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Abstract. Necessary and sufficient conditions for the optimality
of unbiased estimators in case of arbitrary finite convex loss functions
are given. These conditions are derived from a theorem on subdif-
ferentials of convex integral functionals on Orlicz spaces. The results
obtained provide a basic tool for problems concerning universal loss
functions and considered in papé_r [12]. They are also related to

" Cramér-Rao type inequalities.

1. Introduction. The aim of this paper is to provide necessary and
sufficient conditions for the attainment of a minimum by a convex integral
functional over a linear manifold (Theorem 2). This theorem can be trans-
formed into a general form of the Lehmann-§cheffé-Rao lemma which yields
a basic tool for the paper [12] on universal loss functions. -

‘Both Theorem 2 and the Lehmann-Scheffé-Rao lemma are analogous
to the corresponding known theorems {[13], Theorem 5.3, [18], Theorem 1,
[14], [19]). Their novelty consists in that neither assumptions of topological
nature nor assumptions on the differentiability of convex integral functionals
" are explicitly required. That form is convenient for applications, ¢.g. in the
estimation theory, because it needs no assumptions which are restrictive
and unnatural for the considered problems. However, in the proof of
Theorem 2, an appropriate Orlicz space is constructed such that the con-
sidered integral functional becomes continuous for the norm topology. This
proof requires also using a theorem on decomposition of subdifferentials
of convex integral functionals on Orlicz spaces (Theorem 1). An analogous
theorem for Kothe spaces was proved in [3] by Clauzure, however, Orlicz
spaces are not contained in the class of Kothe spaces [4]. Our proof of
Theorem 1 is different from that given by Clauzure.
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2. Convex integral functionals on Orlicz spaces. The theory of Orlicz
spaces originated in works [16] and [17] by Orlicz and based on prop-
erties of conjugate N-functions which were first introduced and investigated
in [1] by Birnbaum and Orlicz. Orlicz spaces that we shall consider

-represent one of the known extensions of those original results.

Let X be a Banach space and let (T, &, u) be a measure space, where
T is a set, &/ a o-field of subsets of T, and u a cr-ﬁmte complete
measure on .of.

Definition 1-(Rockafellar). A function f: XxT—»(—oo, +o0], mot
identically equal to + oo, is called a normal integrand if

(@) f is (#x ® o)-measurable, where #y stands for the o-field of Borel
subsets of X,

(b) for every teT, f(-, t) is lower semicontinuous on X.

If, in addition, '

{¢) f(-,t) is convex on X for each te T,
then f is called a normal convex integrand.

Definition 2 (Kozek [8]). #: X x T — [0, o0] is called an N-function
if @ is a normal convex integrand and if the following conditions are
fulfilled for each te T: Co

(d) @(0 =0, &(x,1) = &(—x,1),

@ lim ®(x,0) = +co,

6 &, t) is continuous at zero.

‘We shall use @ to denote N-functions, only. Moreover, let My (%)
denote the set of all strongly «/-measurable functions from T into X. We
shall identify functions which are equal p-a.e. to each other.

Definition 3. An Orlicz space Lg is a vector space of functions

x(-)e Mx (%) such that

I@(kx( ) = § @ (kx(2), t)u(dt) <
holds for some constant k > 0 and for a given N-function &.

Ly can be endowed with two norm topologies and the corresponding
norms N, ‘and N, are given by

Ny (x() = jnf (—i—(l+1§(mx(-)})), | x(-)e L,
N,(x(-) = inf{%: Ip(ax(?)) < 1,2 > 0}, x(-)€Lg.

Norms N, and N, are equivalent on Lg because
N, (x(-)) < Ny (x(-)) < 2N (x())
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holds for each x(-)eLg. Remind that N, is called the Orlicz norm on Ly
whereas N, is called the Luxemburg norm on Lg. The space L, endowed
with the norm topology is a Banach space ([8], Theorem 2.4).

Let us note that condition (¢) in the definition of N-function is satisfied
if and only if Lg is complete for the norm topology. Moreover, condition (f)
is fulfilled if and only if Lg is topologically decomposable, ie. if there
exist sets T,e <,

12T p(f) <o, p(T\U =0,

such that an embedding of the strict inductive limit of Banach spaces
L (T, p) into Ls is continuous (x(-)e L, (T;, ) is identified with a function
defined on T which equals x(-) on T; and equals zero outside of T;) ([5],
Théoréme 1.1.4).

