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Absrract. Given a finite state Markov process {X,), t 3 0, a 
global "driving noise" process is constructed on a larger probability 
space using non-standard analysis. 

Following ideas suggested by Kunita [3], forward and back- 
ward equations related to the Markov process are obtained. 

Given a finite state Markov process (X,), t 2 0, a global "driving noise" 
process is constructed on a larger probability space using non-standard 
analysis. The global driving process describes what happens at all times to all 
states of the process, and a particular realization of the Markov process is 
obtained by specifying a particular starting time and state; the evolution of 
the process from then takes place under the action of the driving noise. The 
driving process, therefore, plays a similar role to the diffusion term in a 
stochastic differential equation. Following ideas suggested by Kunita [3], 
forward and backward equations related to the Markov process are obtai- 
ned. 

The forward equation is derived in the next section, and does not need 
the global driving process. The formulation of the backward equation needs 
something like a global process; the backward equation is derived in section 
3, assuming the basic properties derived from the global process that is 
constructed in section 4. 

In this section we describe the finite state Markov process and derive 
some related "forward" equations. Write ei = (0, 0, . . ., 1, . .., 0)' for the Ch 
unit column vector in P. Consider a Markov process {X,), t 2 0, defined 
on a probability space (a, 9, 2') whose state space is S = (el ,  ..., e , ) .  Write 
pi = P ( X ,  = e , ) ;  we shall suppose that p, = ( p : ,  . . . , pf)' satisfies the forward 
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equation dp,/dt  = Atpt, where the entries of the matrices A, are uniformly 
bounded. The transition matrix associated with A, will be denoted by @(r, s), 
SO 

and 

where 1 is the q x q  identity matrix. In fact, if @It, s) = (rpij(t, s)) then 
qij(t, s) = P{X, = eilXs = ej) for t > s. 

Consider now a Markov process with transition matrix A, that starts in 
state e at time s, and write X:" for its state at the time t 2 s. Then E [X:'] 
= aj ( t ,  s) e, and, more generally, 

(2.3) EfX:"(X".'] = @(t, es)Pie for s < u < t .  

Write = a (X;': s 6 u < t] and define a process N:(e) by 

Then we have the following "forward" equation for X:" (in t): 

L E M M A  2.4. For t > s the process (N:(e)] .  is a $ martingale. 
Proof.  Let t 2 s and h 2 0; writing N,  for N: (e) we have 

Then 

E I N , + ,  - N,! a = E [N,+, - N,1 XFe] (by the Markov property) 

= O  (by (2.1)). 

Remark  2.5. A scalar function of XFe can be represented by a row 
vector f(t)  =(fi(t), . . . ,A(  t)), SO that f ( t ,  XFe)= q( t ) ,  X;'), where ( ) de- 
notes the scalar product in Rq. Similar calculations establish the following 
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LEMMA 2.6. Suppose (the cornponenls o f )  f ( t )  are disferentiable in t .  Then 

where M,,, (f) is a forward 3 martingale (in t). 

3. BACKWARD EQlJATlONS 

In this section we derive a backward equation for XFe; i.e, an equation 
that describes the behaviour of this random function as s decreases over 
[O, t ]  with t fixed. To do-this, we must have a representation of all the 
processes- XSle on a single probability space D = (Q, 9, P )  say. The joint 
behaviour of these processes will, of course, affect the backward equation. 
We will obtain a reverse martingale description of XFe under the following 
natural assumptions on the joint behaviour. 

(a) Consistency. Suppose that s < u, and X",. = e'. Then we require the 
future behaviour of X"le for t > u to be the same as XU*='; i-e., for t 3 u, XFe' 
= XFe. Thus we impose the condition 

s,e 

(c) XFXu = X:" for all e ,  and s G es < t .  

(b) Idepndeace d the future. We assume that 

(I) X:' and X::" are independent, for all e, e' and s < u < t d t.. 
The intuition underlying these assumptions is as follows. Given a space 

L! carrying all the processes X"', it is natural to imagine some underlying 
driving force that determines their behaviour. Specifically, we envisage the 
jumps from X;" to X:e to be given by a random function g , , :  S + S  such 
that P ( g , ,  (ei) = e j )  = cpji (u, t ) .  Then we would have 

Xie = g , ,  (XFe) for all e; s c t < u .  

