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INTEGRAL REPRESENTATION
IN THE SET OF TRANSITION KERNELS *

BY

HARALD LUSCHGY (RHEINE)

Abstract. We prove a Choquet-type representation and unique-
ness theorem for noncompact convex sets of transition kernels
between a measurable space and a separable. .metrizable Radon
space. Applications to sets of equivariant kernels and kernels with
prescriped values are given. Furthermore, in the framework of
statistical decision theory the representation is applied to sets of
decision rules.

1. Introduction. Let (X, #(X), u) be a probability space and let Y be a
separable metrizable Radon space equipped with its Borel g-algebra £(Y).
We will address ourselves to the study of topological and geometrical
properties of sets of transition kernels from X to Y. Our main goal is to give
a Choquet-type integral representation in closed convex sets 2 of kernels
(Section 2). To this end the set of all kernels is embedded in a locally convex
space of bilinear forms on L'(u) xC(Y). Then each kernel 6€2 is the
barycenter of a probability measure ¢ on the extreme boundary ex 2 of 2 in
the following sense: ¢ is defined on the cylinder g-algebra on ex %2 and

[e: @0 (x)du(x) = [ [e.®¢(x)du(x)de(p)

X ex2 X
holds. In particular, ex 2 # @ if 2 # (). Conversely, the barycenter of each
probability measure on & is contained in & (Theorem 2.5). Such results are
known for the case where ¥ is the set of all kernels (see the classical paper of
Wald and Wolfowitz [23] and [1], [11], [12], [20]). Related results for
special sets of kernels occur in [25-287]. In Section 3 it is shown that the
extreme boundary of the sets in question is measurable (Proposition 3.2)
and an analogue of Choquet’s uniqueness theorem holds provided L!(y) is
separable (Theorem 3.3). :

In Section 4 the above representation is applied to the set of all
transition kernels which are equivariant with respect to the action of a
group. The results of this section, except for Theorem 4.1, specify indications
of Ferguson ([7], Chap. 4.2).

* This research was supported by the Deutsche Forschungsgemeinschaft.
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The representation applied to sets of kernels with prescriped values
yields an extension of Strassen’s ([22], Theorem 3) generalization of the
Blackwell-Stein—-Sherman—Cartier theorem (Corollary 5.2). In a statistical
framework the representation also implies that the risk function of a decision
rule, equivariant rule, Bayes rule is a mixture of the risk functions of
nonrandomized rules, nonrandomized equivariant rules, nonrandomized
Bayes rules, respectively (Section 5). '

Now we fix some notations and recall some definitions. Let (X, #(X))
and (Y, #(Y)) be measurable spaces. If Y is a topological space, then %(Y)
denotes its Borel o-algebra. X xY is always equipped with the product o-
algebra Z(X)®4%(Y). Let M(Y) be the space of all signed finite measures on
4(Y) and M3 (Y) the subset of all probability measures on #(Y). M. (Y) is.
equipped. with the g-algebra X (M (Y))- generated by the functions
{Q—Q(C): CeA(Y)}. A transition kernel § from X to Y is a measurable
map &: X — M3 (Y). We denote by .# the set of all transition kernels from
X to Y and by .4 the subset of all kernels x i—e¢,,, arising from measurable
maps @: X =Y. ¢, is the point measure at yeY. If (Z, #(Z)) is another
measurable space, 4% is the set of all kernels from X to Z. For each
veM(X) and J € 4 let v®J denote the mixture (&, ®3(x)dv(x) in M(X x Y),

X
and v(d) the mixture [ 5(x)dv(x)in M(Y).If P e M} (X), denote by P, the inner
X
measure formed from P. 4 (X), stands for the universal completion of % (X).

A separable metrizable space is universally measurable (u.m.) if it is
universally Borel measurable in its completion with respect to some and
hence any metric defining the topology. It is well known that a separable
metrizable space is u.m. if and only if it is a Radon space. A measurable
space is u.m. if it is isomorphic to a separable metrizable u.m. space with its
Borel o-algebra. A Hausdorff topological space is Souslin if it is the conti-
nuous image of a Polish space; it is Lusin if it is the continuous injective

- image of a Polish space. A measurable space is Souslin if it is isomorphic to a

Souslin topological space with its Borel ¢-algebra. Every Souslin measurable
space is u.m. ([8], III. 2.3, and [21], p. 124, Corollary 1). Note that there are
Hausdorff topological spaces Y such that the measurable space (Y, #(Y)) is

_Souslin without the topology being Souslin ([4], p. 9).

2. Integral representation and measure convexity. Fix a nonempty subset
P of MY (X). We denote by L(%) the band generated by B in M (X). Subsets
2 of M are always equipped with the o-algebra X(Z) generated by the
functions {8 —v(0)(C): ve(P), Ce#(Y)). Note that Z(2) =@ NI (M)
holds. By the monotone class theorem, X (%) is also generated by the
functions .
{0~ [ udv®s: veL(P), ueB(X xY)},

X xY
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where B(X xY) denotes the space of all bounded measurable real-valued
functions on X x Y. A transition kernel é € .# is said to be represented by
0eM (D), @ < M, if -

PR6 = ‘fP®(de((p) for every PeM’ (X) N L(P).
P

A convex subset 2 of .# is said to have the integral representation
property if for each kernel €% there is a measure geM? (ex @) which
represents 4. For .4 we obviously obtain ex # = .4 provided #(Y) is
countably generated and contains singletons. A subset 9 of . is called
measure convex if for ¢ach geM'(2) there is a kernel 6% which is
represented by o. '

The following proposition is an immediate consequence of Kirschner’s
[12] extension to Souslin topological spaces of a result of Wald and
Wolfowitz [23] on randomization in statistics. It will be needed in Section 4.

