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Abstract. We first give a central limit theorem for a stationary
strongly mixing sequence witheut any mixing rate assumption fol-
lowing ideas of Rosenblatt [23]. We then study functional central
limit convergence and law of the iterated logarithm for the empirical
spectral density considered like a random element of some Sobolev
space.

1. Introduction. In the first part of this work we use cumulant techniques
derived from [23]. We first show moment sums inequalities for stationary
random sequences with finite cumulant sums; we also show that those
cumulant sums are finite under convenient mixing rate assumptions.

Recall that a discrete time process (X,) is said to be strongly mixing with
mixing coefficients a, if o, =0 for t = co with

o = Sup|P(4 N B)—P(4) P(B),

the supremum being taken over A4, B, such that Aeo(..., X
Beo(X,4¢, Xp4i+1,--), Where p is any integer. _

We derive a central limit theorem for a strongly mixing and stationary
sequence under finiteness of cumulant sums and without any mixing rate
assumption. We also obtain a law of iterated logarithm (LIL) assuming some
mixing rate assumption weaker than usual (see [22]and a convergence rate in
Lévy distance for central limit theorem.

In the second part we study the behaviour of empirical spectral density
I, of a centered stationary strongly mixing sequence (X,),so:

X,),

r—1>

n—1

. 1 n
L) =+ [ gD Ro(m+2 Y Ry(mcoski)di
—n k=1
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with

ln—k
R, (n) = Y XXk
j=1

Here g belongs to a Sobolev space H, defined below and I, is considered
like a random element of the dual space H., of H,. We write I for the
element of H__ defined by the spectral density f of the sequence (x,). Without

mixing assumpuon we show that E {n||I,—1I||%,} is bounded (using cumul-

"ant sums assumptions). Afterwards we show functional convergence of

\/_n (I,— D) to a Gaussian random variable of H_, under strongly mixing rate
assumption. The problem is that I,—I is not a sum of mixing random
elements of H_, except if I,—1I acts only on the finite-dimensional subspace
of H, of I-th degree trigonometric polynomials. We also prove a bounded law
of iterated logarithm with a strong mixing rate assumption. To obtain it we
use a decomposition of I,—I into an [(n)-dimensional sum of mixing
elements and a little part. The mixing rate of those elements is Inf {otn—sm» 1}
We give a Lévy speed of convergence for them and we conclude with usual
techniques (see [9]). This leads to a result similar to those of [2] concerning
almost sure behaviour of Max {|R,(n)—rl; 0 <k <w,}. We also show a
uniform law of iterated logarithm for I,—1I on the Sobolev space H;.
Classical results concerning Gaussian processes can be found in [3], like
LIL for I,(g)—1(g) with g eL*(f*(4)dA). Rosenblatt [23] and Dalhaus [7]
show a central limit theorem. Rosenblatt uses a kernel estimate and Dalhaus

uses more general spectral estimates for a fixed function g. The only

~ functional results that we know concerning I,—I use a martingale approach
[4]; the author shows a uniform LIL for a class of functlons with rapidly
decreasing Fourier’s coefficients.

We now investigate fields of applications for th1s work. First of all note
that R, (n) = I,(¢,) if e,(x) = coskx, so results for empirical covariances are
* obtained. Then Whittle’s approximate log-likehood of stat1onary Gauss1an
processes [25] can be studied with

In(f) = '—%{1,, (}')+nlog'ag}.

In chapter XIV of [3] the authors give results concerning identification

of ARMA processes (see theorem 3.5); they use a uniform LIL for I, relative
to Gaussian processes proved by Bouaziz; our results seem to be tractable
here. Now, in the convergence of approximate likehood used for estimation
of parameters of spectral density, I,(f) is the main term [15]; for this
likehood is maximized

(@)

Dv(fo,- Iy) = _f 10gfo(w)+f9( do
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where Iy is the periodogram and f, the spectral density of the process; our
results give a LIL for D. Finally, Bouaziz [5] gives other applications of our
resuits.

2. Cumulants. Let {4, ..., 4} be centered real-valued random variab-
les. We write A =(4,, ..., 4) and m, = EA}' .. 4% if v=(vq, ..., v)eN~

If () =Ee*, teR* is the characteristic function of A, we obtain
Taylor expansions of ¢(t), and log (1) if A admits n-th order moments:
il
. i
o) = % =m0,

Iv]<n ¥+

vl
logo(t) = ¥ lv—_icvt”+0(|tl") for t —0.

|v) <n

Here v=(v,...,v)eN* t=(t;,...,t)eER* and |V =v,+...+v,
vi=v vl t=00 0k '

The coefficients ¢, are called cumulants of A.