From this the consistency condition (C) follows immediately. 
The Markov property means that g, . ,  should be independent of the past 

(i.e. what has happened before time u) and the future (i.e, what will happen 
after time t). This then gives the independence condition (I). 

In  the next section we will describe a construction of a space $2 carrying 
processes Xens for all e, s, satisfying (C) and (I), and functions g, ,  as described 
above. We shall also show that there is a process g, = limg,, such that 

S T t  

The process g, can be thought of as a gremlin who at each time t, 
independently of past and future, tosses a coin to determine independently 
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for each possible state where to jump to at time r. We shall see that g, is an 
analogue of the driving white noise db, and g,,, is an analogue of the 
difference b, - b, in stochastic integration. 

Let us now assume that we are given a space W carrying processes Xse 
for ail s, e. To formulate our backward equation, we define 

. X; .= {x:'"~, . . . , xfge3 = matrix with columns eei. 
Then X:,' = Xs e for a 1  e.  Notice that E (X") @ (t , s). 

. It is easy to see that the consistency condition (C) is equivalent to 
-. -- K1> X ; =  XYX; for all ~ < e r g  t .  

Now define the a-algebras 9; by 8 = a (Xi: s < u ,< v B t ) .  Then we 
have the following backward equation: 

LEMMA 3.1.  Assume conditions (C)  and ( I ) .  Fix t ;  for s 6 t define the 
process 

1 

Then @ is a backward .Ft martingale. 
Proof.  Let u .< s < t .  Then 

t 
8 

E{R-%IE) = E(X;-X:- \ X ~ A , d u ) ~ )  

S 

= X s E ( X , " - I -  fX:Audul/F (using (C')) 
L' 

(since Xi is independent of if z < s) 

As in Lemma 2.6 we can prove 
LEMMA 3.2. Suppose that f ( t ,  e)  is a differentiable, scalar function given as 

in Remark 2.5. Then 

where fi,,(f) is a backward martingale (in s). 
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4. CON-STRUCTION OF THE GLOBAL PROCESS 

In this section we use the methods of nonstandard analysis to construct 
processes Xs with the properties described in the previous section. We shall 
also describe the processes g,., and g, discussed there. We assume given and 
fixed an w,-saturated nonstandard universe, as for example in El]. (This 
reference should be consulted for background.) 

Fix an infinite natural number H, and let T be the discrete time 
set T = ik /H: 0 6 k < H z ] .  We use symbols g t, and _u to range over ?: and 
write dl = H - l .  

Let 11 = SS = l(e,,, ej;; ..., ?): j , ,  ..., j,, E 11, ..., 41). 

The'gremlin of the previous section will choose an element il from A at 
each f G cs > 0. Thus we define (internally) LI = AT-'''. 

We wish to put a n  internal probability measure v on G. Define, for each 
t > 0, a probability v, on A by - - 

Then define v on A2 by 

Let *d be the internal algebra on 52 consisting of all (internal) subsets of 
52. Then on the space (a, .d, v )  we have internal processes x3e - for 0 G  s G  1 and 
e ES as foIIows: 

It is clear from the construction that 

LEMMA 4.1. v ( : -S~~  = ejl YiPe - = ei) = cpj,iQ, _u) $1 2 t6 2 S. 

. Moreover: 
LEMMA 4.2. For all e, if s d _u G t ,  then for all w, 

LEMMA 4.3. 've and cpe' are independent for all e, e' and i G  < 1 < v. 
-- 

The number of jumps in each path of these processes is bounded by the 
internal process NO, w) defined by N ( 0 ,  o) = 0 and 

0  if wO+dj )  = 1 ,  
A N @ + A f ,  w)  = N b + A t ,  o ) - N U 7  w) = 

1 otherwise. 

