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Abstract. Tt is shown that the class of best unbiased estimators
can be characterized by two necessary o-fields & and #. The “large”
o-field & is a makeshift of the minimal sufficient o-field whereas
the “small” o-field % is a makeshift of the maximal complete :
o-field. Each estimator which is best unbiased for a strictly convex
loss function is -measurable. Every #-measurable estimator is best
unbiased for arbitrary convex loss. Relations of properties of &

" and % with the structure of the class of best unbiased estimators
and with properties of universal loss functions are invéstigated. '

1. Introduction. Let (T, &/, &) be a statistical space. Since the fundamental
paper [11] of Lehmann and Scheffé was published in 1950 it has been
known that if the minimal sufficient and Complete o-field .# exists, then
(in view of the Rao-Blackwell theorem) for each estimable function of para-
meters there exists a unique .#-measurable estimator which is uniformly
best unbiased for an arbitrary convex loss function. In 1957 Bahadur [1]
investigated the structure of estimators which are best unbiased for quadratic
loss functions. He proved, making no assumptions on the existence of the
minimal sufficient and complete o-field, that there exists a necessary o-field
% such that each % -measurable estimator has the uniformly minimum variance.
In 1970 Padmanabhan [14] and in 1972 Strasser [21] noted that the
%-measurable estimators are uniformly best unbiased for an arbitrary convex
loss function. In 1970-1974 Padmanabhan [14], Schmetterer [18]-[20],
Strasser [20], [21], Linnik [7], [12], Klebanov [5]-[7] and Ruhin [7], [12]
proved several characterizations of #-measurability. Their theorems 'state
that if some additional conditions are satisfied and an estimator is uni-
formly best unbiased for a strictly convex loss function of a special form,
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then this estimator is uniformly best unbiased for each convex loss function.
Loss functions having such a characteristic peculiarity have been called
universal loss functions (see [5] and [6]). Moreover, there was a hope that
each strictly convex loss function is universal or, at least, that universal
loss functions include a large class of convex loss functions (cf [21],
Remark 4.9, and [18], Section 5). It is true that the situation was not
too clear and that the Bahadur o-field % had very interesting properties.
_ In 1978 Bednarek-Kozek and Kozek [2] showed that there exist statistical -
spaces for which very natural strictly convex loss functions are not uni-
versal. On the other hand, Proposition 3.5 in [8] suggested that the
maximal necessary o-field & is 1mportant for “the theory of unbiased
estimation. -

InSection 2 we show that in the general case, where the minimal
sufficient and complete o-field does not exist, two necessary o-fields &
and % (&) describe the structure of the class of best unbiased - estimators.
The “large” o-field & is the greatest necessary o-field for (T, &, %) and is
related to sufficiency. Each estimator which is uniformly best unbiased for
a strictly convex. loss function is &-measurable (Theorem 1). The “small”
o-field % (€) depends on the class & of considered estimators and is related
~ to the completeness. An estimator in & is % (6)-measurable if and only if
it is uniformly best unbiased for an arbitrary convex loss function (The-
orem 2). If & is the class of all square integrable estimators, then % (&)
coincides with the original Bahadur’s o-field. If the minimal sufficient and
&-complete o-field exists, then both o-fields & and % (6) coincide. The-
orem 2 was known previously, at least in the case of real-valued estimators
and in connection with universal loss functions ([20], Sdtze 1 and 2; see
also [5]-[7], [12], [14], [18]-[21]). Our proof is valid for estimators w1th
values in a Banach space and differs from the previous ones.

- Moreover, we answer the following questions concerning relations between
-the considered necessary o-fields & and % (&) and the class of estimators
which are best unbiased for a strictly convex loss function:

1.'Is ‘o-field & suﬂicwnt whenever U(&) = &7 The ‘answer is negatlve
(Example 1).

- 2. Does there exist for each &-measurable estimator x,(1)e& a strictly
convex loss function such that x; (-) is umformly best unbiased? The answer
1s negative (Example 2).

3. Suppose that for a given statistical space and for each V—measurable
estimator x(-)e& there exists a strictly convex weakly differentiable loss
function for which x(-) is uniformly best unbiased. Is it true that % (&)
= &7 If X = R, the answer is aiﬁrmatlve (Theorem 3).

In Section 3 we consider -universal loss functions for a given statistical
space (in Linnik’s sense) and universal loss functions which are not related
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to any particular statistical space. We show (Theorem 5) that the class
of loss functions universal in the second sense coincides with the known
class of universal loss functions considered by Klebanov [5], [6], Schmet-
terer [18]-[20] and Strasser [20], [21]. Our proof is valid, however, only
if values of considered estimators are in R, so the problem remains open
in the general case of Banach spaces. Moreover, we answer the following
problem posed by Klebanov:

4. Suppose that in a given statistical Space every strictly convex loss

function is universal in Linnik’s sense. Does there exist a minimal sufficient

and complete o-field? The answer is negative (Examples 1 and 3).

Finally, note that the Lehmann-Scheffé-Rao lemma proved in [9] provides
a basic tool for problems considered in the present paper.