Let Y be the dual space of X. ~Assume that ¥, the conjugate of &,
is a function from Y x T into [0, co] given by

¥ (y, 1) = sup {(x,y)—D(x,1): xe X},
where (x,y) = y(x). If X is separable, then ¥ is an N-function ([8],
Proposition 4.6) and Ly is a Banach space. If, moreover, Y is separable
(e, if Y has the Radon-Nikodym property), then Ly, the dual space of
Lo, admits a representation '

Ly = Ly ®A.
The function y(-)e Ly is identified here w1th a contmuous functional

pelLg glven by :

@(x() = [ (x@), y@®)u@d), x(-)eLo.

Elements of A are called singular functionals. For each ¢ € A there exists
a decreasmg sequence of sets {4,},

Aked,v ﬂ(o Ak)=05

such that ¢ (L (-) x(-)) = O for every k and for each x(- )eL,p, A; being
the complement of A, ([5], Corollaire 1.4.6 and Théoréme 1.5.2, [10], The-
orem 2.2 and Proposition 2.1).

If f is a normal convex integrand, then I, given by

1) . Ip(x() = [ f(x®), )u(@d), x()€Le,

is a convex functional on Lg. If ¢ is fixed and x,edom f(-, t), then df(x,, )
consists of all functionals ye Y such that the inequality

f(xa t) >f(xO’ t)+(x_x05 Y)
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holds for every xeX. Then df(x,,t):is called ‘a subdifferential of f(-,¢)
at x, and elements of df(x,,t) are called subgradients of f(-,t) at x,.
Similarly, if x,(-)eLe and xo(-)edom I, then aI;(xq(-)) is called the
subdifferential of I, at x,(-) and it consists of all functionals (peLq, such
that the .inequality- :

I(x() = If(xo('))+fﬂ(x(')—xo('))
holds for every x(-}e Lg. _
 Denote by Df(x,(-)) the set of all elements y(-) of Ly such that
y(E)€df (xo(t), t) p-ae. Moreover, let K (xo(-)) be the set of all singular
functionals ¢ € A such that qo(x( Y—xo (- )) < 0 for each x(-)edom I,.

We prove a theorem on representation of thé subdifferential of I,.
This theorem extends Theorems 3.1 and 3.2 in [10].

THEOREM 1. Let X and Y = X' be separable Banach spaces and let
f be a normal convex integrand on X xT. If 1, is a convex functlonal on
Lg given by (1) and x,(-)€dom 1, then

aIf(xo(')) = Df(xo('))+Kf(xo('))

and 0l;(xo(-)) is empty if Df(xo(-)) is empty. 7

If, moreover, x,(-)eintdom I,(x,(-)), then oI, (xo( )) is non-empty,
K (x0(+)) = {0} and each A -measurable function y(-) such that y(t) e df (x, (1), t)
is an element of Ly, and hence y(-)e€ Df (xo (- ). ,

Proof. It is clear that 0e K (x,(-)). Thus 8I,(x,(-)) is empty if and
only if Df(xo(-)) is empty. If y(t)e of (xo(¢), t) for every te T, then

' f(xa t) ?'f(xo(t)n t)+(x_x0(t)a y(t))

holds for each xe X and teT. Thus, if y(-)eDf(xo(-)) and ¢ €K, (xo(-)),
then the definitions of Df (x,(+)) and K, (xo(-)) imply that y(-)+¢ €8I (xo(-)).
Conversely, let @ €0I,(xo(-)). Then, in view of the decomposition of

* Ly, we have ¢ = y(-)+ ¢', where y(-)e Ly and ¢'e A.

We show that y(t)e df (x,(2), t) wae. and that ¢’e K (xo(-)). Suppose
to the contrary that the set . : :

= {teT: y(r)eé of (xo (2), ¢ )}

is not p-null. By Theorems L3.B.4 and 1.3.B.5 in [6] (p. 8 and 9) the graph
of y(-) belongs to #y® . Hence and since the graph of the multifunction
t — 3f (xo(¢), t) is (By ® of)-measurable (it is equal to the set {(y, 1): f(x, (¢), )+
+f*(y, )—(xo (¢), y) < 0}, where f*(-, ) is the con_]ugate of (-, 1), T is
</ -measurable ([20], Theorem 4.2g v, vii). Therefore, u(T) > ¢ > 0 holds.
We can assume u(T) < o, for — otherwise — we can take instead of T'any -
o -measurable subset of T of a finite pj-measure. Let us consider a multi-
function

t > {xeX: f(x,)—(x—xo(®), (&) < f(x0(®), 1)}, te T.
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(#x ® o)-measurability of functions inside of the brackets yields
(Zx ® &)-measurability of the graph of this multifunction. Thus, by
Theorem 5.10 in [20], there exists an .&/-measurable selector x(-) which
satisfies the condition

