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Abstruct. A sequence (x,) of vectors in a Banach space E is 
called a representing srquvnce of a symmetric Gaussian measure p 
on E if there exists a sequence of independent Gaussian random 

i* 

variables (4") such that xn<,, converges a.s. and p is its distri- 
n= 1 

bution. It is shown that for each symmetric Gaussian measure on 
m 

E there exists a representing sequence (xJ such that Ilx.llZ is 
n =  1 

convergent. Also other results relating to representing sequences 
are established. 

Let E be a real separable Banach space and let B(E) be the o-algebra 
of Bore1 subsets of E. A probability measure p on B(E) is called a Gaussian 
measure if any linear functional x* E E*, considered as a random variable on 
the probability space ( E ,  B(E), p), is distributed by a Gaussian law. For 
a comprehensive study of such measures and for a number of facts used 
in this paper we refer the reader to [I]. 

Throughout the paper (r,) denotes a sequence of independent random 
variables, each of which is distributed by the standard Gaussian law. If p 
is a symmetric Gaussian measure on E, then there exists a sequence (x,) 

31 

in E such that x,t, converges a.s. and p is the distribution of this 
n =  1 

series. Each such sequence (x,) is called a representing sequence (r.s., for 
short) for p. Let H be a Hilbert space and let (e,,) be an orthonormal 
complete sequence in H. If (x,) is an r.s. for p, then the map T: en + xn 
(n = 1,2, . . .) may be uniquely extended to a continuous linear operator 
T: H + E. Each such operator is said to be a representing operator (r.o., for 
short) for 11. 
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If T: H + E is an r.0, for p and if (S,) is any orthonormal complete 
sequence in H, then (Tfn) is an r.s. for p. Conversely, if (y,) is an r.s. 
for p, then there exists an orthonormal complete sequence (f,) in H such 
that (TS,) and (y,) differ only by zero terms. The folIowing theorem is an 
answer to a question asked by Kuo [ 5 ]  (I). 

THEOREM. If p is Q symmetric Gaussian measure on E, then there exists 
an r.s. (x,) for p such that 

Proof. As above, let H be a Hilbert space, (en) a complete orthonormal 
sequence in H, T: H + E an r.o. for p and let y, = T(e,) ,  n = 1,2, ... 

03 

Since (y,J is an r.s. for p, y, 5, converges a.s. and, therefore, also in 
n= 1 

the quadratic norm mean. Thus there exists a sequence (k,,), 0 = ko 
< k ,  < ..., such that 

For each n let H, = span (ei, i = k,f 1 ,  ..., k , + l }  and let U, be the 
group of unitary operators in H,.  Moreover, let in be the Haar probability 
measure on U,, S,  the unit sphere in H,, and a the probability measure 
on S,, invariant under Un. 

Note that 

where y, is the canonical Gaussian measure on H,,  i.e. the distribution of 
- 

k"+ 1  

-- - .  . 

C eiti. 
i = k n + l  

Thus for each n we can find an operator u , ~  U, such that 

Let J;: = un(ei) for n = 0, 1, .. . and i = kn+ 1 ,  .. ., k,, , .  Clearly, (S,) is 
a complete orthonormal sequence in H and, therefore, (Tf,) is an r.s. which 
has the desired property. 

(I)  TarieIadze has solved this probIem independently by using a different method. 
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Remark 1, If H is an infinitedimensional Hilbert space, then there 
exists a symmetric Gaussian measure p on H such that for each r.s. (x,) 
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for p and for each p c 2 the series Ilxn(lP diverges. This is a consequence 
of the following two facts : n =  1 

(i) T: H -, H is an r.0. for a symmetric Gaussian measure on H iff T is 
of Hilbert-Schmidt type; 

(ii) for T: H + H there exists an orthonormal complete system (eJ in H 
such that .. - - 

iff T belongs to the Hilbert-Schatten class C, (see 161). 
m 

Remark 2. If (x.) is an r.s. for p, then C x, may not converge. 
n=l m 

However, there always exists a sequence (E,) of f 1's such that E,X,  
n = l  , 

is convergent, Note that (E,x,)  is also an r.s. for p. This is an immediate 
m 

consequence of the faM that the a.s. convergence of x , { ,  implies the a.s. 
m n = 1  - 

convergence of C x,E,,  where (e,,) is a Bernoulli sequence of independent 
a =  1 

random variables [4]. 

The question on the existence of an unconditionally summable r.s. for 
each symmetric Gaussian measure on a Banach space is of a more 
complicated nature. 