2. Necessary o-fields % (§) and . We denote by (T, s/, %) a statistical
space, where T is a set, & is a o-field of subsets of T, and £ is a class
of probability measures on /. A subset 4 of T is called P-null if there
exists an A€ & such that A = A, and P(4,) = 0 for every Pe ?. If Pe P
and # is a o-subfield of &7, then we denote by %p the completion of £
with respect to P. A o-field £ is called 2-complete if :

B = () Bp.
Ped

All o-fields we shall consider (thus & itself also) are assumed to be
P-complete. We use the notation Efx(-) both for a version of the con-
ditional expectation of x(-) given a o-field # and for the class of all such
versions. So, we write x(-) = Epx(-) or x(- e Epx(-), respectively. 14(-)
stands for the indicator function of the set A. If {teT: x,(f) # x,(t)} is
a Z-null set, we write x, () = x,(-) #-ae. '

We assume that the set X of decisions for a statistician is a separable
Banach space and that Y, the dual space of X, is also separable. Certainly,
the most important case is that where X is the space of real numbers R.
However, the majority of arguments used in the paper remain valid with
no change in a more general situation. Moreover, this somewhat more
general framework leads to no complication of reasoning and formulas.
So, it seems more convenient to present the results of the paper in the
general case. The assumptions on the separability of X and Y are imposed
in order to avoid difficulties as to measurabilities of functions with values
in X and Y. This does not exclude the most important infinite-dimensional
spaces useful, e.g., in the estimation of density functlons of probablhty
measures on Borel subsets of R"

Denote by & a set of considered estimators, i.e., a class of .«/-measurable
functions from T into X which are Bochner P-integrable for every Pe?.
We assume that & fulfils the following conditions:

El. € is a vector space.

AU
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E2. Each' «/-measurable function which takes values in a compact subset
of X is an element of &.

E3. If x(-)e& and {teT: x;(t) # x(t)} is a2 Z-null set, then x,(-)eé.

E4. If x(-)e & and 2 is a sufficient o-field for (T, o, #), then E” x(-)e 8.

ES. If x(-)e& and ¢(-) is a real bounded - measurable function, then
p()x()ed. :

E6. If x(-)eé, xe X and ye Y, then (x(-), y)xeé.

Ifx(-)e& and Epx(-) = 0 for every Pe 2, then x(-) is called an unbzased
estimator of zero. The set of all unbiased estimators of zero in & will be
denoted by &,. Moreover, if € is a o-subfield of ¢, we denote by M (%)
the set of all estimators from & which are %-measurable.

Now, we define two o-fields which will be investigated in the sequel.

Definition 1. .% is the intersection of all g-subfields of </ which are
#-complete and sufficient for (T, &, 2).

Clearly, # is the greatest necessary o-field for (T, &, ).

Definition 2. % () is the class of subsets of T given by
U (&) = {Aed:jxo(t)P(dt) = 0 for every xo(-)e &, and each Pe2}.
A

It is easy to see that #(£) is a o-field (cf. the proof of Theorem 7.
in [17]). The o-field % (&) is called universal [6]. It was considered first
by Bahadur [1] for & consisting of all square integrable functions and later
by Schmetterer [17], [20], Strasser [20], [21], and Klebanov [6]. The
definition of % (&) given above is adopted from [20], [21].

The following two simple propositions characterize the o-field % (€) (cf. also
[11, [51, [6], [20], [21]).

PROPOSITION 1. % (&) is the greatest o-field in the class of all P-complete
o-fields € such that

21 _ Ep xo(-) = 0
holds P-a.e. for every Pe P and x,(-)eé,. - _
Proof. We know that % (&) is a o-field. #-compléteness of % (&) is

obvious and, moreover, the equality E7” x,(-) = 0 P-a.e. follows from the

definitions of % (£) and conditional expectation. Assume that € has property
(2.1) and let Ae¥%. Then

[ xo(t) P(dt) = 0
A

holds for each x,(-)e&, and Pe?. Hence A% () and ¢ < % (&). This
proves the proposition.

Definition 3. A o-field € is called &-complete if M (‘6)05 consists
of estimators equal to 0 Z-ae.

ProposiTioN 2. % (F) is P-complete.
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Proof. Let xo(-)eM(#(€))né&,. Clearly, xo(-)€E¥” x,(:) for each
Pe?. In view of Proposition 1 we have 0eE7® x,(-) for every Pe2.
Thus, the set {tre T: x,(f) # 0} does not depend on PeZ and is P-null
for each Pe 2. This proves the proposition.

There exists an important relevance of the o- ﬁelds & and % (&) to the
theory of unbiased estimation with convex loss functions. This relevance
is given in Theorems 1 and 2. .

-A loss function L(-, -) is assumed to be a function from X x £ into [0, o)
such that L(-; P) is convex and lower semicontinuous for every P e £. Recall
that this implies that L(-, P) is continuous on X.

Definition 4. An estimator x,(-)eé is called uniformly best unbiased
(or, snnply, best unbiased) for a loss function L if - -~

(2.2) RL(x1( )aP) RL(xl( )+xo( )s )
holds for every x,(:)e&, and each Pe 2, where
(2.3) Rp(x(-), P) = | L(x(z), P) P(dr).

THEOREM 1. If x,(-)e & is best unbiased for a strictly convex loss function
L and the risk function Ry(x,(:), P) is finite for every Pe 2P, then x,(-)
is & -measurable.