ProrposiTion 2.1. Let (Y, 2 (Y)) be a Souslin measurable space. Then M
has the integral representation property.

Proof. Let de.#. Since Y can be equipped with a Souslin topology
compatible with the given measurable structure, there is a measure
eeM () such that '

v(0) = _['v(qo) do(p) for every veL(P)

(Kirschner [12]). Then
P®5(AxC) = [ POp(A xC)do(p)

ra
for every PeML(X)NL(P), Ae®(X), and Ce#(Y), because
P(An-)eL(P). This yields P®J = [ PQodo(p). So 4 is represented by g.

. N
It would be interesting to know whether .# is measure convex for
arbitrary sets B. -
For the rest of this section we assume P = {u} for some probability
measure g4 on Z(X). Then by the Radon-Nikodym -theorem, L(%)

= {f-u: feL'(n)}, where f-u(4) = [ fdu for every A €28(X). Let us identify
R o

transition kernels that differ only on a p-null set. This corresponds to
considering the set .#{u) of all equivalence classes of kernels from X to Y.
For 9 < # let 2 (u) be the members of .# (1) which contains a representant
in 2. Generally, we will not distinguish in our notation between equivalence
classes and their representants. It is not hard to verify that ex .#(u) = A4 (1)
holds provided #(Y) is countably generated and contains singletons.
Now suppose that Y is a separable metrizable space or a completely
regular Souslin space. Since #(Y) is countably generated and coincides with

E
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the Baire g-algebra on Y ([8], II1.2.1), the map from .#(u) to the space
B(L'(n), C(Y)) of all continuous bilinear forms on L' (1) x C(Y), defined by
O +=>((f, k) [ kdf - 1(6)),

Y

is injective, where C(Y) is the space of all bounded continuous real-valued
functions on Y. We thus can identify .#(y) with a subset of B(L' (), C(Y)).
The locally convex Hausdorff topology o (B(L! (), C(Y)), L' ()®C(Y)) on
B(L'(w), C(Y)) and the induced topology on any subset of .#(u) will be
denoted by (Y) or, simply by <. o .

LemMa 2.2. (%) is generated by {u|9: u E(B (L' (), C(Y)), r)’}for every
g e M.

Proof. Let Z,(%) denote the o-algebra on 2 generated by the -
continuous linear functionals. Since Z(Z) is obviously generated by the
functions '

{6 > [ kdf - p(3): f L' (), keB(Y)),
Y

we have X,(%) = Z(%). To prove the converse inclusion, let f € L'(u) and

V = keB(Y): 6 —[kdf u(d) is Z,(7)-measurable}.
Y

Then V is a vector space which contains C(Y) and is closed under
bounded monotone convergence. By the functional form of the monotone
class theorem ([51, p. 15), this implies V = B(Y) and hence X(Z) < X,(2).

The proof of the following lemma is left to the reader.

LemMA 2.3. Let @ < M# (y), 6 € M (), and o e M’ (Z). Then the following
statements are equivalent:

(i) & is represented by o.
(i) @6 = [ u®odo(9).
(i) & = r(g) in (B(L* (1), C(Y)), t), where r(o) denotes the barycenter of g.
We also need the following information.
 Lemma 24. Let (X, B(X)) and (Y, B(Y)) be measurable spaces.
(a) B(X).QB(Y), <(B(X)RB(Y)),-
(b) If Be(B(X)RB(Y)),, then the section B, belongs to #4(Y), for every
xeX. .
(c) Let Be(B(X)R®AB(Y)), and de.#. Then the function X —R,

x =3 (x, B,) is universally measurable. In particular, x — o (x, C) is universally
measurable for every Ce%(Y),.

(d) Let @ c M (y) and Be(B(X)RAB(Y)),. Then the function 2 —R,
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O u®d(B) is unwersally measurable. In partzcular 0 +—u(0)(C) is universally
measurable for every CeZ#(Y),. _

Proof. The proofs of (a){c) are certainly well known and omitted.
(d) Let geM!(%). There exist B,, B, €Z(X)®A(Y) such that
B, «cB c B, and"
{u®6(B,\B,)de(6) =0
@
We obtain ¢({6 €eZ: u®4(B;\B,;) = 0}) = 1. Since the functions Z — R,
O u®0(B;) are measurable (i =1, 2), we conclude that é+—u®d4(B) is
measurable with respect_to the g-completion of X (%) and hence, ¢ being
arbitrary; is universally measurable.
The narrow topology a(M(Y), C(Y)) on M(Y) and the induced topology
on any subset. of M1 (Y) is denoted by w(Y) or, simply, by w.

We come to the main result of this section.

" TueorReEM 2.5. Let Y be a separable metrizable u.m. space. Then every
7(Y)-closed convex subset of .#(u) has the integral representatlon property and
is measure convex.

