and 1 > 0 we have 

I-'(/ (x,(t)+Ax, t)-f(xo(t), t)) r (x ,Y(~))  
and 

J-'(f (xo ( t ) -k  4-f(xo(t), t)) d -(x, y(t1). 

Thus, if x( . )E Lm and rZ is small enough, then we get 

I ( ~ ( t ) .  Y (t)) P p(dt) A- ' (lf (xo (.)+ AX (-))- I, (x, (-))) < m 
and 

I 
4 - S(x(t),y(t))Adt) / l - l ( ~ S ( ~ O ( - ) - l ~ ( . ) ) - l f ( x o ( . ) ) )  < m. 

Hence 

I j (x( t ) ,y ( t ) )~(d t ) l<  for e v e r y x ( . ) ~ L @ .  

I 
This completes the proof of the theorem. 

I 

3. Minima of convex integral functionals. This section contains a detailed 
discussion of some problems related to the attainment of a minimum by 

, a convex integral functional on a linear manifold. The optimality in the 
theory of unbiased estimation may be interpreted as a common minimum 
of integral functionals called a risk function over a linear manifold called 

l a set of unbiased estimators. 
Denote by f a normal convex integrand on X x T (Defmition 1) and let 

xi(-), i = 0,1,  be d-measurabIe functions from T into X (X and Y = X' 
are assumed to be separable Banach spaces). Moreover, Iet 

I 
J,(x1 (.)+Axe(.)) = T Sf (x,(t)+Jxo(t), t) P(dt). 
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If x, (-1 and x, (.) are fixed, we write 

Clearly, if: R + R is convex. In the sequel we assume that i f (0)  
= I J ( x l  (.))E R and that f (., t) is continuous at x, (t) for each t~ T. Thus 
af (x, (t), t) is non-empty and star-weakly compact for every t  E T ([IS], 
Section 10c). 

We shall discuss in ternis of subgradients of f I., t), only, both sufficient 
and necessary conditions fur the inequality 

.. . 

(2) - 1, 'x, (9) 1, (XI (.I + 1x0 (.?I 
to hold for each 1 E R azld each xo(-) from a given set E of 'functions. 
If I I  is considered as a convex functional on a topological vector space, 
the necessary and sufficient conditions for (2) to hold are well known 
([7], p. 30). Here we avoid assumptions of topological nature on IJ at least 
in formulations of theorems. This is convenient for purposes of the theory 
of unbiased estimation (see the Lehmann-Scheffk-Rao lemma given in the 
next section). None the less, we shall use arguments of topological nature 
in proofs of the theorems. 

A very simple and well-known sufficient condition for inequality (2) to 
hold is given in the following 

PROPOSITION 1. Let x, (.) and xo(.) be given &-measurable functions from 
T into X and let if (x, (.)) E R. If y ( - )  is an d-measurable function from T 
into Y such that y (t) E df (xl (t)r t) p-a.e. for t E T and 

holds, then inequality (2) is valid for each rZ E R. 
Let us note that if ( A )  may be here equal to + co for 1 # 0. Proposition 1 

implies trivially the following 
COROLLARY 1. Let If (x, (-)) E R and let E be a class of measurable 

functions. If for each xO(-) E E  there exists a measurable function yxo(-) such 
that y,, (t) E 8f (x, ( t) ,  t) p-a.e. and 

holds, then inequality (2) is valid for each A E k and xo (-) E E .  
Clearly, it ,may happen that there exists a function y(.) such that 

y (t) E df(xl (t) t) p-a.e, and y (-) fulfils condition (3') for each xO (.) E E. 
Then (2) holds for each x , ( . ) ~ L i n  E. For instance, if f (., t) is weakly 
(Gateaux) differentiable for every t E T, then af (x, t) contains only one 
element f '(x, t) and, therefore, each function yXo (.) such that yXO ( t )  E 

E df (x, (t), t) equals f '(x, (t), t) p-a.e. 
Now, we discuss necessary conditions for inequality (2) to hold. Suppose 
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that x ,  (.) and xo(.) are given and that i f @ )  = I J ( x ,  (.)+Axo(.)) is of the form 

Then condition (3) need not be fulfilled and no characterization of the 
integral in (3) is possible. Namely, if y ( t )  E df (x, ( t) ,  t ) ,  then the following 
cases are possible: the integral j (x, ( t) ,  y (t)) p (dtj may be equal to + co or 
to -a, it may be finite and different from zero, it may be equal to zero 
and, finally, it may be not well defined. It is not difficult to give simple 
examples for each or  these cases. 

