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DRIVING NOISE OF A FINITE STATE MARKOV PROCESS
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Abstract. Given a finite state Markov process {X,}, t >0, a
global “driving noise” process is constructed on a larger probability
space using non-standard analysis. .

Following ideas suggested by Kunita [3], forward and back-
ward equations related to the Markov process are obtained.

1. INFTRODUCTION

Given a finite state Markov process {X,}, t > 0, a global “driving noise”
process is constructed on a larger probability space using non-standard
analysis. The global driving process describes what happens at all times to all
states of the process, and a particular realization of the Markov process is
obtained by specifying a particular starting time and state; the evolution of
the process from then takes place under the action of the driving noise. The
driving process, therefore, plays a similar role to the diffusion term in a
stochastic differential equation. Following ideas suggested by Kunita [3],
forward and backward equations related to the Markov process are obtai-
ned.

The forward equation is derived in the next section, and does not need
the global driving process. The formulation of the backward equation needs
something like a global process; the backward equation is derived in section
3, assuming the basic properties derived from the global process that is
constructed in section 4.

2. FORWARD EQUATIONS

In this section we describe the finite state Markov process and derive
some related “forward” equations. Write ¢, =(0, 0, ..., 1, ..., 0Y for the i*
unit column vector in R? Consider a Markov process {X,}, ¢t > 0, defined
on a probability space (Q, %, P) whose state space is S = {e,, ..., e,}. Write
pi = P{X, = ¢;}; we shall suppose that p, =(p}, ..., p?) satisfies the forward
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equation dp,/dt = A, p,, where the entries of the matrices A, are uniformly
bounded. The transition matrix associated with 4, will be denoted by @(z, s),

SO

2.1) ¢Mi((1+s) =A,P(,s), @P@E,s5)=1,
and
22 dqsc(ii’ Yo b, A, D=1,

where 1 is the gxgq identity matrix. In fact, if ®(t,s) = ((p, ;(t, s)) then
o;;(t, )= P(X, =¢| X, =¢) for t >s.

Consider now a Markov process with transition matrix A, that starts in
state e at time s, and write X{*¢ for its state at the time ¢ > s. Then E [X}*]
= @(t, s)e, and, more generally,

(2.3) E[X5%¢|X5¢] = ®(t, ) X3¢ for s<u<L.

|
|
: Write 4 =0 (X% s<u <1t} and define a process Ni(e) by

t

Ni(e) = X;*—e—[ A4, Xy du.

Then we have the fdllowing “forward” equation for X7¢ (in 1):
LemMA 24. For t > s the process {Ni(e)} is a % martingale.
Proof. Let t =2 s and h > 0; writing N, for Nj(e) we have

t+h

Npon=N, = X3p— X~ [ A, X3¢ du.

t
Then
E[N,+s— N/ %] = E[N,.,—N,| Xi*]  (by the Markov property)

t+h

=B(t+h )X —X*— [ A, 0@, ) Xdu  (by (23)
t

=0 (by 21).

Remark 2.5. A scalar function of X% can be represented by a row
vector f (1) = (f1(¢), ..., f,(2), so that f(t, X}°) = {f (1), X7°), where { ) de-
notes the scalar product in R Similar calculations establish the following
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LemMaA 2.6. Suppose (the components of ) f (t) are differentiable in t. Then
ft, X3 —f (s, &) = [ " (W), X5y du+ [<f (u), A, X35> du+ M, ,(f),

where M,,(f) is a forward % martingale (in t).

3. BACKWARD EQUATIONS

In this section we derive a backward equation for X§¢; i.e. an equation
that describes the behaviour of this random function as s decreases over
[0, t] with ¢ fixed. To do-this, we must have a representation of all the
processes’ X*¢ on a single probability space 2 =(Q, &, P) say. The joint
behaviour of these processes will, of course, affect the backward equation.
We will obtain a reverse martingale description of Xi¢ under the following
natural assumptions on the joint behaviour.

(a) Consistency. Suppose that s <u, and X}° =¢'. Then we require the
future behaviour of X** for t > u to be the same as X*'; i.e, for t > u, X*¢
= X7 Thus we impose the condition '

(©)  x»X" X% for all e, and s<u<t.
(b) Independence of the future. We assume that

(D X3¢ and X%* are independent, for all e, ¢ and s<u <t <v.