Proof. Let # be an arbitrary Z-complete and sufficient o-subfield of <.
Let E*x,(-) be a version of E2x,(-) which does not depend on P. By
Jensen’s inequality for conditional expectations (see [10] and [15]) we have

(2.4) L(E* x,(-)(®), P) < EpL(x,(-), P) (t) P-ae.
for each Pe 2. However, since x, (-) is best unbiased, the equality
(2.5) Rp(x;(-), P) = RL(E” x, ("), P)

is. valid for every Pe 2. Inequality (2.4) together with (2.5) imply
E? L(x,("), P) () = L(E" x, (") (9), P) P-ae.

for every Pe#. The strict convexity of L(-,P) for each PeZ implies
x,(t) = E' x,(-) (t) P-ae. for every Pe2 [10] (for X = R", see [15]). The
set {te T: x,() # E” x;(-) (¢)} is o/-measurable and does not depend on P.
Since # is P?-complete, this implies that x,(-) is #-measurable. Note that
this conclusion is valid for an arbitrary #-complete and sufficient o-field %.
- Hence x,(-) is &-measurable.

Remark. It is interesting to compare Theorem 1 with Proposition 3.5
from [8] assuming that the Lehmann-Scheffé-Rao lemma is applicable.
Suppose first that x,(-) is best unbiased for a strictly convex and weakly
differentiable L. Then L'(-, P) is star-weakly continuous ([13], p. 80), and
hence (#x, #y)-measurable, where #x and #y are o-fields of Borel subsets
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of X and Y, respectively. On the other hand, x,(.) is .#-measurable, and
50 IS Lf(xl('),P). Thus, if L is strictly convex and weakly differentiable,
Theorem 1 implies Proposition 3.5 of [8]. Conversely, Proposition 3.5 in [8]
asserts that L'(x, (), P) is, for each P €%, P-equivalent to an &-measurable
function. By the strict convexity of L(-, P) the transformation L'(-, P) is
one-to-one and, therefore, the image of a Borel set in X is a Borel set
in Y ([4], p. 131). So, we can conclude that x,(:) is <-measurable, iec.,
Proposition 3.5 of [8] implies Theorem 1. However, if L is neither strictly
convex nor differentiable, then for each Pe 2 there exists yp(-) such that

yp()€dL(x, (1), P) and [ (xo(2), yp(t)) P(dt) = 0.

The Example in [9], Section 3, shows-that, in general, yp(-) is not
a function of x,(-). None the less, Proposition 3.5 in [8] implies that for
each Pe 2 the. function yp(-) is P-equivalent to an %-measurable function.
Clearly, if L(-, P) is not strictly convex, then x,(-) may be best unbiased
for L, notwithstanding x, (-) ¢ M (¥). However, the discussion above suggests
that there exists x, (-)e M (&) such that Epx, () = Epx,(-) and x,(-) is best
unbiased for L. This is the case where & is a minimal sufficient o-field,
however, we do not know the answer in the general case. ,

Remark. It is easy to see that an argument analogous to that given
in the proof of Theorem 1 shows that the following statement is true:

If L(-, P) is strictly convex, Ry(x,(-), P) is finite for every PE? and
X, () is admissible, then x,(-) is S -measurable.

THEOREM 2. An estimator x,(')e& is best unbiased for each convex loss
function L if and only if it is % (&)-measurable.

Proof. Sufficiency. In view of Proposition 1 and Jensens inequality
for conditional expectations [10], we have

EF” L{x,()+x,(), P) () > L(x,(t), P) -P-ae.

for every Pe# and x,(-)eé,. Now, integration of both sides of the ine-
quality shows that the estimator x,(-) is best unblased

Necessity. Inequality (2.2) holds for every loss function L, thus also
for loss functions L, which are of the form

y.c(xs P) = max {0’ (x_g(P), Y)—C},

where ye Y, ceR, g(-) is a function from Z into X and (x, y) = y(x) For
simplicity we can take g(P) = 0. Thus we have

(2.6) L, .(x) = max {0, (x, y)—c}.
For a given yeY,ceR and x,(-)e &, we put

A=AB) = AW, e, B = {teT: (x,O+xo(0),5) > ¢}, BeR,
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and
B = B(c) = B(c,y) = {te T: (x,(2),y) > c}.
Then, by (2.3), we have
Ry, (61+Bxo, P)=Ru, (1, P) = [ (x:(0),y)P(dn)~

- L_ (xl(t),jf)P(dt)+B£ (x;,(t), Y)P@d)~cP(A)+cP(B)
<8 (8), y) P(do),

where B~ and A~ denote the complements of B and 4, respectlvely
Moreover, we have

lim Lup(@® = Lo@+14,() and  lim Ly(0) = IB(t)+1A2(t)
g0 ) -0~

where 4, = {teT: (xo(t) y) >0, (xi(t),y) =c} and 4, = {teT: (xo ®), y)

<0, (x, (1), y) = c}. -
Given Pe 2 we assume that c¢ satisfies the following condition:

2.7 7 - P({teT: (x;(0,y) = c}) = 0.
Then

tlil—I:I(l) 144, () = 15(2)

holds P-a.e. Therefore, if {(x4(t), y)dP # 0, then the integrals
B

| (x6®),y)dP and  [(x,(t), y)dP
Ap) B

have the same sign prbvided |8l is sufficiently small. Thus, we can choose
B such that