If y (t) E ~3f(x, ( t) ,  t )  and if (A) is finite for A E [0, E), then it is easy to infer 
from the definition of the subdifferential that 

1 (xo ( 0 9  Y (4) P (dl) < + 03. 

Similarly, if if (A) is finite for A E ( - E , O ] ,  then 

I (xo ( t )  9 Y (t)) P (at) > - 03. 

Now, we discuss the regular case where i f  (1) is finite for A E ( - E ,  E ) ,  E > 0. 
We start with the following 

PROPOSITION 2. Let x, ( -1  and xo (.) be given d-measurable functions from 
T into X and let f (., t )  be $nite and continuous at x,(t) for each t E T. 
If inequality (2)  holds and if if ( A )  is Jinite for A ~f - 8 ,  E ) ,  then there exists- 
a measurable function y (.) such that y ( t )  E df ( x ,  ( t ) ,  t )  for each t E T and 

S(xo(t)5 y(t))p(dt) = 0 

holds. 

Proof. First, we note that the function 

1 
2 + n ( f  (XI (t)+AxO (0, t ) - f ( x l  (tj ,  t ))  

is non-decreasing. Moreover, let f ' ( x ,  (.), -; xo (-)) and f '(xl (A), .; - x0 ( e ) )  

be given by 

and 

respectively.'By the monotone convergence theorem and (2) we have 

(44 0 G J f ' ( x 1 ( t ) ,  t ; ~ o ( t ) ) P ( d t )  < 
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and 

Moreover, 

f '  (XI (t), t ;  x, (0) = sup {(x, (t), Y )  : y f af (XI (t), t)) 
and 

ft(xl(t!, t; -x.cQ = SUP ( - (~o( f ) ,  y): y-?f(x,( t ) ,  f)j 
(1151, p. 65). The multifunction t + df (xl(t), t) is measurable and sets 
8f (x, (t), t) are star-weakly compact. Since Y is separable, the considered 
multifunction is of Suslin type and, therefore, there exist &-measurable 
selectors y-  (-) and yi (a) of df (xl(-), .) such that 

f t (xlI t ) ,  t ;  xo(t)) = (x,(t), Y +  (0) 
and . -  - .  

f' (XI (t), t ; - Xo (0) = - (xo (t), y - (t)) 

([20], Theorem 9.1). Therefore, (4a) and (4b) imply that there exists an 
u E [O, 11 such that 

S(xo(t), a ~ + ( ~ ) + j l - a ) y -  ( t ) ) ~ V t )  = 0. 

Clearly, by the convexity of af (xl(t), t) we have 

Thus, to complete the proof of the proposition it is enough to put 
y(.) = ayf (.)+(I-a)y-(.). 

Remark. Iff does not depend on t, then the assertion of Proposition 2 
reduces to the following one: 

There exists a measurable selector y(-)  of df (x, ( a ) )  such that 

holds. 
If f is weakly differentiable, then the mapping x -+ ft(x) is weakly 

continuous ([15], p. 80). Thus y (t) = f '(xl ( t ) ) ,  where f '(.) is Borel measur- 
able. So, it is interesting to  ask whether y (-) admits a representation of 
the form y(t) = v(x,(t)), where v ( . )  is a Borel measurable selector of the 
multifunction x -+ df (x). Let us note that a Castaing representation of Borel 
measurable selectors of the multifunction x + df (x) exists whenever f is, e.g., 
continuous and convex on X. None the less, the following example shows 
that the answer to this problem is, in general, negativ~ 

