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Abstract. We h t  give a central limit theorem for a stationary 
strongly mixing sequence without any mixing rate assumption fol- 
lowing ideas of Rosenblatt [23]. We then study functional central 
limit convergence and law of the iterated logarithm for the empirical 
spectral density considered like a random element of some Sobolev 
space. 

1. Introduction In  the first part of this work we use cumulant techniques 
derived from [23]. We first show moment sums inequalities for stationary 
random sequences with finite cumulant sums; we also show that those 
cumulant sums are finite under convenient mixing rate assumptions. 

Recall that a discrete time process (X") is said to be strongly mixing with 
mixing coefficients a, if a, +O for t + co with 

a, = Sup ( P ( A  r\ B) - P ( A )  P ( B ) ( ,  

the -supremum being taken over A, B, such that A E ~ ( .  . ., Xp-, ,  X,), 
B E D ( X ~ + ~ ,  X g + t + l ,  ...), where p is any integer. 

We derive a central limit theorem for a strongly mixing and stationary 
sequence under finiteness of cumulant sums and without any mixing rate 
assumption. We also obtain a law of iterated logarithm (LIL) assuming some 
mixing rate assumption weaker than usual (see [22]and a convergence rate in 
Lkvy distance for central limit theorem. 

In the second part we study the behaviour of empirical spectral density 
I, of a centered stationary strongly mixing sequence (XJ,,,: 
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with 
i n-k 

Here g belongs to a Sobolev space H, defined below and I, is considered 
like a random element of the dual space H-, of H,. We write I for the 
element of H-, defined by the spectral density f of the sequence (x,). Without 
mixing assumption we show that E [nl lI , -I1(?,)  is bounded (using cumul- 
ant sums assumptions). Afterwards we show functional convergence of 
d5(Im-l) to a Gaussian random variable of H-, under strongly mixing rate 
assumption. The problem is that I,-I is not a sum of mixing random 
elements of H - ,  except if I , - I  acts only on the finite-dimensional subspace 
of H,  of l-th degree trigonometric polynomials. We also prove a bounded law 
of iterated logarithm with a strong mixing rate assumption. To obtain it we 
use a decomposition of I,-I into an l(n)-dimensional sum of mixing 
elements and a little part. The mixing rate of those elements is Inf 1). 
We give a Gvy speed of convergence for them and we conclude with usual 
techniques (see [9]). This leads to a result similar to those of 121 concerning 
almost sure behaviour of Max (IR, In) - r,( ; 0 SG k 4 wnj . We also show a 
uniform law of iterated logarithm for 1,- I on the Sobolev space H,. 

Classical results concerning Gaussian processes can be found in [3], like 
LIL for I , ( g ) -  I @ )  with g  E L2 (f '(A) dA). Rosenblatt [23] and Dalhaus [7] 
show a central limit theorem. Rosenblatt uses a kernel estimate and Dalhaus 
uses more general spectral estimates for a fixed function g. The only 
functional results that we know concerning I , - ]  use a martingale approach 
[4] ; the author shows a uniform LIL for a class of functions with rapidly 
decreasing Fourier's coefficients. 

We now investigate fields of a2plications for this work. First of all note 
that Rk (n) = I, (e,) if e, (x) = cos kx, so results for empirical covariances are 
obtained. Then Whittle's approximate log-likehood of stationary Gaussian 
processes [25f can be studied with 

In chapter XIV of [3] the authors give results concerning identification 
of ARMA processes (see theorem 3.5); they use a uniform LIL for I, relative 
to Gaussian processes proved by Bouaziz; our results seem to be tractable 
here. Now, in the convergence of approximate likehood used for estimation 
of parameters of spectral density, I,(f) is the main term [15]; for this 
likehood is maximized 
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where I, is the periodogram andfo the spectral density of the process; our 
results give a LIL for D. Finally, Bouaziz [ 5 ]  gives other applications of our 
results. 

2. Carnulants. Let 1 A , ,  . . . , Ak be centered real-valued random variab- 
les. We write A = ( A , ,  . . . , A,) and mv = EA;' . . .A: if v = (v ,  , . . . , v& G Nk. 