The intuition underlying these assumptions is as follows. Given a space
 carrying all the processes X™, it is natural to imagine some underlying
driving force that determines their behaviour. Specifically, we envisage the
jumps from X7° to X3¢ to be given by a random function g,,: § =S such
that P(g,,(e) = e;) = @;;(u, 1). Then we would have

X3¢ =g,,(X%) for all e;s <t <u.

From this the consistency condition (C) follows immediately.

The Markov property means that g, , should be independent of the past
(i.e. what has happened before time u) and the future (i.e. what will happen
after time t). This then gives the independence condition (I).

In the next section we will describe a construction of a space §2 carrying
processes X for all e, s, satisfying (C) and (I), and functions g, , as described
above. We shall also show that there is a process g, = limg, such that

STt

Xpe = g,(X39).

The process g, can be thought of as a gremlin who at each time i,
independently of past and future, tosses a coin to determine independently
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for edch possible state where to jump to at time t. We shall see that g, is an
analogue of the driving white noise db, and g,, is an analogue of the
difference b,—b, in stochastic integration.

Let us now assume that we are given a space £ carrying processes X>¢
for all s, e. To formulate our backward equation, we define

X5 = (X1, ..., X7 = matrix with columns X,

Then X7¢ = Xfe for all e. Notice that E(X7) = ®(t, s).
It is easy to see that the consistency condition (C) is-equivalent to

) e X5 =XvXY  for all s<u<t.

Now define the g-algebras %% by %5 =a{X%: s<u<v<t}. Then we
have the following backward equation: :

LemMa 3.1, Assume conditions (C) and (). Fix t; for s <t define the
process

t
Ne = X;— [ X' A, du.

Then NS is a backward F: martingale.

Proof Let v <s<t. Then
1%

E(NY— N¢| #3) = B(XP— X3 — [ X! A, du| F3)
= XSE(X2—1— [ XY A, du| 7 (using (C))

= X:(B(s, v)—I— [D(s, u) 4, du)

(since X' is independent of % if 7 < 5)

= X; (di(s, v)_1+}%§(s,‘ u)du) (by 22)
=0.

As in Lemma 2.6 we can prove

LeEMMA 3.2. Suppose that f (t, e) is a differentiable, scalar function given as
in Remark 2.5. Then '

S XP) =S €)= = [ ), XEYdu+ [ <F (), XS du+ M, (f),

where 1\718,, (f) is a backward F; martingale (in s).
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4. CONSTRUCTION OF THE GLOBAL PROCESS

In this section we use the methods of nonstandard analysis to construct
processes X} with the properties described in the previous section. We shall
also describe the processes g,, and g, discussed there. We assume given and
fixed an w,-saturated nonstandard universe, as for example in [1]. (This
reference should be consulted for background.)

Fix an infinite natural number H, and let T be the discrete time
set T= {k/H: 0 < k < H?}. We.use symbols s, £, and u to range over 7, and

- write At = H™ 1.

Let A =8%= (C T et i S, ).

The gremlin of the previous section will choose an element A from A at
each teT, t > 0. Thus we define (internally) Q = A7~

We wish to put an internal probability measure v on Q Define, for each
1> 0, a probability v, on A by

q

STEIRRRE] ejq) =l__[ (Pji,i(L L_AL)-

v (e

Then define v on Q by
v({o}) = [T v(lo®}).
t>0

Let ./ be the internal algebra on @ consisting of all (internal) subsets of
Q. Then on the space (2, ./, v) we have internal processes ¥;>*for 0 < s <tand

_ecS as follows:

Yeme, Y= ol+A)(5).

It is clear from the construction that

LemMMma 4.1. v(Y* =¢;| Y* = e) = (p'j,i(g, wiftzu=s
Moreover:

LemMma 4.2. For all e, if s <u <L, then for all o,

Y;g,e Y Ys ,€

LEMMA 43.Y7® and Y‘e are mdependent for all e, & and s<u<r<vw.
The number of j jumps in each path of these processes is bounded by the
internal process N (t, w) defined by N(0, w) =0 and

10 if w(t+41) =1,
0= N+, @)~ NG, o) - .
AN(+4L, o) = N(+4t, ) =N@ o) =9, .