B | (xo(t),y)dP <0
A

holds. Thié, however, contradicts inequality (2.2). Therefore

(2.8) - (| x@®dP,y)= [ (xo(t),y)dP =0
Bc) B(c)

holds for each ceR such that condition (2.7) is satisfied. Denote by C(P)
the class of all numbers ¢ satisfying (2.7). The function (x, (-), y) is P-integrable,
thus the set R\C(P) is at most countable. Therefore, if ¢'¢ C(P), we can
choose numbers c, (n = 1,2,..) such that ¢, > ¢, ¢, >¢' and c,e C(P).
Since (2.8) holds for each ¢,, it follows from the dominated convergence
theorem that (2.8) is valid also for ¢. Hence equality (2.8) holds for every
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ceR, Pe?,yeY and x,(-)e&,. A standard argument shows that the class
of all sets D for which

( g'xo(x)dp, )=0

for every ye Y, Pe? and x,(-)e €, forms a o-field and contains sets B(c).
Since X is a separable Banach space, the Borel o-fields spanned over
norm-open and over weakly-open subsets of X coincide. Hence

- j Xo(t) P(dt) = 0

for each Dex] 1(e@,() Xo(-)€E, and PeP. Let € = x;'(%x). The last

equality implies Epx,(-) = 0 P-ae. for each Pe# and xo(-)e&,. In view

of Proposition 1 we obtain € < # (&), ie., x,(-) is ¥ (&€)-measurable.
COROLLARY 1. The a-field U (&) is a o-subfield of &. ’

Proof. By Theorem 2 every estimator x(-) which is % (&)- measurable
is best unbiased for each convex loss function, hence also for a strictly
convex one. Thus, if a strictly convex function on the Banach space X
exists, then Theorem 1 implies that x(-) is &-measurable. Thus the inclusion
U (&) = & holds. To complete the proof it is enough to note that on each
separable Banach space there exists a strictly convex function. This is an

immediate consequence of the existence of a strictly convex norm ||| on
X which is equivalent to the original one (see [3], Corollary 3.1, p. 179).
For instance, the function L(x) = |||x||| —In (1 +]|||x||]) is strictly convex and

dominated by c| x|, where ¢ is a constant. Hence the risk R, is finite
on &. This completes the proof of the corollary.

Denote by E.: the class of estimators in € which are best unbiased
for a strictly convex loss function, ie.

Eope = {x(-)eé&: there exists a strictly convex loss functlon L
such that x(-) is best unbiased for L}.

In the sequel we shall be concerned with relations between E,, and
the o-fields % (6) and <. Note that if & = % (&), then E,, consists of all
&-measurable estimators. The equality M(¥) = E,x holds, eg, if & is
&-complete and minimal sufficient. However, the converse implication does
not hold. In Example 1 below we construct a statistical space (T, &, Z),
where ¥ is not sufficient even though # (&) = <. This is a slight modi-
fication of a well-known example of Pitcher [16].

Example 1. Let T = (—1,0)u (0, 1). Assume that & is the o-field of
Borel subsets of °T. A set 2 consisting of probability measures on & is
given by . :
P ={P;:te(0, ) {P,: feL] (0, 1)},
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where P, is a probability measure on & such that P, ({t}) = P,({—t}) = 1/2
and P, is a probability measure on &/ with density function f (with respect
to the Lebesgue measure restricted to &) such that f(t) = 0 for te(—1,0).
The unique Z-null subset of T is the empty set. Hence & is #-complete.
It is known that o-fields &/, are sufficient for #, where se(0,1) and

A, ={Aesd: A> {—s,s} or An{—s,s} = O}
(seei_[‘16]). Let _
dy= ) o,

. 56(0,1)

It is easy to see that ./, consists of all Borel subsets A such that

A = —A and that &/, is not sufficient [16]. Let & be the set of all bounded

s/-measurable estimators from T into R. The set &, of unbiased estimators

of zero consists of functions satisfying the conditions x,(f) = —xo(—1),

te(0, 1), and x(t) = 0 a.e. with respect to the Lebesgue measure. If 4./,
then

[ xo ®P(d) = 0
A

for every xo(-)e&, and Pe 2. Thus E3’x,(-) = 0 holds for each Pe P
and x,(-)e &,. By Proposition 1 we obtain ‘?l(c?) > &,. On the other hand,
o, > & and Corollary 1 implies % (6) = &, = .

Example 2, which we are going to construct, shows that, in general,
sets M (¥)\Eop and Eop 0 (M (S)\M (% (£))) are not empty, ie. there may
exist both #-measurable estimators which are not elements of E, and
S -measurable estimators which are not % (§)-measurable but belong to E,y.

Example 2. Let X =R, T =1{1,2,3}, & =27 and 2 = {P,, P,},
where ’

1 1 1\
P, = (P1(1)s P1(2),P1(3)) = (7, _6_’?>
and ’ ’

1 2 1
P, = (P2 (1), fz(2), P,(3) = (7,?,1—()).