If q(t) = EeirA, t E#', is the characteristic function of A, we obtain 
Taylor expansions of q(t) ,  and logq(t) if A admits n-th order moments: 

jlvl 

log q(r) = ,c.rv+O(lr17 for r -0. 
IrJ < r l  ' 4  

I Here v = ( v , ,  ..., v k ) ~ N k ,  t = I t l ,  ..., t k ) ~ W k  and lv] = v l +  ...+ vk,  
"k V !  = v , ! . . m q ! ,  t = t i  '...tk . 

The coefficients c,, are called ctdrnulanfs of A. 
Taylor developments lead Leonov and Shyriaev [ 191 to write 

(Sums are taken for every integer q and /2,, . . . , /1, €Nk such that A, + . .. 
+iq = v.) 

In the following we also write c ( A , ,  . . ., A,) = c,  and m ( A , ,  .. ., A& 
4 

= rn, for v = ( 1 ,  . . . , I), and, if (X,) is the k-th order process, c(r , ,  . . . , t,) 
I 

= cIXOI XtZ' . . - 9  XtJ.  

PROPOSITION 2.1. Let (X,),,, be a 2p-th order stationary centered process 
satisfying 

C, = C ]c(sl  ,..., s ~ - ~ ) ~ < c o  for k = 2 , 3  ,..., 2p. 
(s1,...,sA- I ) E N ~ - 1  

Then 

where 

c ( n ) = C P l  ,..., Cpq for n = ( p ,  ,..., p q ) ~ N q .  
1x1 = 2 P  
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Remark.  For p = 1, 2 more precise statements are classically obtained: 
E(X1+ ... +XJ2 $ l a c z ,  E(X1+ ... +X,J4 < n C 4 + 3 n 2 C $ .  

Proof .  Let S, = XI+ ... + X , .  We compute 

where X runs over the set of maps from :I, . . . , 2 p )  to I ,  . . . , n] . 
If L =  [I,, ..., C) c {I ,  ..., 2pj, we write c(I, L) = c(X,(,,,, .... 

and formula ( 1 )  implies 

The number of partitions L1, . . . , 4)  is q !  (2p ) ! /p l  ! . . . p,!, so 

The result follows now from the stationarity of (X,) .  

PROPOSITION 2.2. If (XJt,, is a p-th order stationary centered and 
strongly mixing process such that there is a 6 €10, 11 satisfying 
(i) 3 c z o t l n t ~  E lXmIP+8 < CI 

(ii) f (r+l )k-za: f lk+" < a for k = l ,  . . . , p ,  
r = O  

then 
Cp= C ( ~ ( t , ,  ..., tp-l)l < a. 

t l '  ... ,rp- 1 

Re m a r k  2.2.1. Propositions 2.1 and 2.2 imply a moment inequality (cf. 
191) already known, but Rosenblatt ([24], p. 1179) gives examples of proces- 
ses with finite cumulants sums and with a, 2 n-& for arbitrary E > 0. 

Proof.  If 1 < t ,  $ ... d t, and r = t , + , - t ,  = Max i - t j + l - t j ; j  = 17 . .=, p 
- l l ,  then by (2) we get 

1 4 

R < C -  C n ImAjl for v = ( l ,  ..., I )  
q q,Il +...+ A,=v ,Aj#v  j= 1 

and A = ( X , ,  , . . . , Xtp). 
By ( 1 )  we have 

1 a 

for some constant R(pj only depending on p. 
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From another hand a result by Davydov [8] shows that the first term 
is majorized by and we have 

C , < 1 0 p ! C ~ ~ ~ ~ + ' ~ ( ( r + l ) p - ' a f ( ~ + @ + ~ ( ~ ) ~ ~  Cpl...Cpq. 
r = O  , ' q '2 pl  + ... + p q =  p 

p j  + B  

The result follows by induction. 
THEOREM 2.3. Let (X,),, be a fourth order stationary centered and 

strongly mixing reaE process such that 
m 

K = k lc (k-)l. < m and C = (c(i, j, k)( < co . 
k =  0 i.j.li 

Tlzen, $there are some positive constants A, y < y,  with at < ~ t - " ,  and $ . 

we ' have 

ir~heru 1- ~ C J I ~ ~ P S  n centered Gaussian random oariable with variance a2 

Remarks.  2.3.1. Without any mixing rate assumption we also can get a 
CLT analogous to [23], chap. 111, Pb. 4; it was shown by 1241 that the 
assumptions are really weaker than usual condition 

(see [14]). Moreover, in the example by Rosenblatt, c(n)  = n-  l -O, so that the 
condition of Remark 2.3.3 is satisfied and the result is valid here. 