(Here 1 = the identity function = (e, ..., €)).
The behaviour of N(t) is given by the next lemmas.
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LemMA 44. There is an internal function (k). finitely bounded, with
V(AN(t) = 0) = 1=k, At for all 1 > 0.
~ Proof. By transfer of standard theory

tta

D(t+4t,)=I+ | A, P(u,1)du.

e

Thus @ (t+4t, 1) = 1-1,; At, where [; < K, a finite uniform bound on

the entries of A,. Now

q q -
vAN@®) =0)= [] @i+ 45, ) = [T(0—1; ) =1~k At
i=1 i=1 '
for umformly bounded k,. (In fact k, < qK+1).
"Now we can prove the followmg

Lemma 4.5. (a) For 5>0 let My= ) k, Ar Then for ﬁmte >0 and

<5

PEN
46) v(N(s) = p) x MEexp(~ MJ/p!.
(b) More generally, writing
M, =M,—M,= Y ki,
u<t<s

-then for finite u <s and p

V(N(ﬁ)—N(Ll) = p) X Mgp,gexp(_Mg,g)/p!'
Proof. (a) Fix s = L4t > 0, finite. Then

@7 V(N =p)= Y v(A,-(AN(L,-)>=1)A(AN(_) 0)

= ¥ [Hk At(1—k, 4™ TT (1 -k, 4)].

0<1; <... gp s i 1<g

Now if I is finite, this is infinitesimal, as is the right-hand side of 4.6. So

we may assume-that L is infinite.

Examining expression (4.7) we see that

14
[T(1—k, 4" =1 for all 0 <ty <... <1, <s,
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and

(1—k, 41) = exp(— Y, k, 4r) = exp(— M,).

1<y %5

Thus

v(N(s) = p) = exp(— M,) > [] kAt

0<t) <...<t,Ssi=1

-We now show that R =~ 0, where

. »
4.8) . M?=(Y k Aty = p! Y IT k, At+R
) - 1<s 0<ty <..<t,<si=1 -
= A+R, say.

If this hblds, we are done. ‘
The expanded product on the left of (4.8) has L? terms, of which
L\/(L—- )' are accounted for in A. Thus R consists of L? — L!/(L— p)! terms of the

form H k. At with each 1; < s. So, if k is a uniform finite bound for k,, we
i=1 . .
have

L(L-1) ..(L—p+1))~0

sy » .
R < (L2~ LY(L~p))k? (—L-) = (ks) (1_- T

since L is infinite.

The proof of (b) is identical.

Now let P = v, = the Loeb measure on Q given by v, and let & = the
Loeb c-algebra on Q (= the P-completion of o (=/)). We also put on 2 the
right continuous filtration (#,),», defined in the usual way, -

F=0() LYV A,
st
where 4" = P-null sets, and o/, =the internal algebra gcnerated by
{(D(l_t), u ‘*<-§]| . Let 2 = ( (/'t)t>0s )
CoroLLARY 4.9. N(s) is finite for all finite s, as. (P).
Proof. We have

a0

(N(s) is ﬁmte Z (N(ﬁ) = p)

= exp(—°M)) i *MYp! = 1.

p=0
Now we can define a standard process #, from N,, in a manner identical
to the construction of a Poisson process described in [1].
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Definition 4.10. For teR*, (a) n =supN(s) (so n: R* xQ

s®t
—NuU {©}); (b) m, = °M, for s ~t.

Then my =0, m, is increasing, continuous, and m, < kt, where k is a
bound for k,.

We have by routine techniques using lemmas 4.5 and 49 and the
principle of overflow:

LemMa 4.11. (a) n, is right continuous, and adapted to F,, with increments

n,—n, independent of %, when u > t.

