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REMARKS ON BANACH SPACES OF STABLE TYPE

BY

JAN ROSINSKI (WROCLAW)

Abstract. In this note we give a new characterization of Banach
spaces of stable type.

1. Introduction. Throughout this paper,- E stands for a separable real
Banach space. A Banach space E is said to be of Rademacher type p (R-type p, -
for short) if for every sequence (x,) = E the convergence of Y, ||x,|? implies
the a.e. convergence of > rux,, where (r,) is the Rademacher sequence.
If E is of R-type p, then there exists a constant C > 0 such that

(1) E| Y x|r<cC ¥ EIXI?
i=1 i=1
for all E-valued independent random vectors X, ..., X, satisfying conditions

E|X;|P<owand EX;=0fori=1,...,n,n > 1 (see [5]). A Banach space
E is said to be of stable type p if for every sequence (x,) = E the con-
vergence of Y ||x,[|? implies the a.e. convergence of ) g,x,, where the g,’s
are independent stable random variables with characteristic functions
E exp (itg,) = exp (—[f|?). Tt is known (see [4], [8] and [10]) that every
Banach space is of stable type p for p < 1. Moreover, E is of stable
type p for p < 2 if and only if there exists a number p’ > p such that
E is of R-type p’. A Banach space is of stable type 2 if and only if it is
of R-type 2. A space LI(S, X, m), where m is o-finite, is of stable type p
for p < q. Finite-dimensional normed spaces and Hilbert spaces are of stable
type p for every 0 < p < 2. '

2. A characterization of Bamach spaces of stable type. Let (2, %, P) be
a probability space. By IP(E) = LF(2,%,P;E), 0 < p < oo, we denote a
standard Fréchet space of random vectors. For each 0 < p < o0 let 4,
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be a function defined on L°(E) by
| A,(X) = sup P P{|X] > 1}.

t>0
It is easy to note that A, is a p-homogeneous metrizable modular and,
consequently,

A,(E) = 4,(Q, F,P;E) = {XeLY(E): 4,(X) < o}

forms a Frechet space with the topology of convergence in A (for details
see [11]1, p. 17). Moreover, for every q,0 < q < p,

L?(E) = 4,(E) = L*(E),

and the natural imbeddings are continuous. _

A symmetric random vector X (or probability measure % (X)) is said
to be stable of order p if £ (aX,+bX,) = & ((a®+b?)'?X) for all a,b > 0,
where X, X, are independent copies of X, and % (X) denotes the distri-
bution of X. It is well known that if X is a non-degenerate stable random
vector of order p for 0 < p < 2, then E | X||? = co. However, in this case,
A,(X) < o as shown in [1]. '

The following theorem was inspired by the weak law of large numbers
in the spaces of stable type p for 0 < p < 2 established by ‘Marcus and
Woyczynski in [7]:

THEOREM 1. A Banach space E is of stable type p for 0 < p < 2 if and
only if there exists a constant C > 0 such that

@) 4,3 X) < C %, 4,(x)

for all symmetric independent E-valued random vectors X,..., X, such that
A X)) < 0, i=1,..,n,n2=1 ‘

Proof. As in the Introduction, let g; (j = 1,...,n) denote independent
random variables with characteristic functions E exp (itg;) = exp (—|t|?). Let
X; = g;x;, where x;€E, j=1,...,n. If (2) holds, then

A4,( 3, 0:%) < € 3, 4yl0,x) = Cylon) 3 Il

Since A4,(g;) < oo, the convergence of ) |x;|? implies the a.e. conver-
gence of Y g;x; for every sequence (x;) < E.

Now, let E be of stable type p for 0 < p < 2. Then there exists a number
p' > p such that E is of R-type p’. Let C' be the constant appearing in (1)
for p = p’. Now let X,,..., X, be independent symmetric random vectors
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such that 4,(X;) < oo for i = 1,...,n. Let ¥; = X;Iyxy<y. We have

} < P{1{2X||>1max||X| 1}+P { max |Xi| > 1}

M:

<P{ 3 ¥ >0+

i=1 i

4,(X3)
1

<E| Y Y[+ ¥ 4,X) < C L EIGIT+ 3 4,(X)

and -
R A Pl
B Y7 = [ #/P=  P{| Y|P > t}dt < — [?P7 P{|X,]° > t}de
: P o P o
r 1 !
< P {er2 g (xydt = —2— 4,(X)).
P o p'—p
Putting C = p'(p'—p)” ' C'+1, we obtain

n n
P{ L X > 1} < € 3 4,(X).
Finally, replacing X; by t ' X,, t > 0, we get

P{| i X > ¢ <c i A, X)=1t"*C i A,(X).
i=1 =1 i=1

Thus (2) is proved.

ProposiTION 1. Let E be a Banach space of stable type p for 0 < p <2
and let C be the corresponding constant in (2). If F is a closed subspace
of E, then inequality (2) holds with the same constant C for independent
and symmetric random vectors taking values in the quotient space E/F.

Proof. It is enough to observe that if E is of R-type p’, then E/F is
of R-type p' with the same constant C'.

3. Normal domains of attractions of stable measures. A symmetric random
vector X is said to belong to the normal domain of attraction of a stable
measure [ of order p if

“”"ZX) as n—- o
i=1

for any sequence (X,) of independent copies of X.
For a symmetric random vector X the following theorem may be easily

deduced from Theorem 3.1 established by Araujo and Gine in [2]:
THEOREM 2. Let E be a Banach space of stable type p for 0 < p <2.
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If X is a symmetric E-valued random vector such that

(3) lim t? P {{x* X| > t} exists for every x*e E*
t—>

and if
4)  for every ¢ > O there exists a finite-dimensional subspace F of E such that

sup t? P {dist (X, F) > t} < e,

t>0
then X belongs to the normal domain of attraction of a stable measure of
order p. o

Theorem 2 has been proved independently by Marcus and Woyczynski
in [7], but their conditions differ from (3) and (4). Our proof of Theorem 2,
by using Theorem 1, is simpler than that given in [2].

Proof. First we notice that condition (3) is equivalent to the following
(see Theorem 5, VII, 35 in [3]):

The weak limit of

n
L~y x*X)
i=1
exists for every x*e E*.

Thus it is sufficient to show that for every & > O there exists a finite-
-dimensional subspace F of E such that

sup P{dist (n"* ¥ X, F) > &} < 6.
" i=1 ,

Let 6 > 0 be fixed and let C be the constant appearing in (2). It follows
from (4) that for ¢ = §' " C~! there exists a finite-dimensional subspace F
of E such that

sup t* P{dist (X, F) > t} < §'*PC~1.

t>0

Let np: E - E/F denote the canonical surjection and |-} the standard
norm-in E/F. Using Proposition 1 we obtain

Pdist (i ¥ X, F) > 6} = P{n1 3 (X > 3}

M=

<677A4,(n" 17

i

T {Xi))

1
< 677CA,(np(X)) < 4.
This completes the proof.
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Finally, we note that if X, X,, X,,... aré symmetric independent and
identically distributed real random variables, then the stochastlcal boundedness

of {n~Y28,}, where S, = Z X,, implies the weak convergence in law. However,

for 0 < p < 2 we may construct a symmetric real random variable X such
that {n~1/§,} is stochastically bounded and that £ (n~'/?S,) diverges at the
same time. Indeed, by virtue of Theorem 1 the sequence {n~ 17§} is stochas-
tically bounded if and onmly if 4,(X) < c. Therefore, it suffices to take
a symmetrlc random variable X such that 4,(X) < oo and 11m t”P{|X'| > t}

does not exist. Such a random variable may easily be constructed.
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