2.3.2. Ibragimov [I61 shows that if (X , )  is a Gaussian process, our 
cumulant assumptions imply mixing but no explicit estimation of the mixing 
rate in the case of CLT. To verify the assumptions of theorem 2.3 we have 
still some additional smoothness condition for spectral density to add ([16], 
Chap. 6, Thkortme 8). Note that finiteness of K implies differentiability. 

2.3.3. The assumption X < m can be weakened by 
00 1 

C,= C lc(n)(<m and - x  n(c(n)(-0. 
n= o k n = 0  

2.3.4. Peligrad [20] shows under @-mixing assumption that 
m 

C e2Ik (2') < oo 
i =  0 

I implies C, < a. This assumption is weaker than that usual for u-mixing. 
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P r o  of. Let j': R + R be a thrice continuously differentiable function 
with bounded derivatives. We estimate 

Condition K < co implies G ,  < cc and o2 is finite. Set p = p(n), 
q = 4 (n), 1 = [n/(p + q)] (integer part) and 

We group the variables as follows: 

I1  1 2  I ,  
- /// /// - . . . /// I// P 

4 4 4 (n - l ( p  + q ) )  terms 

So C a r d ( l l )  = ... = C a r d ( I , ) = p ,  and J =  11, 2, ..., n : \ ( I , u  ... ul,) 
satisfies Card J = n  - lp,  We now set 

1 1 
~,=-xX~(h=l, ..., l) and v = - E X , .  

\h~idh ,J% id 
We have A < a + b + c  and 

where y,, . . ., y,  are centered i.i.d. Gaussian variables with the vaiiance 0: 

that u , .  
Write Mj = sup {If (t) l ;  t ER] , j = 0, 1, 2, 3. We have 

n - l p  
a2 < M f n - l  x E X ~ X ~  < M4- c, < 4 ~ f ~ 2  ze0, (i) i, j d  n  P+4 

I- 1 

(ii) b  < C bj with bj = IE f ( Z j  + uj) -f ( Z j +  yj)(  
j=  1 

and Z j = u l +  ... + ~ ~ - ~ + y ~ + , +  ... + y l .  

Taylor's formula implies: 
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But proposition 2.1 shows that 

From another hand, mixing inequality shows [7] that, for 0 <.Q <$, 
.. - 

4 314 hj < 10x,314-e (Etd?)ll4 MI + 5aq112-e [E (ujz - EU;)~]'/~ M 2  +(1/3M3) (Euj) , 

bj < 10a,314-e (Euj4)'l4 MI + 1 0 ~ : ~ ~ ~  (EU:)''~ M 2  + M 3  ( E U ? ) ~ / ~ / ~  

Hence b B Ct . ~ q  ;ia:I4 -Q + m i i 2  - + l/,~?jj: ; we see that b - 0 if 

1 )  a n  0, l (n )  ao for p = 1/4. 

We have 

1 P 

(iii) c < Ilai - aZ( M 2  and 0; = - {EX; + 2 ( p  - k + 1) EX, Xk}, 
n k =  I 

so (see 2.3.3) 

The assumption K < cr, implies c 4 0  (see 2.3.3) if lim q / p  = 0. 
The CLT follows from a choice of p(n) and q(n) satisfying 

P (n) lirn - 4 ( 4  = l imq(n )=ao ,  Ern-a,(,,=O. 
n+m4(n) rt+m n+* ~ ( n )  

To prove 2.3 we can use functions f such that Mj < C, e-j (like in [17]) 
and the left member of the inequality is majorized by C2 E + A (e), where A (8) 

is estimated before. 
THEOREM 2.4. I f  (Xt),, is a strongly mixing process satisfying assumptions 

of theorem 2.3 with y = 1, then 

- \XI + . . . + X,I 
lim = 1 a.s., where at = E (XI + . . . + XJ2 .+, 20: log log a: 

Ske tch  of t h e  proof. We follow the lines of the proof of [22]. Thus 

2 - Probability Vol. 1% Fasc. 1 



P. D o u k h a n  and J. R. Le6n 

we show that 

Indeed, it follows from 2.4 and the fact that Levy me distance of two 
Gaussian variables N ( 0 ,  of), N (0 ,  rr:) is of order ID, - s,11i3, and Jai/n - u21 
r 4 K / v ~ .  