Assume that & consists of all &/-measurable functions. Thus & can be
identified with R3. It is easy to see that &, consists of estimators of the
form Axo, where A€ R and xo = (x4 (1), X0 (2), X (3)) = (—1, 1, 1). Therefore,
&, corresponds to the one-dimensional subspace of R* spanned on the vector
(—1, 1, 1). By the factorization theorem, ./ is a minimal sufficient o-field.
Therefore, &/ = & and each estimator in & is &-measurable. If x,(-)e &,
xo(-) # 0 and Ae#(&), then 1,(-)xo(-)eby. So 14(-})xy = Axo(-) holds
and, since x,(t) # 0 for every te T, we obtain 1,(-) = 4. Hence we get
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U(E) = {@, T}. Therefore, the set of #(&)-measurable functions can be
identified with the one-dimensional subspace of R® spanned on the vector
(1,1,1). Let x,(-)e& and let L(x,P) be a strictly convex loss function.
In view of the Lehmann-Scheffé-Rao lemma [9] the estimator xl( ) is best
unbiased for L if and only if

(2.9) [ X0 @®)yr(t) P(d) = 0

holds for Pe{P,, P,}, where yp(t) is an element of dL(x,(t), P). Define
vectors v; and v, as follows:

Uy = (ypl (1), ye, (2), ye, (3))
and

b = (vr, (1), ¥r, @), yr, ).

Equality (2.9) can be interpreted in the following way: the vectors v,
and v, are perpendicular in R® to vectors
1
3

' 1-2 1
uy = (P2 (1) x4 (1), P2(2) x4 (2), P2 (3) x4 (3)) = (_7’?’-5)

M[—~
cx]»-

uy = (P1(1)xo(1), P (2)%0(2), P1(3)x0(3)) = ('

and

respectively. It is easy to check that
= Lin {(1,1,1),(—1,5, -4} and uf =Lin{1,1,1),(1,2, —3)}.

where Lin {...} stands for the linear space spanned by vectors indicated
in the brackets. Since L(-, P) is strictly convex, yp(t;) < yp(t,) holds whenever
x, (t;) < x,(t,). Moreover, since v; € ui- and v, € u, the ranks of the compo-
nents of v;, v, and x, are the same and equal to (2,3,1) or (2,1, 3).
Therefore, if x, () is an estimator such that (x, (1), x,(2), x,(3)) has the rank
vector different both from (2,3,1) and (2,1, 3) (e.g., x(f) = t), then there
is no strictly convex loss function L(-, P) such that (29) is satisfied.
Consequently, there is no strictly convex loss function such that x,(-) is
best unbiased for L, ie. x,(-) is not an element of E,y. :

On the other hand, an estimator x,(?) given by x,(1) = 2, x,(2) = 3,
Xx,(3) = 1 is best unbiased for the loss function L(x, P) given by

(2.10) L(x,P) = W(x—E,x,(-)),

where

W) = wd,
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if tef0, 1],
(2.11) w(t) = 57t—6 if te[l,7/6],
) 16t —33/2  if te[7/6, o),

w(—t) =w() if tef0, o).
To this end it is enough to verify that x,() satisfies conditiocn (2.9)

provided the loss function L is given by (2.10)-(2.11). We omit the easy
calculations.

The situation 1llustrated by Example 2 seems to be typical for the
general case. The existence of &-measurable estimators which are not
elements_of E,, can be interpreted in the following- way: the class of
strictly convex loss functions is too small in order to label each &-measur-
able estimator best unbiased for a strictly convex loss.

Now, we shall be concerned with the problem whether % (6) =
whenever each &-measurable estimator is best unbiased for a strictly convex
loss function. If the loss functions are weakly differentiable, then Theorem 3
gives a partial answer for X being a Banach space and the complete
one for X = R.

THEOREM 3. Assume that for each set A€ & there exists a strz(tly convex
and weakly differentiable loss function L such that

(@) L(x, P) > cp| x| whenever ||x|| = rp,cp >0, rp > 0;

(b) for each x € X the estimator x - 1,(-) is best unbiased for L;

(c) for each x,()e &, and PeP the risk Ry(Axo("), P) is finite for some
positive A = A(xq (), P). '

Then ¥ (&) =

Proof. Given xe X and Ae & we put x,(:) = x-1,(-). By our assump-
tion x,(-) is best unbiased for L. It is easy to see that the assumptions of
the Lehmann Scheffé-Rao lemma (part (b)) [9] are satisfied. So

(2.12) _ § (o (), L'{xy (2), P))P(d;) =0
holds for every xq(-)e&, and Pe?. For each x,()e&, we have

' XExU (t) P(dr) = —Aj~ X, (t) P (dt).

Thus from (2.12) we obtain, for each x4()e&,y, xe X and PeZ,
(2.13) (§ xo(®) P(dt), L'(x, P)-L(0, P)) = 0.
A

Assumption (a) implies that L*(., P), the conjugate of L(-, P), is finite
on Ky (0, cp), the ball in Y centred at zero and of radius cp. The range
of L'(-, P) contains_ int dom L*(-, P), and hence it contains int Ky (0, cp).
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So (2.13) implies that
[ Pdr) =0
A

for every x,()eé, and Pe#. By the definition of % (£) we get Ae¥ ().
This proves the theorem.
Remark. The proof of Theorem 3 is adopted from [17], Theorem 7
(cf. also [6] and [21]). '
~~COROLLARY 2. Let X = R and assume that for each & -measurable esti-
mator x;(-) there exists a strictly convex and differentiable loss function L
such that x,(-) is best unbiased for L and R (ixy(), P) is finite for every
xo()eEy, PP and for some positive A, A = A(x, (), P). Then U (&) =
Proof. Let us consider estimators of the form x, () = 1,(), where A€ &.