FE®), 1) < f(xo(®), 1) +(X () —x, (1), ¥ (©))

p-a.e. for te T. Let us take numbers N and n such that

pi{te T: |X@)) < N and f(x(t), t) > —N} > ie

- 1 - 1
D <o and w@T o) <6

where 4, and T, are elements of the sequences of sets characterizing .(p' and
the decomposability of Lg, respectively. Now, we put :

T={teTnTn4;: X0 < N and f(%@), 1) > —N}.
Clearly, u(T) > & Define X,(-) b
3 x () ifte¢T,
t) = ~
%o (0) {se(t) if teT,
Then, Xy (-)e L. Moreover, X,(-)edom I; and we have

= L (%o () + § (£ (%o (®), ) —f (%0 ), 1)) (@d0)

!
< Iy (30 () + § (%o () — X0 (1), Y(t))u(dt) _
= I (% () + [ (Fo (1) =0 (®), y() p(d)+ ¢ (%o () — X0 ()) < 0.

Hence, y(-)+¢' cannot be an element of ol 7(xo(+)) and this yields
a. contradiction. -

Finally, suppose that ¢"¢ K (30 (+))- Then there exnsts x(- )edom I; such
that @' (x(-)—xo () =& > 0. Let us take n such that

“@m—%@deMM<§_
A

n

and

|£ (f(xo®), ) —f(x(2), t)) p(de)| <

where A, is an appropriate element of the sequence of sets characterizing ¢".
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Now, let X(-) be given by

Lo @ ift¢a,
@ = {x(t) if teAd,.

Clearly, X(-)e Ly and X(-)edom I,. Moreover, we have

I (xo ()= I(ZC)+ f(FO—x0(0, @) 1 {dt)+¢(x() Jco())>—3—

and, therefore, y(-)+¢’ cannot be an element of I, (xo ()

So, we conclude that y(-)e Df (xo( )) and ¢'e K, (xo( ))-

If xo(-)eintdom I, then I, is continuous at xo() and hence I s
subdifferentiable at x,(-) ([15], Proposxtlons 5fand 10c), ie., 81 ,(xo(+)) # (Z)
The equality K, (xq(-)) = {0} follows now trivially from the definition of

(xo( ).

We show that every «/-measurable function y(-) such that y(¢) e df (x, (t), t)
is an element of Ly. To this end it is enough to prove that [ (x(t), y(2)) u(dt)
is finite for each x(-)e Ly ([8], Proposition 4.4). Indeed, by the convexity
of f, for each te T, xe X and A > 0 we have

R S > (0, y(0)

and
A7 (fxo (0= Ax, )—f (x0 ), 1) = —(x, y (@)
Thus, if x(-)eLe and A is small enough, then we get

§ (60, y(0) p(d) < A7 {I (50 (V+Ax () =L, (%o (1)) < o0

and :
— F(x @), y@) pde) < A7 I (0 ()= Ax () =1 (%0 () < 0
Hence
|§(x(t),y(t))u(dt)| < oo  for every x(-)€Lo.

This’com_pletes the proof of the theorem.

3. Minima of convex integral functionals. This section contains a detailed
discussion of. some problems related to the attainment of a minimum by
a convex integral functional on a linear manifold. The optimality in the
theory of unbiased estimation may be interpreted as a common minimum
of integral functionals called a risk function over a linear manifold called
a ‘set of unbiased estimators. .

Denote by f a normal convex integrand on X x T (Definition 1) and let
x;(), i = 0,1, be &/-measurable functions from T into X (X and Y =X’
are assumed to be separable Banach spaces). Moreover, let

Ip(xs () + 4%, (-) = ]j;f(xl (£)+Axo (2), ) u(dt).
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If xo() and x, () are fixed, we write

ip(A) = I (%, ()+Ax ().

Clearly, i;: R— R is convex. In the sequel we assume that i,(0)
= I (x,()€R and that f(-,t) is continuous at x, () for each teT. Thus
of (x, (), t) is non-empty and star-weakly compact for every teT ([15],
Section 10c).