(b) If a,, < Cn-', y > 1, 

. P(Max (XI+ . . .  + X  k ) > x ) < 2 P ( x 1 +  ... + X , , a  x-2a,,)+Cnpc 
l<kSn 

.. 

for E < y -  I ,  

( 4  If t = b ,,'log log a:, then 

The proofs of (b) and (c) are analogous to those 01 1221; proof of 
theorem then follows as in [21]. 

R e m a r k  2.5.1. Kuelbs and Philipp 1181 show a strong invariance 
principle which implies LlL under stationarity assumption and 
a,, < ~n-('+~)(~+~/" for some 6 ,  6 > 0 and EIX,12f6 < a. 

For 6 = 2  it is Reznik's [22] assumption. We replace here a strong 
mixing rate assumption by mixing rate and cumulants assumptions. 

3. Empirical spectral density. In the following (X , ) , ,  is a fourth order 
stationary centered and strongly mixing real random process. We define 
empirical covariances R, (n) and periodogram I ,  of ( X i ) :  

1 n - k  

R k ( n )  =- 1 X j x j + , ,  k = 0, 1, ..., f l -1;  
n j =  

Let rk = EX,  XI, , ,  k = 0, f 1, f 2, . . . We make the following assumption : 

The spectral density f 'of (X,) is the even L2- function defined by 
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We define 

Note that Rk(n) estimates r,, and I,(g) estimates 

If - g  is odd, then 1 (g) = l , ( g )  * 0 and else for 

I 
.4(x)=+(g(x)+~(-x)) ,  iCy3=~(gI ,I , , (g i )=~,(g):  

so we only consider even functions g [ -TC,  TI]. 
Our aim is to study the functional asymptotic behaviour of I , (g ) .  We 

consider the Sobolev space H ,  for s > I :  
x 

I 

H, = [ g ~ ~ ' [ - n ,  n]; g( -x )  = g ( ~ ) ,  kSIg^jk)12 
I A =  l 

I with 

I This space is Hilbert with the norm 

The dual space H - ,  of H, relatively to the duality 

has norm ( 1 .  (I-,, 
00 

IITll-s = sup 11T(g)l: llglls $ 1; = {(T(e,)12+2 C k-T(ek)2]1J2 
k =  1 

with ek(x)  = C O S ~ X ,  k = 0, 1, ... 
We . - write B, = ( ~ E H , ;  llglls < 1) .  Note that I,, I E H - , .  Let Yj,, 

= X j X j + , - I . , .  We have 
PROPOSITION 3.1. If (X,),, is a fourth-order stationary process satisfying 

Assumptions (A.1) and (A.2), 
I 

13 

(A.2) d ( k )  = C lc (Yo,,, I;:,,)/ < y < 03 
I j =  1 

for some constant C > 0, k = 0, 1, . . . , 
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then 

EIII,,-Ill?, = Esup {lJ,(y)-I(g)12; g EB,). < C1/n 

+for some constant C , ,  i f  .s .> 1. 
Proof. i , , ( g ) - l ( g )  = 7, + T,+ T,  with g EB,, 

n - 1  

T, = 6 (0) A,,,, + 2 1 6 (kl A,,,,, where A,,,, = R k  (4 - ERk rn), 
k =  1 

n- 1 m 

T2 = . 2 - (E R, (n)  - r,) G(k) ,  T3 = 2 @(k)  YL 
k =  1 k = n  

n - l k  

T 2 = 2 x r k g ^ ( k )  and T 2  ITJIGzQ//J;;. 
k = l n  

From another hand, 

Remark s. 3.1 . l .  Leonov and Shyriaev's [l9J formula for products 
implies c(Y,, , ,  q,,) = c ( k ,  j ,  j + k ) + r ; + r j + r r j - k ,  hence. 

Assumptions (A.1) and (A.2) are satisfied if (A.l) is realized and C4 < CO. 