Taylor developments lead Leonov and Shyriaev [19] to write

1 v! 1111
() m, = R
. }'1+"'+)‘q="'q'|)'1!"'iq!j=1
' (=1t v
(2) ¢y = my,.
Ll+.§lq=v qg A ...Aq!jl:—[l Aj
(Sums are taken for every integer g and 4, ..., Ag e N* such that A, +
+i,=v)
In the following we also write ¢(Ay, ..., A) =c, and m(A,, ..., 4y

=m, for v=(1,..., 1), and, if (X)) is the k-th order process, c(tz, cean by
=C(X0, th,.. th) .

PROPOSITION 2.1. Let (X,),cy be a 2p-th order statlonary centered process
satisfying
C, = Y le(sys .., =)l <00 for k=2,3,..., 2p.

(81500 0sSg — 1enk—1

Then

14
E(X;+...+X,)??< ) niy,

g=1

where

=) me(n) C(Tr)=Cp1,.-..,Cpq for m=(py, ..., p) N

l"I 2p
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Remark. For p =1, 2 more precise statements are classically obtained: '
E(X(+...+X)2<nC,, E(X;+ ... +X,)* < nC,+3n*Cj.
Proof. Let §,=X,+ ... +X,. We compute

ES?? = ;EX,(I) - Xizp»

where I runs over the set of maps from {1, ...,2p} to {1,..., n}.
If L="lla---alr}' C'{l,..., 2p}, we write C(I, L)'——C(XI(li),...,XI(lr))
-and formula (1) implies '

ESZF =Y Z — Y Ty, With T, =) Z H c(l, L.

I; q>1q pit.-tpy=2p T {Lj)j=

The number of partitions {L,, ..., L} is q!(2p)!/p,!...p,!, s0

q
pql S H { Z |C(ths ‘e p)

j=1 1St €Sty <

I’ q (2p)

The result follows now from the stationarity of (X,).

Prorosition 2.2. If (X),.y is a p-th order stationary centered and
strongly mixing process such that there is a 6€]0, 1] satisfying
) 3csoVen  EIX, P <C,

(ii) Y o+ 120D <0 for k=1,...,p
r=0 =
then _ '
Cp= Z IC(II,...,tp_1)|<OO.
tl,...,tp_l

Remark 2.2.1. Propositions 2.1 and 2.2 imply a moment inequality (cf.
[9]) already known, but Rosenblatt ([24], p. 1179) gives examples of proces-
ses with finite cumulants -sums and with a, > n™° for arbitrary & > 0.

Proof If 1<t; <...<t,andr=1,;—t; =Max {t;,,—t;5j=1,...,p
—1}, then by (2) we get

e(X, X)<[EX, ..X —BEX, . XEX

g2y eyt

X, +R,

£y =c
q

R< Z— Y 11 Imy | for v=(1,..., 1)
g Dag+. A Ag=vidjEy =1
and A=(X,1,...,X,p).
By (1) we have

Z R (p) Max H |C,

Z.;Evj 1

for some constant R(p) only depending on p.
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From another hand a result by Davydov [8] shows that the first term
is majorized by 1002/P*? CP(P*% and we have

o
C, < 10p! crie*a 'y (r+1)"‘2tx;‘/(”+’”+R(p)z1 Y Cpl...Cpq.
r=0 q qm*’;;;’r;fp
The result follows by induction. !
Tueorem 2.3. Let (X,),v be a fourth order stationary centered and
strongly mixing real process such that

K=Y kle(f<oo and C=7Y |di,j, k) <.
. k=0 ij.k
Then, if there are some positive constants A, y <7y, witha, < At ', and if .

[+ o]

6> =c(0)+2 ) c(k)#0,
=1 .
we have *

Sup|P(n™"*(X;+...+X,) <z)—P(Y <z)| <Constn™%, &= 3y/(24+36y),

where Y denotes a centered Gaussian random variable with variance o?.

Remarks. 23.1. Without any mixing rate assumption we also can get a
CLT analogous to [23], chap. III, Pb. 4; it was shown by [24] that the
assumptions are really weaker than usual condition

] f: asl1+5)/(2+.5) < o0

n=0
(see [147). Moreover, in the example by Rosenblatt, c(n) = n~1 74, so that the
condition of Remark 2.3.3 is satisfied and the result is valid here.