Proof. Choose a totally bounded metric inducing the topology of Y.
Then the completion Z of Y is compact and Z(Y) < #(Z), holds. It is
known that .#”(y) is a t(Z)-compact subset of B(L' (u), C(Z)) (Farrell [6] or
Luschgy and Mussmann [16]). Since, by Portmanteau’s theorem, the map
i: (ML (Y), w(Y)) >({Q eML (2): Q(Y) =1}, w(2)) defined by i(Q)(C)
= Q(Y nC) for every C e#(Z) is a homeomorphism, it follows that the map

(A (), (V) ~(16 € M7 (): p(@)(Y) = 1}, 2(2)),

o —equivalence class of iod’ for some representant &’ of & is also a
homeomorphism. Note that Lemma 2.4(c) assures that this map is surjective.
In the following we identify (.#(u),t(Y)) with the subspace
0 M*(0): p@)(Y) =1} of (M*(), <(Z) |

Now let 2 be a 7(Y)-closed convex subset of .#(u) and d€2. Let 2~
denote the 7(Z)-closure of 2 in #*(y). Then 2~ is t(Z)-compact and
convex. From Lemma 2.2 and the Stone-Weierstrass theorem it follows that

2 (") coincides with the Baire s-algebra on 2~. Therefore, by the theorem

of Bishop-de Leeuw, there exists a .ge ML (ex%~) such that § =r(p) in
(B(L*(u), C(2)), T(Z)). In view of Lemmas 2.3 and 24(a) this implies

p®3(B)= | n®e(B)do(p)

ex@

for every Be#(X)®%(Z),. In particular, choosing B.= X x Y, we have
=p@) (V)= [ o) (Y)de(g).

exP
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Since, by Lemma 2.4(d), the function ex 2~ — R, ¢ > u(p)(Y) is univer-
sally measurable, there is a g-null set N €X{(ex 2 ) such that u{p)(Y) =1 for
every @eex 2~ \N, that is, ex2~ \N < #(u). Since 2 is 7(Y)-closed in
A (p), we have 9~ N M (y) = @ and, therefore, ex 27 \N c ex @. Further-
more, & is an extremal subset of %~ which yields ex %2 = 2 nex 2™, Thus
we obtain g, (ex%) =1. So we can define a probability measure g, on
Z(ex %) by go(ex @ r\F) =o(F), FEX(ex%™). Then it is clear that

p®8 = | u®edo, ()
ex 2 )
holds, and, by Lémma 2.3, this implies that g, represents 5.

In order to prove that & is measure convex, let geM? (2). Then
r(@) €2, where r(g) denotes the barycenter of ¢ in (B(L' (), C(2)), ©(2))
([19], Proposition 1. 1) By Lemmas 2.3 and 2.4(a), for the kernel 6 = (o) we
have

1@ (B) = [ u®q(B)do(9p)
z

for every Be#(X)®%(Z),. In particular,
| u@)(Y) = [u(@)(Y)do(g) = 1

holds and hence € %.

If Y is not u.m., then 7-closed convex subsets of .#(u) do not always
have extreme points, even when |X| =1 ([24], Counterexample 3).

For nonmetrizable spaces Y we have the following version of the
theorem:

. CoroLLARY 2.6(a) Let Y be a completely regular Souslin space Then

every t(Y)-closed convex subset of #(u) is measure convex.

(b) Let Y be a completely regular Lusin space. Then every t(Y)-closed
convex subset of M (u) has the integral'representqtion property.

Proof. (a) Let @ be a t(Y)-closed convex subset of .#(y) and

oML (2). Since Y can be equipped with a metrizable Souslin topology
compatible with the given Borel structure ([8], III.2.3), it follows from the

-preceding theorem that there exists a § € .#(u) which is represented by Q An

application of the Hahn-Banach theorem yields J € 2.

(b) Choose a Polish topology on Y finer than the given one and observe
that it is compatible with the given Borel structure [21], p. 108, Lemma 17).
Hence, the assertion follows from Theorem 2.5.

Theorem 2.5 provides, in case P = {u}, an extension of Proposition 2.1.

CoroLLaRY 2.7. Let (Y, B(Y)) be um. Then #(w) has the integral
representation property and is measure convex.
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This corollary comprises the representation theorems given in [17, [11],
and [20]. :

By the way, under the above hypotheses the measure convexity of .#
may also be proved as follows. Let g e M} (.#) and let Q be the probability
measure | u®qdo(p) on B(X)®%A(Y) with X-marginal . By a well known

M

disintegration theorem, there is a kernel é € .# such that Q = u®J5. This
implies that ¢ represents 6. '

The final result in this section will be needed in Section 4. Let I'y, be a
multifunction from X to Y whose graph Gr(I'g) = {(x, y)€ X x Y:-y €Ty (x)}
belongs to (#(X)®4%(Y)),  Define a multifunction I' from X to M% (Y) by

r() = {QeMi (V): Q(Lo(9) =1},
I is well defined, since, by Lemma 2.4(b), I'y(x) = Gr(T,), € B(Y),. Put
My =15 §(x)el(x) for p-almost every xe€X)}

and ./1.1-:‘/'/'0 J’gr.
CoroLLARY 28. Let (Y, B(Y)) be um. Then M (y) has the integral

representation property and is measure convex. Furthermore, ex M (p)
= A "(4) holds.