Ex ample. Let T = (1 ,2 ,3)  and let P be a probability measure on 2T 
given by P(1) = P(2) = P(3) = 3. Let X = R, f (x, t) = 1x1 for each t~ T 
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and let xl(.) and x,(.) be given by 

Then 

i f ( ~ ) = I ~ ( x ~ c , ( . ) + ~ x ~ ( . ) ) = ~ l A l + $ l l + ~ ; l l  and i f ( 0 ) G i f ( i l )  

for each A E R. Moreover, df (x, (1)) = af (x, (2)) = [- 1,1] and 8f (XI (3)) = (1). 
Thus, if y(.) is a function from T into Y = R such that condition (3) 
is fulfilled and y (r) E df ( x  , ( t ) )  for each t E T, then 

. - 

Therefore, y (1) = 2 + y (2) and y  (1) # y (2). So, y (.) cannot be a function 
of x, (.) because x, (1) = xl (2)  = 0 holds. 

If instead of a single function x,( . )  we have a set of functions E, 
then Proposition 2 applied to each particular function X O ( - ) E E  yields 
immediately the following 

COROLLARY 2. Let functions xl I - )  and x0 ( - 1  (xO (.)E E )  be measurable and 
let f (-, t )  be finite nnd continuous at x1 ( t )  for each t E T. Assume, moreover, 
that inequality ( 2 )  holds for xo (-1 E E and that If (x, (.)+Axo (a)) is finite for 
A&(-&,&), E > 0, x0C)fE (E may depend on xo(-1). Then .for each x O ( . ) € E  
there exists a measurable function y,, (.) such that y x o ( t ) ~  df (x1 ( t ) ,  t )  p-n.e. 
for t E T and 

S(xo(t) ,  ~ X , ( t ) ) ~ ( d t )  = 0 
holds. 

Remark. If E is not convex, then the dependence of the subgradients 
y,, (-) on the direction xo ( - )E E cannot be avoided. 

Now, we are interested in the following problem: when can we replace 
in the assertion of Corollary 2 "the collection (y,, (.): x, (-)E E)" by "a subgra- 
dient y ( - )  independent of xo (-)EE? If such a replacement is justified, then 
-condition (3) is fulfiI1ed for each xo (-)E Lin E and, moreover, in view of 
Proposition 1 condition (2) is satisfied a posteriori for each xo ( - ) ~ L i n  E .  
Hence the assumption that E is a linear space is not restrictive for our 
purposes. Let us note that iff  (., t )  is weakly differentiable at each point 
x1  ( t ) ,  t E T, then af ( x i @ ) ,  t )  contains only a unique element and, therefore, 
functions y,,(-) are equal to each other p-a.e. However, if f ( - ,  t )  is not 
weakly differentiable, we are unable to prove this strbnger version of 
Corollary 2 unless a nice topology in E is available. Therefore, in the 
proof of Theorem 2 given in the sequel we construct an appropriate Orlicz 
space L@. None the less, in Theorem 2 we do not assume explicitly the 
existence of any topology in E. 
THEOREM 2. Let f be a normal convex integrand on X x T, xlC) an 

d-measurable function from T into X ,  and E a vector space of d-measur- 
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able functions fpom T into X. Assume, moreoaer, that f ( a ,  t) is continuous 
at xl (t) for each t E T. I '  

1, (XI (-1) 9s  ( ~ l  (.)f Axe (.I) 
for each xO ('1 E E and ll E R rand if i p ( x ,  (.)+ Axo (-1) is $finite for every 
x, (.) E E and A E ( - E ,  E), E = E [ X ~  (-1) > 0 , then there exists an d-measurable 
function y (.): T + Y such that y (t) E 8f (xl (t), t)  p-a.e. and 

holds for each XO(.) E E ;  
~ r - o o f .  First, we define an Orlicz space Lm appropriate for our 

purposes. We put 

@(x, = Inax (f (x,(t)+x, t)-f (x1(t), t), f (x1(tI-x, t)-f (xl(t), t ) ,  Ilxll]. 