3.1.2. If (X,),, is strongly mixing with 
30 

A =  a i / ' 2 + 6 ) < ~  and E ~ X , ~ ~ + ~ % C O ,  
n =  0 

assumptions (A.1) and (A.2) are satisfied with 

PROPOSITION 3.2. If  (XJ tdY  is fourth order stationary strognly mixing and 
satisfies assumptions (A.1) and "C4 < 00" and one of the following: 

(a) i lc(i, j ,  k)l < cc, C, < rn and ( X , )  is stationary to  order 8, 
i J , k  

m 

(b) 1 a ~ i ( 4 f " < m  for some 6 ~ 1 0 ~ 2 1  with E ~ X ~ ~ ~ + ~ < C Q ,  
n= 0 

r then ,/ n ( I , ( g )  - I ( g ) )  conuerges weakly to  a centered Gaussian random ~ariable  
with variance avg)  for g E H ,  (see formula (*)) if a2(g) > 0. 



Cumrtlants and spectral density 

Proof .  n ( l , ( g ) - l ( g ) )  = A + B + C  with 
n 1 

n - 1  a - k  n 
C = 2 g ( k )  q,, for any I < -- 1. 

k=l j=l 2 

We note that EC2-< 4ny ljg11: liL'(s - I)-', EB2 < 412JlgJ1,2 E X t ( s -  1)- 
using c6mulants. Moreover A/& satisfies assumptions of the central limit 
result 2.3 under hypothesis (a), with the help of transformation formula for 
products of cumulants of 1191, and assumptions of the result from [lo] 
under hypothesis (b). The limit Gaussian variable of A/& has variance a; 
converging to  CJ' (g) for 1 + ca, where 

and 

are the cumulant spectra of fourth order [6]. 
Dalhaus's method [7] completes the proof. 
THEOREM 3.3. If the assun~ptions of proposition 3.2 are satisfied and s > 1, 

then the random sequence &(I,  - I )  E H - ,  cornerges weakly in the quotient 
space H - J N ,  to a Gaussian random variable Y with c o ~ a ~ i a n c e  T: 

n n 

r(g?g) =E(I.'(gN2 =2.lr[ j  g ( x ) g ( y ) f 4 ( x 1  -Y? y)dxdy+ 
-n  -n 

n 

+ 2  J g2(x)f ' ( x ) d x ] ,  g E H .  
- n 

Here N o  denotes the subspace ig EX,, r(g, g) = 0). 

R e m a r k  3.3.1. In the Gaussian case f, = 0, so that N o  = {O) iff is not 
zero a s .  

P r o o f .  The assumptions C, < oo and 1 r; < CC, k = 0, 1,  2,  . . . , show 
that 
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I 
i The covariance r satisfies / T ( g ,  g)l < G2 (s) IIg11; for some constant G (s) 
I only depending on s > I .  We can consider the completion H of W-, with 
i norm Jlg/lr = v/r(g, g) by the injection I: H + H -,, i (h)  (g) = T ( h ,  g). Let 

(I2,Jna0 be a complete orthonormal system for H. We see that 
I 

so Gini ([13], proof of lemma 3.2) shows that Y E H - ,  (with the help of 
Kolmogorov's inequality). 

Using de Acosta's method [I] we have to show that 4(1.- I) is Rattly 
concentrated because of the convergence of finite dimensional repartitions by 
proposition 3.5 because of linearity (lemma 3.3 of [13] makes use of it), 

Let p, be the orthogonal projection of H - ,  on F,, the closed-subspace 
spanned by jek; k > 11 .  We see that 

! E ~ ~ P ~ ( & ( I ~ , - I ) ) ~ ~ ? ~  < 211-s~d(~-1) -1 ,  
I 
i which completes the proof. - 
I 
I Let now 

We follow lines of the proof of [Il l ,  which is analogous to that of 
theorem 2.3 in the 1-dimensional subspace El of H - , ,  to show the following 

LEMMA 3.4. If 1 k lc(k)l < m, C4 < m, C ,  < cz and a, < Cn-', then 

with I; the projection of Y on E l ,  uniformly for 1 < nP for B < b < 1/10 such 

that z 8 1/12b. 