Proof. Note that .
Mr() = (6 € M(p): u®3(Gr(Ty) =1},

Since .# (1) is an extremal subset of .#(u), we obtain ex .#(u)
= Ar(u). Let 6 € # (). By Corollary 2.7, there is a measure g e M (A" (1)
which represents 0. In particular, we have

1=pu®(Gr(ly)) = [ u®¢@(Gr(I'p)de(y).
Hw) -

Since, by Lemma 2.4(d), the function A (u) >R, ¢ —n®@(Gr(Iy)) is
universally measurable, there is a ¢-null set NeX(A'(x) such that
p®@(Gr(I'y)) =1 for every peA (W\N, that is, 4 (u)\N < A (). Thus
we obtain ¢, (A r(w)=1. So the probability measure g, on X (A (1),
defined by ¢o(A (1) N F) = g(F) for every FeX (A (w), represents 5. Now
let oeML (A (). By Corollary 2.7, there is a kernel 8. .4#(u) which is
represented by g. Since

u®3(Gr(Ip)) = [ u®e(Gi(ly)de(p) =1,

A p(p)

0 belongs to ().
A more general version of the corollary will be proved in Section 5.

6 — Probability Vol. 10, Fasc. 1
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3. Uniqueness and measurability of the set of extreme. points. In this
section we assume P = {u} for some yeM? (X) such that L' () is separable.
A () is equipped with the topology z. We begin with some topological
properties of . (u). :

ProrosiTioN 3.1(a) Let Y be a separable metrizable space. Then 4 (u) is
also separable metrizable. Further #(p) is compact, respectively Polish, Lusin,
Souslin, um. if and only if Y has the same properiy.

(b) Let Y be a completely regular Souslin space. Then M (y) is also

“Souslin. Further M (y) is Lusin if and only if Y is Lusin._

~ Proof.’(a) Let' Z be the compact completion of Y with respect to a
totally bounded metrization. Then by Portmanteau’s theorem, .# () is
homeomorphic with a subspace of the compact space (.#%(u), T(Z)). Since
L'(y)and C(Z) are separable, (.#%(u), T(Z)) is metrizable and hence .#(y) is
separable metrizable. If Y is Polish, so is .#(y) ([1], 5.2). f Y is Lusin,
Souslin respectively, then, by (b), .#(u) has the same property. If Y is um,
then #(y) is homeomorphic with ({6 € #Z(y): u(@G)(Y) =1}, 1(2)) and, in
view of Lemmas 2.2 and 2.4(d), this implies that .#(x) is u.m. In order to
prove the converse, let 5, be the kernel x e, for yeY. Then the map Y
—{d,: yeY}(w), y+—equivalence class of §, is a homeomorphism and
{6,: yeY}(u) is a closed subset of .#(u) ([18], Lemmas I.6.1 and IL6.2).
Thus, if .#(u) has one of the above properties, then Y has the same property
([21], p. 95, Theorem 2, p. 96, Theorem 3, p. 118, Proposition 8).

' (b) Let p: Z =Y be a continuous surjection of a2 Polish space Z onto Y.
Then the image measure map

Bt (ML (2), w(Z)) = (M (Y), w(Y))

is also a continuous surjection ([ 5], I11.45) and the same is true for the map
(A (), T(Z)) — 4 (1), 5 —equivalence class of pod’ for some representant
0" of 0. Indeed, this map is clearly continuous. Further let ¢ € .# (1) and ¢’
be a representant of ¢. Since (M} (Y), w) is Souslin and X(M}(Y))
= (M’ (Y), w) ([21], p. 385, Theorem 7, and p. 387, Theorem 8), p admits
a universally measurable right inverse g ([8], III.11.7). Choosing a kernel
&' € #M* such that & = gqo¢’ p-almost everywhere, we obtain pod’ = ¢’ pu-

- almost. everywhere. Thus the above map is surjective. In view of (a) this

implies that .# (u) is Souslin. Since Y is homeomorphic with the sequentially
closed subset {d,: yeY}(u) of .#(u), Y is Lusian when .#(y) has this
property ([211], p. 102, Corollary 1, and p. 95, Theorem 2). Conversely, if Yis
Lusin and @ a Polish topology on Y finer than the given one, then #(Y, ©)
= #(Y), ©(Y, ¢) is finer than t(Y) and, by (a), (A (), (Y, ) is Polish.
Hence .#(u) is Lusin.

The next proposition deduces the measurability of the set of extreme
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points of a closed convex subset of . (u) from the topological properties of -

M (1)

ProrosiTioN 3.2. (a) If' Y is a separable metrizable space or a completely
regular Souslin space, then X(9) = B (%) for every subset 9 of M (u).

(b) If Y is a completely regular Souslin space, then ex 2 € X (2), for every
closed convex subset @ of 4 (n).

(¢) If Y is a separable metrizable u.m. space or a completely regular Lusin
space, then ex 7 €X(%) for every closed convex subset & of M (n).

Proof. (a) It suffices to prove the assertion for 2 = .#(u). According to
Proposition 3.1, .#(u) is strongly Lindelsf. Since the topology t has a base
consisting- of X (.#(y))-measurable sets, X (.#(p)) = B(#(n) follows from
Lemma 2.2 and the strong Lindelf property.