It is easy to see that @ is an N-function and, moreover, that 

A modular I@ given by 

is continuous at zero, and {X (A) E Lo : Im (X (-1) < I) is a unit ball in L, 
endowed with the Luxemburg norm topology ([2], Theorem 2.10). Thus, 
Tf given by 

i f ( x ( . ) )  = Sf (x1(t)+x(t), t ) ~ ( d t ) ,  x ( - ) ~ L o ,  

is bounded from above on a neighbourhood of zero in Lm. Let us note 
that the condition i , ( x ,  Cf +Axo (-)) E R  for 1 E (- E,  E )  implies that each 
function xO(.) E E is an element of LD. Thus, 1;- is continuous at 0 E Lm 
([2], Theorem 2.10) and attains at zero its minimum over the subspace E 
(not necessarily closed). In view of Theorem 2.5b in [9] there exists a linear 
functional cp EL!@ such that (p E aIf (0) and cp (x, (.)) = 0 for each xO (.) E E. 
Since O ~ i n t  dom Tf, we infer from Theorem 1 that cp admits an integral 
representation. Thus, there exists y (.) : T + Y such that y (t) E 6f ( x ,  (t), t) 
p-a.e. and 

j (xo (t) 9 Y (0) P (d t )  = 0 

holds for every xO(.)€E. This completes the proof of the theorem. 

4. Lehmann-Scheffe-Rao lemma. The terminology commonly used in 
statistics and appearing in the following lemma is given at the beginning 
of Section 2 in [12]. 

LEHMANN-SCHEFFE-RAO LEMMA. Let (T, d, P) be a statistical space, 
X a Banach space with a separable dual Y, L :  X x 9  -r [0, a) a convex 
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loss function, 8 a sel of estimators, go the uector space of unbiased 
estimators of zero, and let RL stand for the risk function corresponding 
to L. Assume, moreover, that x1 ( - )E& is a given estimutor and that d 
is  9-complete (cf. [12]). 

(a) If there exist d-measuruble functions y, : T + Y such that yp ( t )  E 
E dL (x, ( t ) ,  P) P-u.e. for every P E P and if 

1 (xo ( t ) ,  YP (t)) P (4 = 0 

holds for each x ~ ( - ) E  go and P E 9, then x, (-1 is unfurrnly best unbiased 
.- . 

for .L. 
(b) If xl(.) is un~ormly best unbiased for L and $ the risk function 

R ~ ( X ~ ( . ) + A X , , ( . ) , P )  is finite for each x ~ ( . ) E & ~ ,  P E P  and A € ( - E , E ) ,  
E = E (xO (-1, P)  > 0, then there exist d-measurable functions y, (.) such that 
yp( t )  E dL (xl ( t ) ,  P) P-a.e. and 

S (xo (0 3 Y P (0) P (4 = 0 

holds for each x, (.) E cFO and P E 9'. 
It is easy to see that this lemma is, for each fixed P E P ,  a particular 

case of Proposition 1 and Theorem 2. 
For the case of a quadratic loss function the Lehmann-Scheffe-Rao lemma 

was given in 1950 by Lehmann and Scheffk [I31 and in 1952 by Rao [IS]. 
Some extensions of these original results can be found in 9 1 1  [14] 
and [19]. The lemma has important consequences for the theory of unbiased 
estimation with convex loss functions. For instance, it provides a basic too1 
for problems related to universal loss functions. Another consequence is an 
equivalence of two optimal properties of estimators: optimality in the class 
of unbiased estimators and efficiency with respect to an inequality of 
Cramk-Rao type. Following [ll] and using the Lehmann-Scheffi-Rao lemma 
instead of Lemma 4.1 in [ l l ]  one can easily derive a stronger and more 
convenient version of Theorem 2 in [ll]. 

THEOREM 3. Let x l  (.) E b and let RL (xl (-)+ AxO (.), P) be $nite for each 
X ~ ( - ) E ~ ~ ,  P E P  and A € ( - E , E ) ,  E = &(xO( . ) ,  P)  > 0. Then x,(.) is unformly 
best unbiased if and only if there exists a Cram&-Rao type inequality such 
that x l ( * )  is eficient with respect to it. 
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