Repeating the argument given in the proof of Theorem 3, we obtain equahty
2. 13) which is now of the form -

(L1, P)—L (0, P)) | xo () P(df) = 0.

Sii;ce L(:, P) is strictly convex, L'(1, P) > L (0, P) and we conclude that
_[xo (t)P(dt) =0

for each x,()eé&, and PeP. Hence Ae % (6).

3. Universal loss functions. By Theorem 1 we know that if x()e& is
best unbiased for a strictly convex loss function L(x, P), then x() is
& -measurable. It is also important to know conditions which guarantee
a best unbiased estimator to be % (&)-measurable. Then, by Theorem 2,
the % (&)-measurable estimator is best unbiased for each convex loss
function. The first sufficient conditions for % (€)-measurability of estimators
were given by Bahadur [1]. Other conditions were given-in [17], Theorem 7,
and — after 1970 — in [5], [6], [12], [18]-[21]. In all theorems of this type
it has been assumed that an estimator x,(-) is best unbiased for a strictly
convex differentiable loss function of a specific form. Assuming, moreover,
various additional conditions on x,(), on the loss function and on the
class & of considered estimators to be satisfied it has been proved that
x;(") is % (&)-measurable. It is convenient for us to recall in Theorem 4
a typical result of this kind. In the proof of Theorem 4 we use the arguments
of Schmetterer and Strasser [20], Satz 2. However, the present proof is
given for the general case where X is a Banach space whereas the earlier
ones were formulated for X = R.

Let © be a set of parameters and let {K,(, B) He@} be a class of
convex functions of the form

(3.1) Ko (x,0) = CL(O) W (x)+(x, yo)+ C, (6),
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where C,(0) > 0, C,(0)eR, y,eY and W() is a strictly convex finite
non-negative and weakly differentiable function on X. Every function =
from @,, 0, < @, onto a set # of probability measures is called a para-
metrization of .

THEOREM 4. Let (T, &, P) be a statistical space and let & be a set of
estimators. Assume that x,(-)e & takes values in a compact subset of X and
that the condition

(32 Ro(x, )+ Ax0 (), P) = JL(x;(0)+Axo (8), )P (dt) < o0~

is satisfied for every xg()e 8,, PeP and Ae(—¢,5). Assume further that '

the loss function L(x, P) admits a representation
(3.3) wem T L(x,m(0) = Kolx,0), 0@y,

where @, < ©, © is a parametrization of P and K, is of the form (3.1).
If x,() is best unbiased for L(x, P), then x,(-} is % (&)-measurable. .
Proof. First, we note that if for a given parametrization = the loss
function L is of the form (3.3) and K, is of the form (3.1), then the
partial orderings in {x,()+&,} induced by L and W are the same. Therefore,
x,() is best unbiased for W.
By the Lehmann-Scheffé-Rao lemma, the equallty

f (%o (6), W' (x,(8) P(dr) = 0

holds for every Pe# and x,()e&,. In particular, since (x,;(-), y)xeé,,
we have

§(x, W (x, ) (o (®), ¥) P(dt) =0

for every Pe?, xe X and ye Y. Note that x, () takes values in a compact

set and W’ is a continuous function from X into Y endowed with admis-

sible topologies ([13], p- 79). Therefore, (x, w’ (xl(-))) is a bounded function

and (x, W’ (x1 () (xo(), ¥)x € &. So, by the Lehmann-Scheffé-Rao lemma,

we obtain .
j(x W’ (x, t))) (xo(), ) PA)=0, n=1,2,3,..,

for every xeX ,yeY, xo()eé, and Pe?. Similarly és in [20] we obtain
| x@)P() =

x1()eB
for Be#y provided W’'(B) is a Borel subset of Y for every Be ®y.
Since W'(-) is continuous, it is Borel measurable. Moreover, by the strict
convexity of W the mapping W’': X - Y is one-to-one. Thus, by [4],
Theorem III,7.2, we have W’'(B)e @y for each BeZ#y. This completes
the proof of Theorem 4. :

e 4
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Given a set of parameters' @, denote by {K(-,0): 6 ®} a class of
convex finite lower semicontinuous and non-negative functions on X. If =
is a parametrization from @,, @, c @, into a class of probability measures
2, then it is possible to create convex loss functions of the form

L(x,n(0) = K(x,0), 0e8,.

Thus, it is convenient to call the function K: X x ® — [0, o0), described
above, a parametric loss function or, simply, a loss functlon if there is no
danger of confusion.

-Definition 5. A convex parametric loss function K is called universal
if Theorem 4 remains true whenever K is used in (3.3) instead of K.