(b) Let & be a closed convex subset of .#(u). By Proposition 3.1(b),
A () is Souslin. Then 2 is also Souslin and hence ex 2 e #(2), (Jayne and
Rogers [10]). The assertion now follows from (a). '

(c) K Y is separable metrizable u.m.,, then the assertion follows from (a),
Proposition 3.1(a), and Proposition 1.3 in [19] by embedding .#(u) in
(A% (), T(Z)) for some compact metrizable space Z. If Y is completely

" regular Lusin, then the assertion follows from the preceding (see the proof of

Corollary 2.6(b)). ,

Now we show that in the situation of Theorem 2.5 an analogue of
Choquet’s uniqueness theorem holds.

THEOREM 3.3. Let Y be a separable metrizable u.m. space and 2 a closed
convex subset of M (u). Then, for each kernel in 9, there is a ﬁnique
representing measure in M (ex2) if and only if 9 is a simplex.

Proof. The “only if* part. By Theorem 2.5, r(g)€% holds for each
o0eM? (ex 2). The barycentric map r: M. (ex?) —» 2 is an affine bijection.
This implies that 2 is a simplex.

The “if” part. Choose a totally bounded metric on Y -defining the
topology and let Z be the (compact) completion of Y. We can identify .# ()
with the subspace {6 € #%(y): u(8)(Y) = 1} of (M~ (p), ©(Z)). Let 2~ denote
the t(Z)-closure of 2. Then by Proposition 3.1(a), 2~ is t(Z)-compact
metrizable and convex. Note that 2~ is contained in the t(Z)-closed
hyperplane {T €B(L' (), C(Z)): 1x®1z(T) =1}. Let 6€2. We denote by
K, the cone generated by £, and by K, the cone generated by 2~ . Further

let <; denote the induced orderings on K;, ie. ¥ <;¢ if and only if -

o—yekK;, i=1,2. Since 2" NnM(y) =2, 9K, and YeK, (y <,0)
imply ¥ €K, and both orderings coincide on K,. Thus

{peK;: ¢ <0} ={peK,: ¢ <,6}.

By assumption, K; is a lattice (in the ordering <;) and so
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{peK,: ¢ <,8) is a lattice. Hence {p€K,: ¢ <,0} is a lattice (in the °

ordering <,). In particular, {p €K,: ¢ <,0} has the Riesz decomposition
property. Furthermore, by Proposition 3.2(a), 2(27) = #(2~) holds. Now
the stage has been set for an application of the Loomis uniqueness theorem:
there is a unique measure geMi(ex@~) such that d=r(g) in
(B(Ll (W, C(2)), T(Z)) ([17], X1.24, and the proof of X1.29). By Theorem 2.5,
there is a measure goeM:(ex?) such .that Jd=r(g,) in
(B(L'(w), C(Y)), t(Y)). Since exZ = @ nex P, we can define a probability
_measure 9; on X(ex2) by o,(F)=g¢o(ex@%nF). Then 6 =r(g;) in
(B(L' (1), C(Z))?__T;(Z)) and hence g, = ¢. This yields the uniqueness of g, (cf.
Lemma 2.3).

By the way, the separability of L' (g) is not used in the “only if” part of
the theorem. This part also holds for completely regular Souslin spaces Y.
The “if” part is also valid for completely regular Lusin spaces Y. Simple
examples show that .#(y) is no simplex.

4. Integral representation in the set of equivariant transition kernels. This
section was inspired by Ferguson ([7], Chap. 4.2). Let G be a group which

acts (from the left) on X and Y. G is equipped with a g-algebra #(G) and we
1

assume that the maps G =G, gr—g™ ', GxX =X, (g, x)—>gx, GXxY =Y,

(g, y) —gy are measurable. Then G acts on M’ (Y) by the map (g, Q) —gQ,
gQ(C) = Qg C) for every Ce#(Y), and one easily verifies that this map is
measurable. A transition kernel § from X to Y is said to be equivariant if
d(gx) = gb(x) for every geG, xeX. We denote by .#; the set of all
equivariant kernels from X to Y and by .47 the subset .#; N A4". Note that
if (Y) is separated, then .4'; is the set of all kernels x ¢, arising from
equivariant measurable maps (p X — Y. A probability measure g on #(X) is
said to be quasi-invariant if gu: geG} < u. We shall apply the results
of Section 2 to the set .#.

TueoreMm 4.1. Let Y be a separable metrizable u.m. space, G a locally

compact c-compact group, and P = {u} for some quasi-invariant probability
measure u. Further assume that G acts continuously on Y (by which it is meant
that the induced maps on Y are continuous). Then Mg(y) has the integral
representation property and is measure convex. '
—~ Proof. According to Theorem 2.5, it suffices to show that the convex
set g (p) is a t-closed subset of .#(y). We may assume #; # Q. Since p is
quasi-invariant, G acts on . (u) by gé = equivalence class of gé' for some
representant &' of &, where (g&')(x) = g&'(g~ ! x) for every x € X. Further, G
acts on L'(u) by gf (x) = f (g~ " x)(dgp/dp)(x), x€X, and on C(Y) by gk(y)
=k(g~'y), yeY. We have

f®k(gd) =g~ " f@g™" k()
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for every 8 e.#(w), f €L (w), keC(Y). Thus the map 6 +—gd is T-continuous
for every geG. This implies that the set .#(u); of all fixed points in . (u)
under the action of G is z-closed. Furthermore, .#(u) = .# ()¢ holds (see
Berk and Bickel [2]). This completes the proof.

