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Abstract. A sequenceé (x,) of vectors in a Banach space E is
called a representing sequence of a symmetric Gaussian measure u
on E if there exists a sequence of independent Gaussian random

x .
variables (£,) such that ) x,&, converges as. and u is its distri-
n=1 .
bution. It is shown that for each symmetric Gaussian measure on

E there ex1sts a representmg sequence (x,) such that Z [, is

nei
convergent. AlbO other results relating to representing sequences
are established.

Let E be a real separable Banach space and let #(E) be the c-algebra
of Borel subsets of E. A probability measure u on #(E) is called a Gaussian
measure if any linear functional x* e E*, considered as a random variable on
the probability space (E, #(E), u), is distributed by a Gaussian law. For
a comprehensive study of such measures and for a number of facts used
in this paper we refer the reader to [1].

Throughout the paper (£,) denotes a sequence of independent random
variables, each of which is distributed by the standard Gaussian law. If u
is a symmetric Gaussian measure on E, then there exists a sequence (x,)

in E such that 2 x, &, converges as. and u is the distribution of this

series. Each such sequence (x,) is called a representing sequence (r.s., ior
short) for u. Let H be a Hilbert space and let (¢,) be an orthonormal
complete sequence in H. If (x,) is an rs. for u, then the map T: ¢, — x,
(n=1,2,..) may be uniquely extended to a continuous linear operator
T: H — E. Each such operator is said to be a representing operator (r.o., for
short) for 1 » : : :
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If T: H—> E is an r.o. for ¢ and if (f,) is any orthonormal complete
sequence in H, then (Tf,) is an rs. for u. Conversely, if (y,) is an rs.
for u, then there exists an orthonormal complete sequence (f,) in H such
that (Tf,) and (y,) differ only by zero terms. The following theorem is an
answer to a question asked by Kuo [5] (}).

THEOREM. If u is a symmetric Gaussian measure on E, then there exists
an r.s. (x,) for u such that

I%,]1* < o0,

s

1

Proof. As above, let H be a Hilbert space, (e,) a complete orthonormal
sequence in H,T: H— E an ro. for u and let y, = T(e,), n=1,2,...

o0

Since (y,) is an r.s. for g, Y y,&; converges as. and, therefore, also in
n=1

the quadratic norm mean. Thus there exists a sequence (k,), 0 = k,
< k, < ..., such that

kp+1

E|l Z &l < .

M8

n 0

For each n let H, = span{e;, i = k, +1 - ,,+1} and let U, be the
group of unitary operators in H,. Moreover, let m be the Haar probability
measure on U,, S, the unit sphere in H,, and ¢ the probablhty measure
on §,, invariant under U,.

Note that

"n+1 :
L T m@) = (i —k) [T o (de)
" ' : " knt1:

= [ IT(@)I* 7, (de) = EII Z y:é

b

where 7, is the canonical Gaussian measure on H,, ie. the distribution of

kptq

;<.

skt

Thus for each n we can find an operator u,e U, such that

kn+1 C kg
Y 1T <E| Y n&l
i=ky+1 : Lo i=kp,+1 S

Let f; = u,(e) for n =0,1,... and i = k,+1,...,k,,,. Clearly, (£) is
a complete orthonormal sequence in H and, therefore, (Tf,,) is an r.s. which
has the desued property

(*) Tarieladze has solved this problem independently by using a different method. -
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Remark 1. If H is an infinite-dimensional Hilbert space, then there
exists a symmetric Gaussian measure y on H such that for each rs. (x,)

. K
for u and for each p < 2 the series Y. |x,|? diverges. This is a consequence
of the following two facts: n=1
(i) T: H - H is an r.0. for a symmetric Gaussian measure on H iff Tis
of Hilbert-Schmidt type; '

(i) for T: H — H there exists an orthonormal complete system (en) in H
such that : e

®
2 Te,l” < o
n=1

iff T belongs to the Hilbert-Schatten class C, (see [6]).

Remark 2. If (x,) is an rs. for p, then Y. x, may not converge
n=1

However, there always exists a sequence (e,) of +1s such that Z £y Xy

is convergent. Note that (g, x,) is also an r.s. for p. ThlS is an 1mmed1ate

a0

consequence of the fact that the a.s. convergence of Z x, &, implies the a.s.
convergence of Z X, €ps where (s,) is a Bernoulli sequence of independent

random varlables [4].

The question on the existence of an unconditionally summable r.s. for
each symmetric Gaussian measure on a Banach space is of a more
complicated nature.

PROPOSITION There exist a Banach space E and a symmetric Gaussian

0
measure @ on E such that for each rs. (x,) for u the series ). X,
does not converge unconditionally. n=1

Proof. Let (x,) be an r.s. for a symmetric Gaussian measure p on E.
First we prove that u has the required property if there exist a sequence
(x7) in E* and a sequence (¢,) of functions on some measure space (I,#,7)
such that

0 3 I (el =

w0

(i) ), xFo, converges ae. on I and

n=1

fl 21 X @, dA < o0,
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(iii) .there exists a constant C such that
Cl Y tae|dd > (T )
B ! n=1 =,
for each sequence (a,) of scalars.