Clearly, Definition 5 implies that each K, of the form (3.1) is universal.
The first known universal parametric loss function was the most popular
quadratic one K(x,f) = (x—6)?, where X = R and OeR (see [1]). Note
that Klebanov [6], Theorem 7, proved that if X = R, then .a natural
class of convex but not strictly convex parametric loss functions is not
universal. ' '

There was a hope that every strictly convex weakly differentiable
parametric loss function is universal or, at least, that the class of universal
loss functions is large (cf. [18], Section 5, and [21], Remark 4.9). Recently
it has appeared that very natural classes of strictly convex differentiable
parametric loss functions are not universal [2]. Now, we shall prove that,
at least in the case X = R, every universal loss function is of the form (3.1). .

First, however, we note that a strictly convex loss function K(x, 6)
is of the form (3.1) if and only if for each 6,, 6, @

(34) K(x,05) = C'(01,02) K (x, 0,)+(x, yo,.6,)+C" (63, 05),
where C'(6,,0,) > 0, C"(6,,0,)eR and y, 4,€Y. For X = R, (34) can
_ be rewritten in the form _ ‘
(3.5) . K(x,0,) = o; K(x,0{)+o,x+a;,
where
o, = 0y(0,,8,) >0, a,=0a,(0,,0,)eR and a3 =a;3(0,,0,)eR.

THEOREM 5. Let X = R and let K, and K. be two strictly convex functions
on X which do not admit representation (3.5). Then there exists a statistical
space (T, o/, {Py, P,}) such that for each class & of estimators there exists
a bounded estimator x,(-) which is not % (&)-measurable and is best unbiased
Jor the loss function L given by

K, (x) if P=Py,
K;(x) if P=P,.

Proof. Let us put T={1,2,3} and ./ = 27. Then every class & of

L(x, P) = {
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estimators satisfying condition E2 coincides with the class of all functions
“from T into R. Let v;(-) and v, () be arbitrary selectors of multifunctions
x - 0K, (x) and x — 0K, (x), respectively. Since K; and K, do not satisfy
condition (3.5), functions v,(-), v,() and 1() (1(x) = 1 for each xeR) are
linearly independent and there exist points x;, X3, X3, X; < X, < X3, such
that vectors '

vy = (01 (x1), 01 (%), v (x3)),

vy = (1, (3.‘1),_”2 (x2), vz (xa))‘ and wv;=(1,1,1).~

are linearly independent.‘ Indeed, otherwise, for every three different points ‘
X, X2, X3 we would have

(U2r(xi)i vy (xz), Uy (X3)) =" (vl (xl)’ Uy (x2)’ vy (X3))+’))2 (1;19 1):

where y, and y, are suitably chosen coefficients. However, v, () is increasing
and, therefore, vectors (v; (x;), vy (x;)) and (1, 1) are independent. So, if x is
different from x; and x, and

(Uz (%1), v2(x2), V2 (x)) =73 (171 (1), v4 (xz)s Dy (x))+y4(1, 1,1),

then equalities y; = y; and 7y, = y, must hold. Hence v,(x) = y; v;(X)+72
holds for every x e R. Since any selector of the subdifferential mapping may
be used in the integral representation of a convex function, we conclude
that K, and K, fulfil condition (3.5). This, however, contradicts our
assumption. . ‘

. Define ‘an estimator x, () by

x (1) = X1 x1(2) = X3, x1(3) = X3.
Functions v, (") and v, () are increasing, so 'w'e have
Ui(xl (1)) < U,-(xl (2)) < U,‘(xl (3)), i = 1,.2.

" Now, let u; = (uyq, 413, 4y3) and uy = (Ugy, Uza, U3) be vectors in R®
defined by ‘ '

(36) U, = bl A V3 and Uy = Uy A U3,

where - A denotes the outer product in R®. Clearly, u; and u, are linearly
independent and, moreover, the components of u; and u, satisfy the
following inequalities:

S Uy < 0, up, >0, u3 <0,

3.7)
Uy < 0, Uyy > O, Uyz < 0.

Let P, and P, be two probability measures on ./ given by

: 3
(3.8) Pi(t) = lul/ X fusl, teT, j=1,2.
‘ i=1
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Let p, and p, be vectors in R® given by
P = (Pl (1), P1(2), P, (3)) and p, = (Pz (1), P,(2), P2(3))-

Since u, and u, are linearly independent, so are p, and p,. Thus P, and
P, are two different probability measures on /. Consequently, the minimal
sufficient o-field exists, equals & and is different from the trivial o-field
{®, T}. Clearly, the estimators from & may be identified with vectors in R>.
Since p; and p, are independent, the space &, consisting of all unbiased
estimators of zero-corresponds to a one-dimensional subspace of R?. Note
thatifx, (1) = —1,%0(2) = 1and xo(3) = —1, then the equality Ep x,(-) = 0,
i=1,2, follows easily from (3.6)-(3.8). Hence &, = {ix4(-): A€ R}.

Let Ae % (&). By the definition of % (&) the estimator 1,(-)x,(-) is also
an element of &,. However, this is posmb]e only if A=T or A= 0.
Thus #(6) = {@, T}. It is clear that the estimator xl() defined above
is not % (£)-measurable.