By Corollary 2.6, the measure convexity of .#;(uw) also holds for
completely regular Souslin spaces Y and the integral representation property
for completely regular Lusin spaces Y. .

For statistical applications it is desirable that kernels in .#; have a
representing measure which is supported by 4. This is not always_possible.
Let G, be the isotropy group of xeX in G, Yy = {y€Y: gy =y for every
geK} for K =G, and Y, = Y . Then in order for é € .4#; to be represented
by a measure in M’ (.47) it is necessary that §(x, ¥) = 1 P-almost every-
where for every Pe'}, since ¢(x, Y,) =1 for every ¢e. 1, x€X, provided
(x, eX xY: yeY,) e(4(X)R#4(Y)), and #(Y) is separated. To prove that
this condition is also sufficient we need the following assumptions:

(A4.1) There is a measurable map S: X — G such that the (measurable)
map T' X =X, defined by T (x) S(x)_lx is- invariant, ie. T(gx) = T(x)
for every geG, xeX.

(A4.2) The action of the isotropy group G, on Y is trivial for every
xeX.

(A4.3) G, = H for some subgroup H of G and every xeT(X).

Let Z = T(X), #(Z) =Z n%(X), and, if Y e#B(Y), for every xeX,

Dg = 16eMg: 5(x, Y,) =1 for every xeX}.

Tueorem 4.2. Let (X, Z(X)) or (G, #(G)) be u.m. and assume (A4.1).

(a) Let (Y, (Y)) be a Souslin measurable space and assume (A4.2). Then
Mg has the integral representation property and ex Mg = N g holds.

(by Let (Y, #(Y)) be a Souslin measurable space. Assume (A4.3) and
Y €B(Y). Then D¢ has the integral representation property and €x Gg = NG
holds. -

() Let (Y, #(Y)) be um., ¢ # @, and B = {u} for some probability
measure ji. Assume {(t, y)€Z xY: yeY,} (B(Z)RAB(Y)),. Then D¢ (u) has the
integral representation property and is measure convex. Furthermore, ex 90 (u)
= N (1)-holds. - -

Proof. Assume Y, e.%(Y),, for every xeX . Let .#, denote the set of all
transition kernels from Z to Y and .4/, the subset of all kernels t+—¢g,,
arising from measurable maps y: Z - Y. We put

9, ={ped;: o(t, Y)=1 for every teZ}.

For each ¢ €2, the kernel x —S(x) ¢ (Tx) belongs to Z¢. In fact, since
T/Z =id; and T is invariant, we have S(gt)"'g€G, for every teZ, geG.
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Furthermore, ¢(t) is a G,-invariant probability measure on #(Y) for every
teZ. This yields S(gx) @ (Tx) = S(g9S(x) T(x))¢(Tx) = gS (x) ¢(Tx) for every
x€X, geG, and from Y, = S(x) Y, follows

@(T(x), S Y,) = (T (x), Yrey) =1

for every xeX. Thus we can define a mai) i: @ =% by i(p)(x)
= S(x) ¢(Tx) for every xeX. Then i is an affine bijection with i(2, n.A")
= N and i~1(8) = 6| Z for every d € %g. Cons1der1ng T as a map from X

" onto Z we obtain

) P®i(@)B) = [ [15(x, »)i(e)(x, dy)dP()

il
U = [IB(S(x) T(x), S(x)y) (T (x), dy)dP(x)

[ [1s(st, s)Qp(t, ds)dP" @o(t, y)
ZxYG
for every- p€%,, PeM (X), and Be#(X)®%Z(Y), where Q,, denotes the
regular T-conditional distribution of S under P.

Subsets & of #, are equipped with the o-algebra X (@) defined with
respect to BT = {u7: peP}. We claim that i is an isomorphism between the
measurable spaces (2,, £(2,)) and (Zg, Z(Zg))- If P is a probability measu-
re in L(P), then PTeL(P7). If Q is a probability measure in L(R"), then
there is a countable subset {u,: nel) of P, I = N, such that Q < {uT: nel)
([14], Lemme 1). Let A=) 27"y, nel. Then by the Radon-Nikodym
theorem, Q = f- A7 for some f e L' (AT) and for the measure P = foT-1 on
48 (X) we obtain PT = Q and PeL(%). Thus ‘

(%) MY (Z)nL(P") = {PT: PeM} (X)nL(P)}.
Therefore, i is measurable, since '

PH@)CO) = | [1e(s1)Qelt, ds)dPT R0 (:, y),

ZxYG

(£, y) = [ 1c(sy) Qs (¢, ds) €B(Z x Y)
G

* for every 9 €9,, PeML (X)nL(), Ce&(Y), and i~ ! is measurable, since

PIE @) = | 1c(S (07! y)dP®é (x, 1),
' XxY
(x, ) —1:(S(x)""y)eB(X xY) for every €%, PeML(X)nL(P),
Ce#(Y). Clearly, the restriction iy: 2, NAy > A ¢ of the map i to
9, N Ay is also an isomorphism between the measurable spaces
(2y 0Ny, 2(Z1 0 Ny) and (N g, Z(H )
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Assume that #(Y) is countably generated and contains singletons. Since
2, is an extremal subset of .#, and ex .#, =.";, we obtain exZ,
=%, NA. From i(ex &,) = exi(2,) follows ex % = N;. :

(a) By (A4.2), Y. =Y for every xeX. Hence 9, = #; and D; = M,
hold. Let &€ .#;. According to Proposition 2.1, there is a measure
0, € ML (/) which represents the kernel i~ 1(5) with respect to 7. Then, by
(%) and (*x), the image measure ge M. (.47¢) of g, under i, represents é.