Assume on the contrary that (y,) is an rs. for u and that Z Va

is uncondltlonally convergent Without loss of generahty we may assume
that

=Y Gmym n=12,..,
m=1

where (a,,) is a unitary matrix. Then

N N @
Z' Ixrf(xn)l = Z an:‘( Z A m ym)
n=1 n=1 m=1 .
4] N e o) N N 12
=3 Y GuExtn) S Y (Y a2, 1’2( Z (¥ (ym))?)
m=1 n=1 m=1 n=1 =

< f cfl Z % u) 9a] d2 = € ,[mi-]'(n.gl X% 0n) ()] .

<c x*o.ld)  su X* (3,
(1 X =reddy) sup mz x* (3l
where &, = sgn x¥(x,) for n = 1,2,..., N. This contradicts (i).
To complete the proof it remains to exhibit sequences (x,), (x¥), and (¢,)
fulfilling (i)-(iii). Let E be the Banach space of all compact operators in I,.
The dual space E* is identified with the space of all nuclear operators

in I, and the identification is accomplished by the trace formula. For any

pair of natural numbers i, j let u; ; denote the operator corresponding to.
the matrix with all elements equal to O except the one in the i-th row
and in the j-th column which is equal to 1. Let uf¥; denote the same °
operator but considered as an element of E*. -

V Put x; ; = 27"y, ;, x}¥; = 2"””u,"j for m=0,1,..., 2" <i, j<2m*1,
and x; ; = x}¥; = 0 for the remaining indices. Here o and B are chosen
so that « > 1/2, > 1 and a+f < 2. Let (p;;) be a double sequenge
defined by ¢, ;(s,t) = ri(s)r;(t), where (r;) is the Rademacher sequence on
the unit interval. Let (£; ) be a double sequence of independent random
variables, each of which is distributed by the standard normal law. Clearly,
(u; ;) and (u};) with a suitable enumeration are bases in B and B*, respectively
(see [6]). We shall show that with such an enumeration (x; ), (x¥;) and (g, )
fulfill (i)~(iii).
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Condition (i) is seen from the following:

0

it = T2 S ) = z yomert). o o,
2m<,1\2m+

ij

Since (u *,) is a basis in E* and since the ‘map
ui‘f.i—)u:jii(s)rj(t)i l,] = 152, ey

induces for each s and t an isometry in E, condition (ii) fo}lows from
H%:xu”ﬂ' . mgo “ 2m<i_jZ\2m+1 -ut.J”E‘ mg,o 4T < ®©

Condition-(iii) is a well-known property of the doyble Rademacher system.

Finally, it remains to verlfy that Zx, ;j&i,j converges as.
Using the inequality n

(%) _ K ”0 Z< w., ”“% <K®n.

where K is a constant independent of n, we obtain '

(B X xi &l < Z 27™(E ” Z u; ; €158
N m=0 zrrI< .\zm +1 . .

0<i,js2m

;OZ_MHE(” Z{ ui,jfi.j"%)”z

<Y 2K < .
" m=0 : : .
This completes the proof.

. Inequality (+) is due to ngncr [7]. An alternanve elegant. proof based
on a deep result of Fernique was given by Chevet in [2]. In the Appendix
we give a new short proof of this important inequality.

Remark 3. If E has an uncondmonal basis, then for" eéch Gaussnan

measure 4 on E there ex1sts an rs. (x,) for u such that Z Xy
_unconditionally convergent [3].

APPENDIX

Proof of (x). Let §, be the unit sphere in I3 and let ¢ be the invariant
probability measure on §,. If A: I =[5 is a linear operator, then there
exists an element ae S, such that |(a, x)[ |4l < [|Ax] for all xe/t. Indeed,
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it is enough to note that a = A/ Al), where beS, is such that
Al = [4*b]|.

For each o we choose in a measurable way and as 1nd1cated above,
an element aq,, for

=Y &j(@u;

LJ

Thus [(a,, x)| | 4.l < | A,xl| for each @ and for each xel3. Hence for
any A < 1/2 we obtain ' -

E | exp {A(a0, 0 4,17} 0 (d2) < [ Eexp {11 4ox]} o(dx)

- = [Eep {iii (j‘;l 4u;%)'} o (dx) = Eexp {1 Z &)

— B exp (A2 1} = (1-20)7"".
We have used here the fact that (Zl &iyxhiz and (&)iZ] are
F=

equidistributed for all x = (xy, x5, ..., X,) € S,.
On the other hand, for each ec S, we have

E | exp {4 (a0, ) [ 40112} o (d%)
S . R

= B | exp {i(e, 0* | 4al*} 0 (d) E_exp{ lIwallz}a(@),

where @ = {x€S,: (e, x)* > 1/2}. An elementary calculation yields
2 I (n/2)
r(n—1y2)(n-1)-2"

Using the latter 1nequa11ty and convexxty ‘of the exponentlal function
we get

()

1/4_

exp{ —iIAmltz} Eexp{ ”Awllz} 4" (1-24)7"2

Now taking loganthmus leads to ().
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