(Here r = the identity function = ( e l ,  . . ., e,)). 
. The behaviour of N(Z) is given by the next lemmas. 
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I L E M M A  4.4. There is an internal function (k,),,05 ,finitely bounded, with 
I - - 

v ( A N C f ) = O ) =  1-k,Ajfor u l i1>0 .  
! 
! Proof.  By transfer of standard theory 

t + q  

# @ + A I , L )  = I + -  1 A , O [ U , I ) ~ U .  
t - 

Thus qii @ + A t ,  1) = 1 - ltni At ,  where - 6 K, a finite uniform bound on 
the entries of A,. Now 

for uniformly bounded k,.  (In fact kt ,< qK + 1) .  
I Now we can prove h e  following 

LEMMA 4.5. ( a )  FOP _S > 0 Iet -IW, - = k, - dl. Then for finire > 0 and 
1 Qs 

P E N  

(4.6) v ( N @  = p) = Mfexp( -MB) /p ! .  - 

(b) More generally, writing 
I 
I 

I 
I MA," = M27M,= C k f A l ,  
4 u_ y <s 

the11 for finite _u cs and p 

v(Nb)-A'N(_u = P )  2 M [ l l e x ~ ( - M , , ) / ~ ! .  

Proof .  (a) Fix _s = LA1 > 0, finite. Then 

Now if 1 is finite, this is infinitesimal, as is the right-hand side of 4.6. So 
we may assume that L is infinite. 

Examining expression (4.7) we see that 

P n ( 1  -kt .  dt)-' 2 1 
-J 

for a11 0 <I1 < ... ( 1 ,  Gs, 
i= 1 
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and 

Thus 

We now show that R = 0, where 
- - 

.... = A + R ,  say. 

If this holds, we are done. 
The expanded product on the left of (4.8) has LP terms, of which 

L!/(L- p)! are accounted for in A. Thus R consists of LP - L!/(L- p)! terms of the 
P 

form n kLi At with each ti 6 3. So, if k is a uniform finite bound for k,, we 
i -  l 

have 

since L is infinite. 
The proof of (b) is identical. 
Now let P = v, = the Loeb measure on 52 given by v, and let 9 = the 

Loeb a-algebra on 52 (= the Pcompletion of ~(4). We also put on Q the 
right continuous filtration (FJr3, defined in the usual way, 

where A'= P-null sets, and .d, =the internaI algebra generated by 
~w(_u) ,  -U <s; .  Let Q = ( a ,  9, (.F~),~,, P). 

COROLLARY 4.9. N(3)  is ,finite for all .finite 3, a-s. (P). 
Proof.  We have 

m 

P(N(s) is finite) = 1 P(Nb) = p) 
p= 0 

Now we can define a standard process 4 from N,, in a manner identical 
to the construction of a Poisson process described in [I]. 
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Defini t ion 4.10. For t € R C ,  (a) n, = supN(8) (SO n: R+ X Q  
s Z t  

-'N v tm ;); (bj m, = O M ,  for a .s t .  
Then m, = 0, m, is &creasing, continuous, and m, 6 kt, where k is a 

bound for k, .  
We have, by routine techniques using lemmas 4.5 and 4.9, and the 

principle of overflow : 
LEMMA 4.11. (a) n, is right continuous, and adapted to Fl, with increments 

t ~ - t t ,  independent of Pt when u > t.  
(b) P(n, = p) = n ~ e - ~ / ~ ! .  
More generully, 

- 
{c) P (nu - n, = p) = mt,, e mu*'/p! where mu,, = mu - m, far u 2 t. 
Finally, before defining the processes X;,', we have the following facts about 
the jumps of q. Let An, = n,-n,- (where we define no_ = 0). Then 
, LEMMA 4.12. (a )  For each ,fixed t, An, = 0, a.s. 

(b) Almost surely in 52, A+ < 1 for all t. 