2.3.2. Ibragimov [16] shows that if (X,) is a Gaussian process, our
cumulant assumptions imply mixing but no explicit estimation of the mixing
rate in the case of CLT. To verify the assumptions of theorem 2.3 we have
still some additional smoothness condition for spectral density to add ([16],
Chap. 6, Théoréme 8). Note that finiteness of K implies differentiability.

2.3.3. The assumption K < oo can be weakened by

k
Y. nle(m)] 7==0.
n=0

| =

C,= ) le(n) <o and
) n=0
2.34. Peligrad [20] shows under g-mixing assumption that
Y () <o
i=0

implies C, < co. This assumption is weaker than that usual for a-mixing.
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Proof Let f: R —R be a thrice continuously differentiable function
with bounded derivatives. We estimate

X+ ..

R

Condition K < oo implies C, < oo and ¢® is finite. Set p = p(n),
g =q(n), | =[n/(p+q)] (integer part) and :

fim p(n) _
im
nﬂmq(”)

We group the variables as follows:

M m~.m%m

(n—I(p+ q))terms

So Card(I,) =...=Card(I)=p, and J=11,2,...,n\(I; U...ul)
satisfies CardJ = n—Ip. We now set

-

1 1
Ly x (h=1,..,) and v=—72YX.
ﬁi;h ﬁgf

We have 4 < a+b+c¢ and
a=E f@u+...+u+v)—f(u+... +uw,
b=|Ef@;+ ... +u—f i+ ...ty
c=Ef+... +y)=f(Y),

where y,, ..., y, are centered iid. Gaussian variables with the variance o2

that u,.
Write M; = sup {|/9(); teR},j-O 1,2, 3. We have

I
i a<Min 'Y EX,X;< M} n”czsp:’rqwczmo

i,jel
; -1
@ b< Y b, with b,=|Ef(Z;+u)—f(Z;+ )l
A &

and Z;=uy+... +uj_ 3+ Y+ .. 0
Taylor’s formula implies: ' | '
f(Z;+u) = f(Z)+u f'(Z)+u] [ (ZY2+u; [ (E)/6,
F(Zi+y) = FZ)+y; [ @)+ [ (Z)2+y] [ (n))/6.
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So
b; < |Eujf’(Zj)|+%|Euff”(Zj)—Euj2Ef”(Zj)l+%M3Eluj|3.
But proposition 2.1 shows that
Elu|* < ! (pC4-l-3p2 C?) < Const p?/n?.

From another hand, mixing inequality shows [7] that, for 0 <¢ <3,

by < 100340 (Eut)'™ M, + 5012~ [B (u? — Bu)*]"2 M, +(1/3M3) (Bu®)¥*,
b; < 100)/*~¢ (Eu‘-‘)”4 M, +100}/2 ¢ (Euf)'/? M, + M, (Eu})¥*/3

p_ P\’
<Ct{a;;’/4 e /p/n+ali?= on+(ﬁ) }

Hence b < Ct {4/ /o2~ "+oc1/2 “+1/V/i‘, we see that b —0 if
I(Maym w=%20, l(M)z=z>0 for ¢=1/4.

We have

1 P
(i) c<lloj—o%M, and o}= (EX3+2 Y (p—k+DEX, X,

k=1

so (see 2.3.3)

q
lo?—g? < kEX, X, +——02.
| | kzl o p+q
The assumption K < oo implies ¢ =0 (see 2.3.3) if limg/p =0.
; The CLT follows from a choice of p(n) and g(n) satisfying
. pln) . q(n)
lim — = lim g(n) = c0, lLim——u,,
n—oo (n) n—o n-wp ( n) Yam =
To prove 2.3 we can use functions f such that M; < C; ¢/ (like in [17])
and the left member of the inequality is majorized by C, e+ 4 (e), where A(e)
is estimated before.
TueorEM 2.4. If (X,),y is a strongly mixing process satisfying assumptions
of theorem 2.3 with y =1, then

X+ ...+ X,

im DoTloglogaz | 4% Where on =EUGA A X%

2 — Probability Vol. 10, Fasc. 1

Sketch of the proof. We follow the lines of the proof of [22]. Thus
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we show that
(a) (P(X;+...+X,<zo)—p()| < Cn°,

Indeed, it follows from 2.4 and the fact that Levy me distance of two
Gaussian variables N (0, a}), N(0, ¢3) is of order |o, —0,|*/3, and |o2/n—o?|
< 4K/n. :

(b) Ko, <Cn7 yp>1,
P(Max (X;+ ... +X) 2 x)<2P(X,+ ...+ X, > x—20,)+Cn""

1sksn )
. for e <y—1.
(0 If t =0 /loglogo?, then
o q
3c,.c,Cy (Iogaﬁ)_”z/(t+?) P(X,+.. =b. 26, log log ¢?)