We shall discuss in terms of subgradients of f(-, t), only, both sufficient
and necessary conditions for the inequality : ' :

@ - O Lpx, () < I (% O+ A% ()

to hold for each AeR aud each X (:) from a given set E of functions.
If 1, is considered as a convex functional on a topological vector space,
the necessary and sufficient conditions for (2) to hold are well known
([73, p- 30). Here we avoid assumptions of topological nature on I, at least
in formulations of theorems. This is convenient for purposes of the theory
of unbiased estimation (see the Lehmann-Scheffé-Rao lemma given in the
next section). None the less, we shall use arguments of topological nature
in proofs of the theorems.

A very simple and well-known sufficient condition for inequality (2) to
hold is given in the following '

PRrOPOSITION 1. Let x,(-) and xo(-) be given o/-measurable functions from

T into X and let I,(x,())eR. If y() is an sf-measurable function from T
into Y such that y(t)edf (x,(t),t) y-ae. for teT and

@3) f(xo @), y(@®)u(d) =0
holds, then inequality (2) is valid for each AeR.
Let us note that i; (1) may be here eqﬁal to +oo for 4 # 0. Proposition 1
implies trivially the following
" CororLARY 1. Let I (x;())eR and let E be a class of measurable

functions. If for each xo(-)€E there exists a measurable function yxo() such
that y, ()€ df (x, (1), t) p-ae. and

3 § (0 (), Yo ®) n(dr) = 0

holds, then inequality (2) is valid for each i€ K and x,()€E.

Clearly, it may happen that there exists a function y() such that
y(€)edf (x,(),t) p-ae and y() fulfils condition (3) for each x,()eE.
Then (2) holds for each x,(-)eLin E. For instance, if f(:,t) is weakly
(Gateaux) differentiable for every te 7, then Jf(x,t) contains only one
* element f'(x,t) and, therefore, each function y, () such that y, (t)e
€ of (x, (1), t) equals f'(x,(2),t) p-ae.

Now, we discuss necessary conditions for inequality (2) to hold. Suppose
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that x, () and x, () are given and that i, (1) = I,(x,(-)+Ax (")) is of the form
. +o0 - ifA#0,
lf('l)_{a,aeR, if 4=0.

Then condition (3) need not be fulfilled and no characterization of the
integral in (3) is possible. Namely, if y(t)e of (x1(¢), t), then the following
cases are possible: the integral {(x,(t), y(t)) u(df) may be equal to 4o or
to —oo, it may be finite and different from zero, it may be equal to zero
and, finally, it may be not well defined. It is not difficult to give simple
examples for each of these cases.
 If y()e df (x, (), t) and i, () is finite for 1€ [0, &), then it is easy to infer
from the deﬁmtlon of the subdifferential that ’

[ (x0 (), y(t))u(dt) < +o0.

Slmﬂaﬂy, if i;(4) is finite for 2 e(—¢, 0], then
[ (xo (®), Y(t))ﬂ(dt) > —00.

Now, we discuss the regular case where i, (4) is finite for A e(—¢, ¢), e > 0.
We start with the following

PROPOSITION 2. Let x,(") and x,() be given o/-measurable functions from
T into X and let f(-,t) be finite and continuous at x,(t) for each teT.
If inequality (2) holds and if i () is finite for Ae(—¢, &), then there exists
a measurable function y(-) such that y(t)edf (x,(t),t) for each te T and

§ (o (®), y@®)p(d) = 0
holds.
Proof. First, we note that the function

i % (£ (et O+ Axo (), ) ~f (x, (1), 8))

is non-decreasing. Moreover let f'(x,(-),"3%0 (")) and f"(x,(-), 5 —=xo())
be given by :

| f1(x1(0), t5 %o (t)) = nh_!l; "(f(xl (t)‘i'% X, (9), t)_f(x1 ), t))

and

£ (e 0,15 = (8) = lim n(f (xi(ti—% xo (t), r)'—f (x1 (), t)),

respectively. By the monotone convergence theorem and (2) we have

(4a) : 0 < [f{x(0), t; x0 () p(dt) < 0
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and
(4b) 0 < (f(x,00),t; —xp @) p(dt) < 0.
Moreover,
I (1 (0), 25 xq (8) = sup {(x0 (1), ¥): v df (x4 (), 1)}
and