Proof.  (a) Follows easily from 4.11 (b). 
(b) It is sufficient to show that this holds on each time interval [O, p]  for 

each p EN; faking p = 1 ,  for example, we have 

4 
P(dn, 2 2, somet < 1 )  = P ( n  U Inj,q-n(j -,,,, 3 2))  = P ( n  A,), say. 

qdy j =  1 q d  

Now P(n , -  n, < 1 )  = e-"",*(1 -I- mu,,) 2 e-k(t'-*)(l  + k(u-t)). Thus 

and we are done. 
Remarks.  1 .  Lemma 4.11 shows that n, is a time changed Poisson 

process; specifically, putting c, = sup lu: m, < t ] ,  co = 0, we have 6 = nc, is a 
Poisson process with rate 1 .  The facts in Lemma 4.12 follow from this also. 

2. In terms of the process N,, Lemma 4.12 (b) means that almost surely 
both N,,  and all the processes Y~' jump at most once on every monad. It is 
useful 6 fix a set Q1 of full measure on which n, is finite and An,  < 1 for all 
L. 

The processes X:' can now be defined on 62 as follows: 
Def in i t ion  4.13. Let t 3 s  2 0. We have 

X,"" = Jim ve (= ve for all sufficiently large _u a s, _u z t ) .  - - 
Et.v_t 

u_:s,v_:t 

This makes sense on the set 0, by Lemma 4.12 and the remark 
following it. 
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The following facts about the processes Xf*' are routinely established: 
LEMMA 4.14. (a) On 12,, for all s, e, (i) X:' = e ;  (ii) XSne is right 

continuous, and has only finiteiy many jumps on each .finite time interval; (iii) 
X;' is right continuous in s, for fixed t .  

(b) For each t 3 s, und all e, X;re = gSpe ull _S 2 S, f M t,  a.s, 
The next result is the main point of this section. 
THEOREM 4.15. The processes Xs" ure Ft-Markov, with transition proba- 

bilities given b y  @, satisfying the consistency and independence properties (C) 
and ( I )  on Q, for all s, t, u, v. 

Proof.  The Markov property follows routinely from the following 
observat'ions : 

(1) for A E F , ,  there is a BE&* - for some 1 s f  with AAS null [ 2 ] ;  
(2)  for any s < t < u, if 3 = s, 1 2 t, u cz u, then 

which is an immediate corollary of Lemma 4.lya); 
(3) Y:" is (.dJ Markov, by construction. 
~ r o m  (2) we see that 

~1x2~ = ejl ~ , s . ~  = ei) = 'p jSi  (a, 1) (for t = t < u * _u) 

- 
= cpji(u, t ) ,  by continuity. 

Conditions (C) and (I) for the processes X"" follow immediately from the 
corresponding properties of Y!.' (Lemmas 4.1 and 4.2). 

Remark.  Condition (C') lie. Xi = X; X w o l d s  for all s < u < t and all 
o €0, (see remark following Lemma 4.12) This completes the construction 
of the global processes X"' needed for (j 3. 

We conclude this section with a brief discussion of the processes g,,, and 
g, described intuitively in # 3. We can immediately define G , , ( W ) E A  -- for 
1 2 s  by 

G,,, - - = 1 ,  GL+ 4,s(m) = a (i + 4)oGt,,. -- 

Clearly we have xs9' - = G,,(e), and in fact putting xz - = ( ~ " l ,  - . . ., ~"'q) ,  

we have 

so Kz - and G,,, - - are essentially the same thing. Likewise we may define g,,, for 
t 2 s. by 

s t , ,  = lim G , ,  - - ( = G,,, - - for sufficiently large _u z s and g z t ) ,  
KT,?! 

u _ : s , t - t  
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which makes sense on the set $2,. Then Xf" = g,,,(c) and Xr = g, , , ( i ) ,  so Xi 
and g,,, are essentially the same. 

Clearly we have 
LEMMA 4.16. On a,, (a) gS,, = I ;  (b) g,, = g,,,g,, for t 2 u 3 s; (c) X;e 

= g,,, (X:e).  
Finally, on the set a, we may define the driving noise (or. gremlin 

process) g, by 

- The following is immediate from the definitions and earlier lemmas: 

LEMMA 4.17. On a,, (a) qf = lim g,,, = gt,,- = g t + , t - ;  (b) XFe = g,(XF?) 
s-f- 

(or X: = g, (X,-)) f' t > s. 
Equation (b) is an analogue of a stochastic differential equation. 
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