We prove that x,(-) is best unbiased for L. In view of the Lehmann-
Scheffé-Rao lemma it is enough to show that the condition

(3.9 ' lj'v,- (x1 () X0 (t) P;(dt) = O

is satisfied for i = 1, 2. ' '

For every i = 1,2 the vector (x, (1) P;(1), xo. (2)P 2), xo (3)P (3)) is parallel
to u;. Therefore, x,(-) fulfils condition (3.9). Thus the estimator x,(-) is
best unbiased for L, however, it is not % (&)-measurable. This completes
the proof of Theorem 5. :

Apart from the umversal parametric loss functlons we shall also consider
universal loss functions for a statistical space (T, &, %) introduced in [5]
and [6] and named by Linnik.

Definition 6. Let (T, %/, %) be a statistical space, X R* and let &
be the class of all estimators which are square P-integrable for each pe 2.
A convex loss function L: X x2 — [0, o) is called universal for (T, o/, P)
(or universal in Linnik’s sense) if each bounded estimator which is best
unbiased for L is % (&)-measurable.

In the rest of this section we shall assume that (T, #,P), X and &
satisfy conditions formulated in Definition 6. In the classical case, where
the minimal sufficient and &-complete o-field exists, we have & = % (6)
and & is sufficient. Then, in view of Theorem 1, each strictly convex loss
function is universal in Linnik’s sense. Clearly, every strictly convex loss
function is universal in Linnik’s sense if & = % () and the existence of
the minimal sufficient o-field is not necessary for this (cf. Example 1,
Section 2). However, the converse implication is not valid. Namely, in
Example 3 we shall indicate a statistical space where each strictly convex
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loss function is universal in Linnik’s sense and, simultaneously, % () is
a proper g-subfield of <.

This is a slight modification of an example considered by Lehmann
and Scheffé ([11], Example 3.5).

Example 3. Let X = R and let &/ be the o-field of Lebesgue measurable
subsets of T = R". Let & = {P,: 0 R}, where P, is the product of n
identical rectangular distributions concentrated on the interval [0—1%, 6+3%].
Thus, if 4, is the Lebesgue measure on R", then dPo/dA,(x;,...,%,) =1 if
x;€[0—%,0+3] for i =1,2,...,n and dPs/di, = O otherwise: ‘A reduction
by sufficiency (t; = min {x;}, t2 = max {x;}) leads to the statistical space '
(T, ', P'), where T' = {(t;,t;)e R*: t; < t, < t;+1}, o' is the o-field of
Lebesgue measurable subsets of T, and if Pge &, then

comst (t,—t, "2 if 0—% <t <1, < 0+3,

Poldaz (24, t2) {0, otherwise.

Let us assume that the set & of considered estimators consists of all
bounded /'-measurable functions on T".

Now, hold 8 = 0, fixed and consider the Hilbert spacc H of (equivalence
classes of) functions square integrable with respect to Ps, and defined on

T(O) = {(t1, )R 0g—} <, <1, < 0,+1).

Let {e;,e;,...} be an orthonormal base in H consisting of bounded
functions on T'(f,) and such that e, (f) = 1, te T(6,). Let e € H be a bounded
function such that e is orthogonal in H to e1 Now, let xo(-,:) be
a function on T’ defined by

Xo(ty +n,ty+n+1) = e(ty, tz) if (¢, t;)eint T(6),
Xo(tz+n, ty+n+1) = 0 if (t1, t;)e T(8o)\int T (6o),

where ne{..., —1,0,1,2,...}. It is easy to see (cf. [11], p. 326) that x4 (-, ")
is an unbiased estimator of zero, ie., xq(:,-)€&y. So, to each bounded
function in H orthogonal to e; there corresponds an unbiased estimator
Xo (-, ) of zero in & such that xq(ty, ;) = e(ty, t,) for Py, -a.e. (ty, t3)e T (6o).
In particular, to each ¢;(-), i = 2, 3, ..., there corresponds an element of &,.
Suppose that x, (-, -) is best. unbiased for a strictly convex loss function
L. Since & consists of bounded functions and L is finite (hence continuous
on X), the risk function R.(-, P") is finite for each x(:,-)eé and each
Pe?. So, by the Lehmann-Scheffé-Rao lemma, for each R there exists
a function ye(-, ) such that y,(ty,%,)€ dL(x,(¢y, t;), P') and

(3.10) . T_[xo (ti,t2) Yo (1'1 Jt)dP (ty, 1) =0

: XQ(tl +n,t; +n) = {

holds for each x4(-,-)€&, and each §€eR. So, if § = b, it follows from
(3.10) that the function y,, restricted to T(6,) is orthogonal to each e,
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i=2,3,4,.. Therefore we mfer that y, (-,-) is constant Pao-ae on
T(0,). Moreover L(-, Pg,) is strictly convex, and hence

L(x', Pyy) N OL(x", Pj)) = @

whenever X' # x”. So, yy(ty,t;)e dL(x, ¢y, t,), Poo) and y,(t,, t;) = const
Pg,-a.e. on T(f,) imply that x, (¢, t,) = const Py,-a.e. on T(6;). Repeating
this argument for other &s we obtain Xy (",*) = const A,-a.e. on T

Hence, in view of Corollary 1, we conclude that % (&) is the o-field
spanned on measurable subsets of 7’ which are of i,-measure zero. More-
over, by the factorization theorem, &/’ is the mipimal sufficient o-field, and
therefore & = o/’. So, we have proved that each strictly convex loss
function is universal for (T", &', ') and, simultancously, #(£) is a proper
o-subfield of &. '
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