F(xa(0), 15 —xo (1)) = sup {- (¥o(t), y):yedf(x. (1), 1)}

([15] p. 65). The multifunction t— f(x,(t),t} is measurable and sets
af (x1 (1), t) are star- weakly compact. -Since Y is separable, the considered
multifunction is of Suslin type and, therefore, there exist £/-measurable
selectors y~ () and y* (-) of of (xl(-), ) such that

f (xl(t),t xo(t)) (xo(t) Y @)

and
S0, 85 —x0 (1) = —(x0 (), y~ (©))

([20], Theorem 9._1). Therefore, (4a) and (4b) imply that there exists an
axe€[0, 1] such that o

[ (x0(®), ay* @+ (1 —0)y~ @) u(dr) = 0.
Clearly, by the convexity of df(x,(t), t) we have

ay* (O)+(1—a)y~ (O (x:(0), 1) pae.
Thus, to complete the proof of the proposition it is enough to put
y() =ayT ()+A-a)y” ().
Remark. If f does not depend on ¢, then the assertion of Proposmon 2

reduces to the following one: .
There exists a measurable selector y( ) of f (x1(°)) such that

J(xo @), y@®)uld) = 0.

holds

If fis weakly dlﬁerentlable then the mapping x — f (x) is weakly
continuous ([15], p. 80). Thus y(t) = f" (x1(2)), where f'() is Borel measur-
able. So, it is interesting to ask whether y(-) admits a representation of
the form y(f) = v(x,(t)), where v() is a Borel measurable selector of the
multifunction x — df (x). Let us note that a Castaing representation of Borel
measurable selectors of the multifunction x — df (x) exists whenever f is, e.g.,
continuous and convex on X. None the less, the following example shows
that the answer to this problem is, in general, negative.

Example. Let T= {1,2,3} and let P be a probability measure on 27
given by P(l) = P(2) = P(3) = 1 Let X =R, f(x,t) = |x| for each teT
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and let x,(-) and x,() be given by
x(D=x2=0, x03 =1, x()=-1, %@)=1 x03)=3
Then

ip(A) = Ip(x1()+Axo () = 3lAl+3/1+34]  and ~ i,(0) < ip(R)

for each A€ R. Moreover, & (x, (1)) = 8f (x,(2)) = [—1, 1] and &f{x(3)) = {1}.
Thus, if y() is a function from T into Y = R such that condition (3)
is fulfilled and y(t)e df (x,(2)) for each e T, then

§ xo(®)y P = 5(=yM)+y@)+3) = 0.

Therefore, y(1) = 3 +y(2) and y(1) # y(2) So, y(-) cannot be a function
of x, () because x;(1) = x;(2) = 0 holds.
If instead of a single function x,(-) we have a set of functions E,

then Proposition 2 applied to each particular function xo()EE yields
immediately the following

COROLLARY 2. Let functions x,(:) and xo(-) (xo(-)€ E) be measurable and
let f(-,t) be finite and continuous at x,(t) for each te T. Assume, moreover,
that inequality (2) holds for xo()eE and that I (x;()+Axo()) is finite for
Le(—e,¢), € >0, xo()€ E (¢ may depend on xy()). Then for each x,(-)€E
there exists a measurable function y, (') such that Vxo ) €Of (x1(0), 1) p-ae.
Jor teT and : L
§ (%0 (®), yxo @) u(d) = 0
holds.

Remark. If E is not convex, then the dependence of the subgradients
Yxo () on the direction x,(-)€ E cannot be avoided.

Now, we are interested in the following problem: when can we replace
in the assertion of Corollary 2 “the collection {Vx0(1): X0 ()€ E}“ by “a subgra-
dient y(-) independent of x,(-)e E”? If such a replacement is justified, then

‘condition (3) is fulfilled for each x(-)eLin E and, moreover, in view of

Proposition 1 condition (2) is satisfied a posteriori for each x,(-)eLin E.
Hence the assumption that E is a linear space is not restrictive for our
purposes. Let us note that if f(-, f) is weakly differentiable at each point
xi(t), te T, then df(x,(t), t) contains only a unique element and, therefore,
functions y, () are equal to each other p-a.e. However, if f(-,z) is not
weakly differentiable, we are unable to prove this stronger version of
Corollary 2 unless a nice topology in E is available. Therefore, in the
proof of Theorem 2 given in the sequel we construct an appropriate Orlicz
space Ly. None the less, in Theorem 2 we do not assume explicitly the
existence of any topology in E.