< C,(logo?) b/t

The proofs of (b) and (c) are analogous to those of [22]; proof of
theorem then follows as in [21].

Remark 25.1. Kuelbs and Philipp [18] show a strong invariance
principle which implies LIL under stationarity assumption and
a, < Cn~Fa0+29 f6r some ¢, 6 >0 and E|X,|*T% < .

For 6 =2 it is Reznik’s [22] assumption. We replace here a strong
mixing rate assumption by mixing rate and cumulants assumptions.

3. Empirical spectral density. In the following (X,),.y is a fourth order
stationary centered and strongly mixing real random process. We define
empirical covariances Rk(n) and periodogram I, of (X,):

R, (n) = ZX ek k=0,1,...,n—1;
n—1

I1,(4) = 1 ‘Ro(n)+2 ) R.(m)coskl}, —-n<i<m.

k=1
- Let , =EXo Xy, k=0, + 1,, +2, ... We make the following assumption:
(A.1) 0= )Y r; <.

The spectral density f of (X,) is the even L?- function defined by

+ @ [ o}
fA= 3 ne*=ro+2Y rcoskdel’[—mn, n].
k=— o )

k=1
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We define
In(g) = ‘ g(/l)l,,(/l)d/{, gELZ[—'TE, TE]~ i

Note that R,(n) estimates r,, and I,(g) estimates
" di
= g4 —.
Ig)= [ 9()f

If g is odd, then I(g) =1I,(g9) =0 and else for
G =4g®+g(—x), 1@ =1, L@ = L&);

so we only consider even functions geL*[—mn, n].
Our aim is to study the functional asymptotic behaviour of I,(g). We

consider the Sobolev space H, for s > 1:

Hy=lgel’[~n, n];g(—x) =g(x), ), Klgk)I* <o}
' k=1
with
. " dx . " dx
g = | coskxg(x)z=, §G(0) = | g(x)——.
2n o 2n

This space is Hilbert with the norm
lglls = {lg Q)1 +2 3 kg (k)*}H/2.
k=1 ‘

The dual space H_; of H, relatively to the duality

" dx
@1, 92) = [ 91(¥)g2(x)
o 2n

has norm ||-||_,,

ITl-s =sup {IT(); llglls < 1} = {T(eol*+2 3, k7 T(e)?}'/?
k=

1

with ¢ (x) =coskx, k=0,1, ...

We write B, ={geH,;|lgll, <1}. Note that I, IeH_,. Let Y,
= X;X;1,~1r,. We have

ProrosITION 3.1. If (X ),y is a fourth-order stationary process satisfying

Assumptions (A.1) and (A.2),

A2 dl) =) lc(You, V) <y <oo
j=1

for some constant C >0, k=0,1, ...,
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then
E||I,—I|2, = Esup {|I,(9)—1(9)*; g€B,} < Cy/n

for some constant C,, if s> 1.
Proof. I,(9)—1I(g) = T, + T, + T; with g€B,,
n—1
Ti = é(o) AO,n+2 Z Lj(k) Ak,m Where Ak.n = Rk (n)_ERk (n),
k=1

T,=2 Y (ER(—r)dk), T=2Y Glkr.
k=1 k=n
So

. n—lk . ..
T,=2Y -ngk and |T<20//n |Tal < 20//n.

k=1M
From another hand,

n—1 -3}
Esup T2 < E42,+2 Y k™“EAZ, <(1+2 Y k™%)y/n.
g k=1 k=1

Remarks. 3.1.1. Leonov and Shyriaev’s [19] formula for products
lmplles C(YO,k! Y},k) = C(k,j,j+k)+rf+7‘j+krj_k, hence.