(b) By (A4.3) we have Y, = S(x) Yy and hence Y, €#(Y) for every xeX.
Since ¥, = lpe.#,: o(t, Yy) =1 for every teZ}, we can identify &; with
the set of all kernels from Z to Yy, where Yy is' equipped with the g-algebra

#(Yy) = Yy 0 #B(Y). Since (Yy, #(Yy)) is a Souslin measurable space ([21],
p. 96, Theorem 3), the integral representation property of < follows from
Proposition 2.1 as in (a). B

(c) In"view of Lemma 2.4(b) we have Y, e #(Y), for every t €Z and hence
Y. €4 (Y), for every x e X. Define j: 2, (u") = % () by j(¢) = p-equivalence
class of i(¢") for some representant ¢’ €2, of ¢. Then j is affine and an
isomorphism  between the measurable =~ spaces (2, (u"), Z(¢") and
(96 (W), Z(Z6 (W) with j(2y 0.4 (1)) = .#(4). Define a multifunction I’
from Z to ML (Y) by I'(t) = Qe ML (Y): Q(Y)=1}. Since Z; n Ay # @,
we obtain 2, (uT) = M, (u7) and @, " A" (UT) = A", (u7). By (%) and (*%),.
the assertion now follows from Corollary 2.8.

The following corollary is an immediate consequence of part (c).

CoroLLARry 4.3. Let (X, (X)) or (G, B(G)) be um., let (Y, B(Y)) be um,
and P = {yu) for some probability measure u. Assume (A4.1) and (A4.2). Then
Mg (p) has the integral representation property, is measure convex, and
ex Mg (1) = V(1) holds.

Remarks. (1) The measurability condition in Theorem 4.2(c) is satisfied
if #(X) is countably generated and contains singletons and (G, #(G)) is a
Souslin measurable space.

-To see this put B, =1{(g,t,y)eGxZxY: gt =t} and Bz =g, t,y)€
GxZ xY: gy =y}. Then we have By, B, e%(G)@A’(Z)@%(Y) ([5], L12)
and {(t, y)eZ xY: yeY,)® is the projection of By "B to ZxY. From a
projection theorem ([3], IIL.23) it 1mmed1ately follows that i(t, ) eZ x Y:
yeY,) €(#(2) @#(Y)),

(2) In Theorem 4.2(a) the assumption (A4.2) is essential for ex #; = A
to hold. Let X =Y={—1,0,1} and G = {e, g} with identity ¢, g~' =g,
and the action gx = —Xx, gy = —y. Define §: X -G by S(—1) =g and S(0)
=S(1)=e. Then (A4.1) is satisfied, but (A4.2) does not hold. We obtain &g

={0es 5(0,{0}) =1}, exPg =N, and ex Mg = NgU {8y, 8,3, 83},
where 6, (x) = sx, 0,(x) =&_,, 05(x) =¢o for x = +1 and 6;(0) =(e;+€_4)/2
fori=1,2,3.
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(3) For Polish groups G and closed subgroups H of G the assumptions
(Ad.1) and (A4.3) are equivalent to a product representation X = G/H xZ.
To see this observe that, if the space G/H of left cosets of H is equipped with
the quotient topology, the canonical surjection n: G —G/H admits a Borel
measurable right inverse . This follows from a selection theorem of Kura-
towski and Ryll-Nardzewski [13]. Let X =G/HxZ and %£(X)
= %#(G/H)®%(Z) for an arbitrary measurable space (Z, #(Z)). G acts on X
by (g, (¢’ H, z)) —(g9g H, z) and this map is measurable. Define S: X =G

by S((gH, z)) = ¢ (gH). Then (A4.1) and (A4.3) are satisfied. Conversely, if

these conditions hold, put Z = T(X) and #(Z) = Z n #(X). Then the map
X - G/H xZ, x —(noS(x), T(x)) is an equivariant isomorphism between the
measurable spaces (X, #(X)) and (G/H xZ, #(G/H)Q%(Z)).

5..Applications. At first we treat transition kernels with prescriped
values. Let Y be a metrizable Souslin space and peM? (X). Let I be a
multifunction from X to M} (Y) such that I'(x) is nonempty w-closed and
convex for every xeX and Gr(I)e#(X),®Z(ML(Y). We denote by
ex I’ the multifunction xr—ex I'(x).

THEOREM 5.1. (1) is a nonempty t-closed measure convex subset of
A (p) and has the integral representation property with respect to P = {u}.
Furthermore, ex M (y) = #,, (1) holds. .