THEOREM 2. Let f be a normal convex mtegrand on XxT, x;() a
sl -measurable function from T into X, and E a vector space of </-measur-
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able functions from T into X. Assume, moreover, that f(-,t) is continuous
at x,(t) for each teT. If

Ir(x1 () <Hp(x10)+Ax0 ()

for each xo()eE and AeR and if I;(x1()+4x0()) is finite for every
xo()€E and Le(—¢,¢), ¢ = e(xo(-)) > O, then there exists an s/-measurable
function y(): T— Y such that y(t)e df(x,(2), t) p-a.e. and

I(xo (), y(t))ﬂ(dt) =0
holds _for each xo()eE:

Proof. First, we define an Orlicz space Ly appropriate for our
purposes. We put

@ (x, f) = max {f(x;()+x, )= (e1 (1), 1), (1 O—x, ) =f (x4 (), 1), | x]}.

It is easy to see that & is an N-function and, moreover, that '
Sxi@)+x, t) < Dx, )+£(x1(0), 1)

A modular I, given by

I(ﬂ(x ()) = IQ(X(t), t)”(dt)9 x(-}€ Lo,

is continuous at zero, and {x()eLo:Ip(x()) < 1} is a unit ball in Lg
endowed with the Luxemburg norm topology ([2], Theorem 2.10). Thus,
T ¢ given by

I(x() =1 f(xl(r)+x(t), t)p(d), x()eLo,

is bounded from above on a neighbourhood of zero in Lgs. Let us note
that the condition I,(x;()}+4x,(:))eR for Ae(—e,¢e) implies that each
function x,(")eE is an element of Lg. Thus, 1 ¢ is continuous at O0cLo
([2], Theorem 2.10) and attains at zero its minimum over the subspace E
(not necessarily closed). In view of Theorem 2.5b in [9] there exists a linear
functional ¢ € Lp such that ¢ 0l 7(0) and @ (xo()) = 0 for each x,()eE.
Since Oeint dom T s, we infer from Theorem 1 that ¢ admits an integral
representatlon Thus, there exists y(): T— Y such that y(®)edf (x4 (), t)
p-ae. and

f(xo®), y®)p(de) = 0

holds for every x,(-)€ E. This completes the proof of the theorem.

4. Lehmann-Scheffé-Rao lemma. The terminology commonly used in
statistics and appearing in the following lemma is given at the beginning
_of Section 2 in [12].

LEHMANN-SCHEFFE-RAO LEMMA. Let (T, o/,%) be a statistical space,
X a Banach space with a separable dual Y, L: X x% — [0, 00) a convex
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loss function, & a set of estimators, &, the vector space of unbiased
estimators of zero, and let R, stand for the risk function corresponding
to L. Assume, moreover, that x,(-)e& is a given estimator and that
is #-complete (cf. [12]).

(a) If there exist /-measurable functions yp: T—> Y such that yp(t)e
€ dL(x,(t), P) P-ae. for every PeZ and if

[ (x0(6), yp(®) P(dt) = 0

holds for each xo()eéao and Pe 2, then xl() is uniformly best unbmsed
for L.

() If xy() is uniformly best unbiased for L and if the risk function
RL(xl()+}{xo() P) is finite for each xq()€&,, Pe? and le(—¢,¢),
¢ = &(xo(-), P) > 0, then there exist s/-measurable functions yp() such that
yp(t)eaL(xl(t) P) P-ge. and

f (%o (®). yp(t))P(dr) =0
holds for each xo()e &y and Pe?.

It is easy to see that this lemma is, for each fixed Pe £, a particular
case of Proposition 1 and Theorem 2. )

For the case of a quadratic loss function the Lehmann-Scheffé-Rao lemma
was given in 1950 by Lehmann and Scheffé [13] and in 1952 by Rao [18].
Some extensions of these original results can be found in [9], [11], [14]
and [19]. The lemma has important consequences for the theory of unbiased
estimation with convex loss functions. For instance, it provides a basic tool
for problems related to universal loss functions. Another consequence is an
equivalence of two optimal properties of estimators: optimality in the class
of unbiased estimators and efficiency with respect to an inequality of
Cramér-Rao type. Following [11] and using the Lehmann-Scheffé-Rao lemma
instead of Lemma 4.1 in [11] one can easily derive a stronger and more
convenient version of Theorem 2 in [11].

THEOREM 3. Let x;(ye & and let Rp(x,()+4xo("), P) be finite for each
Xo()€Eo, PP and Xe(—¢,¢), ¢ = e(xo("), P) > 0. Then x,() is uniformly
best unbiased if and only if there exists a Cramér-Rao type inequality such
that x, () is efficient with respect to it.
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