[e 5] a0

dky < Y le(k, j, j+k)|+3 '21 ri.

k=0 j=

Assumptidns (A.1) and (A.2) are satisfied if (A.1) is realized and C, < c0.
3.1.2. If (X,),y is strongly mixing with

o

A=Y al/? <o and E|X *"?* < oo,
n=0

assumptions (A.1) and (A.2) are satisfied with
0 < 10042(E | X [2THY@+D 5 = 404 (B |X,|*+ 29 +29,

ProrosiTion 3.2. If (X,),ENI is fourth order stationary strognly mixing and
satisfies assumptions (A.1) and “C, < o0” and one of the following:
(@) Y ile(i,j, k)l < oo, Cg <o and (X,) is stationary to order 8,

L.k
]

b) Y o« <o for some 8€]0,2] with E|Xo*"? < oo,
n=0

then v/; (I.(9)—1(g)) converges weakly to a centered Gaussian random variable
with variance a*(g) for g €H; (see formula (%)) if a*(g) > 0.
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Proof. n(I, (g)QI(g))=A+B+C with

=>4 O)Y0+22 )

j=1 k=1

n

= 2340 3

j=n—k

n—1 n—k
c=2Y4 k)Z Y, for any Isg—l.
. k=1 ,

We note that EC><4ny|lg||?1' S(s—1)" %, EB2 < 4P |jg|2EX§(s—1)"!
using cumulants. Moreover A/ﬁ satisfies assumptions of the central limit
result 2.3 under hypothesis (a), with the help of transformation formula for
products -of cumulants of [19], and assumptions of the result from [10]

under hypothesis (b). The limit Gaussian variable of A/\/;z has variance o}
converging to o2(g) for | = oo, where

@ @@ =2x[] [ 6Wg0IS(x —y dsdy+2 [ 67() (9]

and
fd-(xa Y, Z) = fijt_)sa’ﬂ’:gm_w(:(a’ ﬁa y)exp(—i(oax+ﬁx+yz))

are the cumulant spectra of fourth order [6].
Dalhaus’s method [7] completes the proof.

THEOREM 3.3. If the assumptions of proposition 3.2 are satisfied and s > 1,

then the random sequence ﬁ(],,—l)eH _s converges weakly in the quotient
space H_ /N, to a Gaussian random variable Y with covariance I

n T

F(g,g)=E(Y(g))2=2n[ [g(x)gy)f4(x —y, ydxdy +

+2 }gz(x)fz(x)dx], geH.

Here N, denotes the subspace {geH_,, I'(g, g) = 0}.

Remark 3.3.1. In the Gaussian case f, = 0, so that N, = {0} if fis not
Zero as.

Proof. The assumptions C, < oo and Zr,f <w, k=0,1,2,..., show
that

-

__f [ 1 falx, =y, Yldxdy < oo, | f2(x)dx <oco.




22 P. Doukhan and J. R. Leén

The covariancé I satisfies |I'(g, g)] < G*(s)||gl|? for some constant G(s)
only depending on s > 1. We can consider the completion H of H_, with
norm igllr = /I'(g, g) by the injection i: H > H_,, i(h)(g) = I'(h, g). Let
(h),>o be a complete orthonormal system for H. We see that

S I'(hy, 9 < G*(5) g2,

n=0

so Giné ([13], proof of lemma 3.2) shows that YeH_, (with the help of
Kolmogorov s inequality).

Using de Acosta’s method [1] we have to show that \/— (I,—1) is flattly
concentrated because of the convergence of finite dimensional repartitions by
proposition 3.2, because of linearity (lemma 3.3 of [13] makes use of it).

Let p;, be the orthogonal projection of H_, on F,, the closed-subspace
spanned by {e,; k > 1!. We see that

E|lpi v/, = D)2, < 27 Cals—= 1),

which completes the proof. -
Let now

1

n
Z jkek7 An,l = Z Zj,.l
i=i

We follow lines of the proof of [11], which is analogous to that of
theorem 2.3 in the /-dimensional subspace E, of H_,, to show the following

Lemma 34. If Y klc(k)| < o0, C4 <0, Cg <o and a, < Cn™", then

< Const P4 pb-1/12

1

L,, =Sup|P (ﬁIIA,.,aH-s > t)—P(IIYzII—s > 1)
>0 N

with Y, the projection of Y on E,, uniformly for 1< n® for B <b < 1/10 such

that T2 1/12b.

Proof. For any I < nf the random sequence (ZL,, voes Ly, ...) 1 strong-

ly mixing with mixing coefficient ¢, =1 for n <! and d, = «,_,, else. For
su1table functions f such that ||D/f]||, < Cte™/ (j=0,1, 2, 3), we estimate

lEf(A,,,/\ n)—f(Y)l so that L,, < Ct e+ 4). This computatlon is based
on estimates like

ENZ,,+...+Z,||*, < Const Cg I’ p*.
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It leads to