Proof. Since (MY(Y),w) is a Souslin space and X(Mi(Y))
= % (M3 (Y), w) holds, it follows from a selection theorem ([3], I11.22) that
My +# Q. Clearly, # () is convex. The assertion ex . (u) = A, (1) fol-
lows from Theorem IV.15 of [3]. According to Theorem 2.5, it remains to
show that .4 () is a 7-closed subset of .#(u). (For constant multifunctions
this has been proved in [9].) Let d € .#(w\ # (1) and put

A={xeX: 6(x)¢I'(x)}.
Then A° is the projection of Gr(6) NGr(I) e%(X),®Z (M} (Y)) to X,

- hence, by a projection theorem ([3], 111.23), A e#(X),. Choose a totally

bounded metric inducing the topology of Y and denote by U (Y) the space of
all bounded uniformly continuous real-valued functions on Y. Using Port-
manteau’s theorem we conclude that I'(x) is a ¢(M(Y), U (Y))-closed subset
of M(Y) for every x e X. Therefore, by the Hahn-Banach theorem, for each
x €A there is a function &, €U (Y) such that

sup {[k.dQ: QeI (x)} < [k.dd(x).
Y Y

We can assume k, €V for some countable norm dense subset V of U(Y).

Setting
An, k) = {xeX: sup {[kdQ: QeI (x)} < [kdd(x)—1/n}
¥ ¥
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for neN and keV yields
A= A(n, k).
;EV
The function

x—sup {[kdQ: Qel(x)}
! Y

is universally measurable ([3], II1.39) and hence A(n, k)e#(X), for every
neN and keV. Because pu(A) >0, there exist neN and keV such that
u(A(n, k)) > 0. Now for each member ¢ of the 7-closure # (1)~ .of 4 (1)
in /l{(/,t) we have
f I k(Do (x, dy)dux) < | [k()(x, dy)du(x)~p(A(n, k))/n

A(n,k) Y A(nk) Y
and thus ¢ A (u)~.

We can infer the following version for metrizable Souslin spaces of a
result due to Strassen ([22], Theorem 3). Strassen proved the equivalence of
() and (ii) for Polish spaces Y (under a slightly weaker measurability
assumption on I).

COROLLARY 5.2. Let A€ M’ (Y). Then the following statements are equiva-
lent:

(i) There is a kernel d € # such that A = u(d).
(ii) [kdl {sup {[kdQ: QeI (x)}du(x) for every keC(Y).
Y ’ -

X

(iii) [kd/l [sup {[kdg: Q eexI'(x)) du(x) for every keC(Y).
Y

Proof. (i) = (iii) follows from the integral representation property of
A (u) and (iii) = (ii) is obvious.

(ii) = (i). The set K = {u(8): 6 € # ()} is convex. We cla1m that K is a
w-closed subset. of M(Y). Suppose (J,) is a net in .#(u) such that u(5,) —»Q
for some Q e M(Y). Then the set {5,} is relatively T-compact in .# (). This
fact is known and easily seen by embedding #(y) in #%(yu) for some
compact metrizable space Z. Therefore (J,) has a cluster point § which
belongs to .#(u) since, by the preceding theorem, .4 (u) is 7-closed in
M (). Clearly Q = (). Thus Q €K and our claim is proved. Now by the
Hahn-Banach theorem, A€K if

(kdA < sup {[kdu(d): &€ M (n)}
Y Y

for every k eC(Y). But the right-hand side of this inequality equals the right-
hand side of (ii). Indeed, let keC(Y) and ¢ > 0 and consider the multifunc-
tion I', from X to M (Y) defined by

I,(x) = {Pel(x): [kdP > sup{[kdQ: QeF(x)}—s}.
¥ ¥
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Then I',(x) # @ for every xe€X and Gr(I') € 2(X),®Z (M} (Y)). Hence,
according to a selection theorem ([3], 111.22), M # Q.

The second application is concerned with the risk-equivalence of two
methods of randomization in statistical decision theory. Let & be an index
set. For each 8@, let P; be a probability measure’ on #(X) and
L@, -, ) XxY —=[0, o] a measurable loss function. Decision rules are
transition kernels from X to Y. In the decision problem ({Py: €@}, Y, L)
the risk function R, defined for 3€@® and d€ .#, is given by

R(8.0)= [ LS, x,y)dP,®3(x, ).~
) X xY

Assume that {Pg: 3€@) < p for some peM: (X) and P = {u}. Let
P < M and P, =« D. ¥ and ML (%,) are said to be risk-equivalent if for
each 8 €% there is a measure g € M. (2,) such that

R(3,8) = { R(9, p)do(9)
s

. for every 3€® and vice versa. Then, under the assumption of Cdrollary 27,

M(p) and M} (A"(w) are risk-equivalent. If a group G acts on X and Y,
then, under the assumptions of Corollary 4.3, .#;(u) and ML (A (w) are
risk-equivalent.

In order to treat Bayes rules, we assume additionally that @ is equipped
with a o-algebra #(®) such that L and (9, x) —(dP,/du)(x) are measurable.
We denote by % the set of all Bayes rules with respect to a o-finite measure
A on Z(@). Let Y be a metrizable Souslin space and let L(3, x, | ) be lower
semicontinuous for every 9€® and xeX.

ProposiTioN 5.3. 2(w) and ML (2 NN (y)) are risk-equivalen.t.
Proof. According to Lemma 2 of [15], the Bayes risk function

jR(S, )dA(D): A (u) -0, o] -
o

is lower t-semicontinuous. This implies that %(u) is a t-closed subset of
M (y). Furthermore, Z(y) is a convex extremal subset of .#(u), hence,

ex2(u) = 2 N A (). The assertion now follows from Theorem 2.5.
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