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LARGE DEVIATIONS OF INVARIANT MEASURES
FOR DEGENERATE DIFFUSIONS

BY
— HUKASZ STETTNER (Warsaw)

Abstract. In this note we study large deviations of invariant
measures for stable dynamical systems under small noise perturba-
tions of white noise type. The systems are modelled by diffusion
equations with a diffusion term ¢o(x,), which we ailow to be degene-
rated. The corresponding invariant measures converge to a measure
concentrated at the stable point and their logarithms are compared
with the optimal values of linear deterministic control problems with
quadratic functionals.

_ 1. Imtroduction. Suppose X* = (x;) are, for ¢ > 0, the solutions to the
diffusion equation

o i = f () de+20 () dw,

where f(x)eR"™ and oeR" xR" satisfy the Lipschitz condition, f(0) =
o(0) # 0, the matrix o(x) is bounded and (w,) stands for the r-d1mens1ona1
Brownian motion.

As ¢ =0, X* converge in probablhty to the solution of the deterministic
system

2 % = f(x).

If system (2) is stable, one could expect that there exists a finite invariant
measure 7, corresponding to X®. In this paper we want to find the limit
¢?Inn, (-} as ¢ =0. Such a problem has been solved for a non-degenerate
diffusion, i.e. when the eigenvalues of matrix oo*(x) are uniformly with
respect to x bounded away from zero, in Theorem 4.2 [4]. We will consider
the case of degenerate diffusions in which the above condition may be
violated. This complicates an adaptation of Freidlin-Wentzell results, since
then X° is not necessary the strong Feller process and, as a consequence,
formula 4.3 [6] for the invariant measure is not true. Moreover, the rate
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function for large deviations of X* which can be obtained through Legendre
transformation, requires additional assumptions and usually does not have
an explicit form. We overcome these difficulties. Namely, from [7] and [8]
we obtain the existence and estimates for invariant measures of (1). Follo-
wing [1] and [9] we apply the estimations comparing X*® to the solutions
of the controlled linear system

G3) y=f+o@)u,

and then we can calculate the limit ¢?Inn,(-) in terms of the optimal values
of quadratic functional corresponding to system (3). The final steps more or
less coincide with the sketch of the proof in the non-degenerate case given in
[4]. Since the assumptions we impose, written in a form of special kind
controllability’ of (3) and ergodic properties of (1), look at first glance
restrictive, we formulate in section 4 sufficient conditions under which they
are satisfied. '

2. Preﬁhinary results. Denote by K () the ball with center at the origin
and radius 5. Let T:, for a Borel set 4 eR", be a first entry time of X* to A4,
ie.

T =inf{s > 0: x2ed).

Suppose there exists an r; <r, such that, for y=0K(r;) and I
= 0K (r,), we have ' :

4) supE, 12 < 0,

' xey
where 7, = Tf+ T, 0O, is the first time in which X* starting from y, hits I’
and returns to y, and E, T} < oo for any x€eR".

The pair (yp, I) for which (4) holds will be called a cycle of X*.
The following lemmas play a fundamental role in our paper.

LeEmMa 1. Suppose (y, I') form a cycle for X*. Then, for any Borel set A,
X €ER',

t Te
) limsupt™" E, {[14()ds) < & *supE, {] 74 (<) ds)
o t—o ! 0 Xey 0
and
) t : Te
(6) liminft ™" E, {{xa(x)ds} = C; Vinf E, {{ x4 (x) ds},
) 0 xey 0

where ¢, =infE 1, and C, =supE;t,.

xey xey

Proof. From Lemma 3 [7] we get ¢, > 0. The proof of (5) follows from
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‘Lemma 4 [7]. Estimation (6) can be obtained in a similar way.
The next corollaries explain the importance of (5) and (6).