PROPOS~TION. There exist a Banach space E and a symmetric Gaussian 
m 

measure p on E such that for each r.s. (xn) for p the series x, 
does not converge unconditiorzally. n= 1 

Proof. Let (x,J be an r.s. for a symmetric Gaussian measure p on E. 
First we prove that p has the required property if there exist a sequence 
( x t )  in E* and a sequence (cp,) of functions on some measure space (I, 9, A) 
such that 

m 

(ii) C x,* cpn converges a.e. on I and 
n = l  
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{iii) there exists a constant C such that 

for each sequence (or,) of scalars. 
m 

Assume on the contrary that (y,) is an r.s. for p and that y, 
a= 1 

is unconditionally convergent. Without loss of generality we may assume 
that 

. . 

rn 

. . 

where (q,,) is a unitary matrix. Then 

where E, = sgn xX (x,) for n = 1, 2, . . . , N . This contradicts (i). 
To complete the proof it remains to exhibit sequences (x,), (x:), and (cp,) 

fulfilling (i)-(iii). Let E be the Banach space of all compact operators in I , .  
The dual space E* is identified with the space of all nuclear operators 
in 1, and the identification is accomplished by the trace formula. For any 
pair of natural numbers i, j let wi,j denote the operator corresponding to 
the matrix with all elements equal to 0 except the one in the i-th row 
and in the j-th column which is equal to I. Let u t j  denote the same 
operator but considered as an element of E*. 

Put x. 1 . ~  . =  2-m"ul.j, xf, = 2-"Pui,j for m = 0 , 1 ,  ..., 2"< i ,  j < 2 " + ' ,  
and = xi"rj = 0 for the remailling indices. Here tl and are chosen 
so that u > 1/2, P > 1 and rx+p < 2. Let (~p,.~) be a double sequencg 
defined by cpimj(s, t )  = rl(s)rj(t), where (r,) is the Rademacher sequence on 
the unit interval. Let f{,.j) be a double sequence of independent random 
variables, each of which is distributed by the standard normal law. Cleqrly, 
(it,.,) and (LI&) with a suitable enumeration are bases in B and B*, respectively 
(see [6]). We shall show that with such an enumeration (xi.,), (xzj) and tqiqj) 
fulfill (il-(iii). 
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Condition (i) is seen from the following: 
. . 

Since ( u 5 )  is a basis in E* and since the map 

qj-+ ufjri(s)rj(t), i, j = 1, 2, ..., 
induces for each s and t an isometry in E, condition (ii) fallows from 

Condition (iii) is a well-known property co cf the double Radcmacher system. 

Finally, it remains to verify that x i ,  ti, converges as.  

Using the inequality 
i , j  

where K is a constant independent of n, we obtain 

52 

< x 2-"' K . 2112m < 00.  
m = O  

This completes the proof. 
Inequality (t) is due to Wigner [7]. An alternative elegant proof based 

on a deep result of Fernique was given by Chevet in [2]. In the Appendix 
we give a new short proof of this important inequdity. 

Remark 3. If E has an unconditional l ~ s i s ,  then for each Gaussian rn 

measure p on E there exists an r.s. (x,,) for p such that xu is 
n = 1 

unconditionally convergent [3]. 

Proof of (*). Let S,, be the unit s p b e  ifi f; and let r be the invariant 
probability measure an Sn. If A: I; -. F, is i( linear operator, then there 
exists an element a e S,, such that l(a, x)l 11 Ail < 11 Axll for all x s&.  Indeed, 
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it is enough to note that a = A(b/HA(I), where ~ E S ,  is such that 
llAll = llA*bll. 

For each w we choose, in a measurable way and as indicated above, 
an element a, for 

Thus I(a,, x)l lJAmll < 1 1  Aroxll for each w and for each x E I! .  Hence for 
any L < 1/2 we obtain 

E exp A(a,, x)' lJA,1I2) a(dx) < E exp {A l l  A,xIl2) u(dx) Sn J! 
n n n 

E exp ( A  C ( C ti. jxj)" (ax) = E exP C Gl)  
i = l  j=l i = 1 

= (E exp (A<:,,]p = (1 -2A)-n/2. 
A 

We have used here the fact that ( {iVjxj)f~>nd (ti,1);=1 are 
j= 1 

equidistributed for all x = (x, , x2,  . . ., x,) E S,. 
On the other hand, for each e~ S, we have 

= EJ exp { I ( ~ , x ) ~  I I A J ( ~ ) O ( ~ X )  > E exp -Al(Am(12 n(@), 
It I: 1 

where 8 = ( X E  S,: (e, x)' 2 1/21. An elementary calculation yields 

x ~ / ~  r (n/2) 
a(@) >, > 4-It. 

I'((n-1)/2) (n- 1) - 2"-l 

Using the latter inequality and convexity of the exponential function 
we get 

exp E-JlA,112 GEexp -IJA,1(2 <4n(1-2A)-n)2. I :  1 I: 1 
NOW taking logarithmus leads to (*). 
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