Filg \M2 'l \L2 :
A< Constde (2 +a3ﬁ,(”— +¢72 a4_,l3/2+12€ +
p P ! p

ceon(?)L
n/ |

Put & = P4 n®- 112 We get

Lemma 35 [9]. If E|X*T <o for some 0<86<2/3 and
o, < Const n™" with t > 2(1+2/5), then, for any B, ¢ > 0 such that Tﬁ >1+p,
B+o < 8/(2(2+6)), we have
P(Max || 4y |- > X) < 2P (| Anill =5 > x—20 no)+n"*

k<n

with o, =Supn™Y2||4, || _,.
n>0
Note that o, < (4/(3—1)) Cs.
Write now n(I,, I)=A,,+B,,+C,,; like in the proof of proposition
3.2; we see that E|B, ||*; < ConstEX3 /4, E||C, ||2, < Constnl' % So

Pk=P( Max £||I"-—I||_S>C) for nk:l:ek];

g <nSmy g Gn

a, =\ nloglogn can be estimated by Py < Pi+P}+P} for C=C,+
+C;y+Cs,

= P{ Max “An,l“-s Cla

ns<myq !
e +1 . -1 .
PI\Z < Z P(”Bn,l”—s 2 CZ an) < Z E”Bn,l”is(CZ an)—4
n=nk+1 . n=nk+1

< Ctl*n; Y (loglogn) ™2 < Ctl* e *(logk)~ 2,

A+ 1
Py, P(IIC,.,II—S>C3a..) Cte*I' ~*(log k)~

n=npt1
From another hand, we see like [9] that, for I < nf, ,,

P <2P(|4

ny 4 l,l”—s >

C1 8y ~20) \/Mr) +mefy  (by 3.5)

2P( Ay dl-s > Ci/2 2log k_)+nk“£1 for k > ko,

N Mgy
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Pi < 2P(|Yl-, = C1/2/2logk) +nmc 8y + Cn {0 P14
(for b = 1/10 in 3.4), '

Pl <2P(|Y)l-. = C,/2 /2logk)+n 8+ Cng 340 P14,

Choose C; such that Eexp {||Y||*,/C?} < o0, | = I(k) = ¢#* with B < 1/10
and f > 1/(s—1). We get, by Borel-Cantelli’s lemma,

TueoreM 3.6. If (X,)'is an 8" order stationary mixing sequence with
CB. < 00, o, < CO n-;t:'r > 10, § > 11, 3C>0

M,—Ill-,<C as. "~
n

Note that condition t > 10 implies C, < oo and Y klc(k)| < co.
Let 1 <w < n We see that

I, —1I|l_s > w™ %% Max |Ry(n)—r

0<ksw
and ,
CoRrOLLARY 3.7. Let (X,) be an 8" order stationary mixing sequence with
< Con™" for some Cy > 0,7 > 10 and Cg < 0. Then for s > 11 there is a
constant C such that, for 1 < w, < n,
lim #'/*(loglogn)~ 12w, 2 Max |R,(n)—r < C as.
n—o 0sk<Swy, _
-Remark 3.7.1. The normalization goes to infinity if w, = n® with a < 1.
Paper [2] gives an analogous of this result for linear sequences, where w,
= n?? with normalization w, '/* in place of w, 2.
CoROLLARY 3.8. Let (X,) be an 8" order stationary mixing sequence with
Cy <00 and a, < Con™", 7 > 10. Then, if s > 12, 35, P(Qo) =1, and w e,
implies

- —I(g))=T"? '/
,}Lw lOglogn( (9)—1(9)) (g,g),r o

Proof. We see that B, is a compact of H, if t+1 <s. So there is a
family g,, ..., gne €Ey,y such that
. N(e)
B, = U (g:+¢B).

i=1
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i

We show LIL for I,(g)—1(g). If g; = ) ae,, we write

k=0
’ n I
n(In (g1 (gi)) = Z {ao (—XJg —"(2))+2 Z (Xj Xj+k;rk) ak}'""An
j=1 k=1
with EA} < Const, so that 4, (nloglogn)™Y? —20 as.
Theorem 2.5 shows that

— n
hm m(ln(gl)_l(gz)) = FI,IZ(Q,[., gi): w Ele i= 1; EEEP N(S)

o Now g —»I'''%(g, g) is continuous on H, and we have

@, ={w:ilim -~ 1|, < C}.
\loglogn )

fweQ, nQ,, gy <1, and helg,, ..., gy is an e-neighbourhood of
i g, then we set

f | n
| Y S .
. { In 210g10gn( )

and get
Va@—T"2(g, gl < Wull-e+1Tu () =TV (hy B+ [TV (h, H)=T?(g, g)|.
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