Proof .  For any 1 < nS the random sequence ( Z  ,,,, . . ., Z ,,, . . .) is strong- 
ly mixing with mixing coeflicient &, = 1 for fz < 1 and i, = E,,-,, else. For 
suitable functions f such that IIDj f d Ctc-j = 0, 1,  2, 3), we estimate - 
A = IEf (A,,, J, n)- f  (Z;)I so that L,,,, < Ct l e+  A )  . This computation is based 
on estimates like 

E llZ,,, + . . . + 2,,111?, < Const C, E 3  p2 
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It leads to 

put = 1 3 1 4 ~ ( b - 1 ) / 1 2  . w e get 

LEMMA 3.5 [9]. I f  E I X ~ ~ ~ + ~ ' < C O  for some O < 5 g 2 / 3  and 
a, < Const n-" with t > 2(1+2/iS), then, for any fi, Q > 0 such that TB > 1 +Q, 
P + Q < 6/(2 (2 + d)), we have 

with crl = Sup n-  li"IJA,,,JI-s. 
e 3 n  

Note that r r ,  < 1 = (4/(s - 1) )  C ,  . 
Write now n (I,, - I )  = All,[ + B,I,I + Cs,[ like in the proof of propositioti 

3.2; we see that E llB,,,,11?, < Const EX: 14 ,  E IIC,I,lIIZs < Const n l l - <  So 

11 
P, = P( M a x  - -  > c for nk = [2]: 

u k < n < 4 + l  

a, = , H log log rr cat1 be estimated by P, < Pt + P i  + P: for C = C ,  + 
+c,+c,, 

< Ct14 n; (log log nk)- < Ct14 e P k  (log k ) -  *, 
"k+ 1 

Pf C P(IICn,rll-s > C3 a,) < Ctek il-S(I~g k)-l. 
n = n k + l  

From another hand, we see like [9] that, for I < nf,,, 
7 

Pl ~P~IIAnk+,,~II- ,  2 Cl an,-20C,/nk.,)+n;:, (by 3.5) 

1 
c Z P  ( 7 ~ ~ ~ , + l , , ~ ~ - s  z c 1 / 2  \ +n;,~, for k z k,, 

\ f1k + 1 
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Choose C1 such that E exp ( I ( Y ~ ~ ? , / C ? )  < m, 1 = 1 (k) = @k with B < 1/10 
and p > l/(s - 1). We get, by Borel-Cantelli's lemma, 

THEOREM 3.6. J f  ( X J  'is an ath order stationary mixing sequence with 
C, < CO, a, < C0nL',-.t > 101 s > 11, 3,,, 

I lr , -I l l - ,  4 c U.S. 
log log n 

Note that condition z > 10 implies C, < CG and k lc (k)( < a. 
Let 1 < w f n. We see that 

IJI , - lJ j - ,  2 w-=I2 Max JR,(n)-r,l 
O q k d w  

and 
COROLLARY 3.7. Let ( X , )  be an 8fh order stationary mixihg sequence with 

or, < Con-' for some C, > 0, z > 10 and C ,  < oo. Then for s > 1 1  there is a 
constant C such thar, for 1 d w, < n, 

n'/' (log log n)- 'I2 W ;  Max jRk fn) - r,f d C a.s. 
n-rm Odkbw,  

Remark  3.7.1. The normalization goes to infinity if w ,  = na with a < 1 .  
Paper [2] gives an analogous of this result for linear sequences, where w ,  
= n2l3 with normalization will4 in place of w;"I2. 

COROLLARY 3.8. Let ( X , )  be an St'' order stationary mixing sequence with 
C , < m  a n d o l , d C , n - ' , z > 1 0 .  T h e q $ s > l 2 , 3 , , P ( O , ) = l , a n d  w ~ S l ~  
implies 

Proof.  We see that B, is a compact of H ,  if t + l  < s .  So there is a 
family g,, . . ., g,(,, €El( ,)  such that 
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I 

We show LIL for I , ( g i ) - I ( & ) .  If gi = a,e,, we write 
k =  0 

n 1 

n(Jr1 (gi)I($i) )  = C ( X f  -ri)  + 2 r] (Xj X j + ,  -rk) ak ] + A ,  
j= r k =  1 

with EA;f 4 Const, so that A,, ( n  log log n)- 'I' s-a 0 a.s. 
Theorem 2.5 shows that 

Now g +T1I2(g, g) is continuous on H ,  and we have 

n 
log log n 

If w cQ1 n a,, J/gl), < 1, and h E igl, . . . , gN,, , ]  is a11 E-neighbourhood of 
g, then we set 

1 

and get 
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