(b) P(n,=p)=mPe ™/pl.
_ More generally,
(¢) P(n,—n, =p)=mb.e "™/p! where m,, =m,—m, for u>t
Finally, before defining the processes X;¢, we have the following facts about
the jumps of n,. Let An, =n,—n,_ (where we define ny,_ = 0). Then
Lemma 4.12. (a) For each fixed t, An, =0, as.
(b) Almost surely in Q, An, <1 for all t. .
Proof. (a) Follows easily from 4.11 (b).
(b) Tt is sufficient to show that this holds on each time interval [0, p] for
each peN; taking p =1, for example, we have

. q
P(dn = 2,somet < 1) =P(() U njg—ng-1ye = 2}) =P(N A4,), say.

qeN j=1 qeN _
Now P(n,—n < 1)=¢ "™ (1+m,) > e “ 9(1+k(u—1). Thus
P(4,) < q(l—e"*a(1+k/g) =0 as g —oo,

and we are done.

Remarks. 1. Lemma 4.11 shows that n, is a time changed Poisson
process; specifically, putting ¢, = sup {u: m, <t}, ¢, = 0, we have fi, = n, isa
Poisson process with rate 1. The facts in Lemma 4.12 follow from this also.

2. In terms of the process N,, Lemma 4.12 (b) means that almost surely
both N,, and all the processes Y*¢ jump at most once on every monad. It is
useful to fix a set @, of full measure on which n, is finite and An, < 1 for all

L

The processes X can now be defined on Q as follows:
Definition 4.13. Let t > 5 > 0. We have

Xp¢= hm Yp® (= YP® for all sufficiently large u xs,
iy v

e
=

H' 1=
fa—l
e

- This makes sense on the set 2, by Lemma 4.12 and the remark
following it.
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The following facts about the processes X3¢ are routinely established:

Lemma 4.14. (a) On Q,, for all s, e, (i) X3P =e; (i) X* is right
continuous, and has only finitely many jumps on each finite time interval; (iii)
X%¢ s right continuous in s, for fixed t.

(b) For each t > s, and all e, X;* =Y?° all sxs, t ~1, as.

The next result is the main point of this section.

TueOREM 4.15. The processes X*>¢ are F,-Markov, with transition proba-
bilities given by ®, satisfying the consistency and independence properties (C)
and (Iy on @, for all s, t, u, v.

Proof. The Markov-property follows routinely from the following -
observaftions:

(1) for Ae#,, there is a Bes/, for some ¢ ~t with A4B null [2];

(2) for any s <t <u, if sxs, Lt u=u, then

P(Y]* = ¢;| 1) = P(X3° = ¢}l X¥9),
which is an immediate corollary of Lemma 4.12(a);

(3) Y is (/) Markov, by construction.
From (2) we see that

P(X5* = )| X3° =) = °0;;(u, 1) (for t xt <u =y
= (p,, (u t), by continuity.

Conditions (C) and (I) for the processes X*¢ follow immediately from the
corresponding properties of Y*¢ (Lemmas 4.1 and 4.2). -

Remark. Condition (C') (ie. X5 = X¥ X3) holds for all s <u <t and all
w e, (see remark following Lemma 4.12). This completes the construction
of the global processes X*¢ needed for § 3.

We conclude this section with a brief discussion of the processes Ju, and
g, described intuitively in § 3. We can immediately define G, (w)eA for
t=s by

Gys =1, Gy 45(0) = 0(t+ 410G, .
Clearly we have Y° = G, (e), and in fact putting ¥* = (Ys 1, yf"’—q},
we have
Y;ﬁ = G, (I) = G4ley, - ) €)

so Y? and G, are essentially the same thing. Likewise we may define g, ; for
t=s by

gos = lim G,,(=G,, for sufficiently large u ~s and 1 % 1),
ut,vf T o

uxS,u=xt
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“which makes sense on the set ;. Then X7* =g, .(e) and X} =g, ,(I), so X;

and g, are essentially the same.

Clearly we have

Lemma 4.16. On Qy, (a) gys =1; () G5 = Geugus for t 2 u>=s; (c) X7°
= Gru(X3°).

Finally, on the set Q; we may deﬁne the driving noise (or- gremlin
process) g, by

g.= lim G,,.

= =

A
xtxp

The followmg is 1mmed1ate from the deﬁmtlons and earlier lemmas
Lemma 4.17. On 2, @) g, = lim 9t =gt,rj =Gi+,-: (b) X7¢ =g, (X)

8-t —
(or X =g,(X,-) for t>s.
Equation (b) is an analogue of a stochastic differential equation.
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