CoroLLARY 1. There exists an invariant probability measure =, for X°.
Proof. Because of (6), for a sufficiently large compact set F,

liminft ' E, ,[)ffp(xs)ds1 >0 for any xey.
t—a
Since, due to Theorem 1 7.2 [6], X* is Feller, we can apply Theorem 2
[8] to ‘get an invariant measure =,.
CorOLLARY 2. If m, is an invariant probability measure for X"' then, for
any Borel set A < R, ‘
(D C;linfE, [x,,(x")ds} A) < c;'supE, || xa(xDds).
xEY XEY 0
Proof. It suffices to use the definition of the invariant measure and the
Fatou lemma to estimate (5) and (6). In fact,

n,(A) = n (t ' E, {f 4(x9ds}) < (llmsupEx ,fo(x*’)ds})
[¢]

g

< ¢ 'supE, {[ x4 (x%) ds}.

xey 0
The estimates from below we can get in an analogous way.
Remark. It should be pointed out that we have above only the -
existence of the invariant measure result. The question of uniqueness is not
clear. If the cycle measures

ve(A) = E, {[24(x5)ds} for xey

are equivalent, then, by the similar methods as in the proof of Proposition 3
[8], we get the uniqueness of invariant measures. Nevertheless this condition
seems to be far too strong.
Later we will need a weaker version of (7) which can be obtamed w1th
the use of the strong Markov property of X*
CoROLLARY 3. Suppose D = R"\K((r,) is an open set and, for 6 >0, D_;
= {xeD: g(x, 0D) > 8}. Then
Te
®) C linfP AT5_, <T;} inf E, [xp(x)ds <m,(D)
4]

xel’ yeD_;

< ¢ 'sup P {Tp < T} supE, T

xel’ yeD
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As we have suggested in the introduction, the behaviour of X* will be
studied with the use of trajectories of the controlled deterministic system (3).
Denote by y**(-), for u an integrable control, the solution of (3) with initial
condition y**(0) = a. Let

T .
Sor () =277 [lu(s)|* ds,
0

) Vr(a, b) E inf {Sor (u), y**(0) = a, y**(T) = b, T'< T}
and
(10) Via, b)< inf Vy(a, b).

T>0

Following [4] and [9] we call V(a; b) quasipotential.
Define

(11) () = {y**eC([0, T], R, Sor(u) <n}.

Similarly as in [9], the following two propositions, the proof of which
can be found in [1], are basic in large deviations of degenerated diffusions:

ProrostTioN 1. For an arbitrary compact set F < R, T >0,n> 0, o > 0,
and { > 0 there exists an g4 > O such that, for all xeF, ueL*([0, T], R"), and

T
27t (lu(s)2ds <,
o

we have

(12) Poor(X™, y™ < a} > exp {*S_Z(Sor(u)“'C)}

provided & < &,, where gor denotes the distance in C([0, T J).

ProrosiTioN 2. For arbitrary compact set F< R, T>0, >0, a >0,
and { > 0 there exists an ey > 0 such that, for all € <eg, and x €F,

(13) P {gor (X, Bf (1)) > «} < exp{—&~2(n—0)}.

3. Main theorem. The following theorem contains the main result of the

“paper: :

TuEOREM 1. Suppose D is an open bounded set, 0¢ D and the following
Sequences of assumptions is satisfied:

(AQ) there exists a i > O such that, for any p < [i, one can find an &, such
that, for ¢ <eo, y=0K(2 'w) and T = 0K (u) form a cycle for X¢, and
supE, {17} < oo0;

eD
’ (A1) controlled system (3) is uniformly attracted to 0, i.e., for any compact
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set F, constant L >0 and r > 0, there exists a timé T such that, for any
control u, Sor(u) < L, x €F for the controlled trajectory y**, y*“(0) = x€F, we
have |y*"(t)] <r for some t < T:
(A2) VF-compact Vﬂ >0 35 >0 VxeF,;= z e(z,F) S&)au.T
So r@<p and y>(T)€eF;
(A3) for each B >0 there exists a po such that, for p<po and zel

= 8K (u), one can find a control u and T >0 such that y**(T) =z and

Sor (W) <B;

(A4) Vﬂ>0 3;40 Vu<ug ‘31‘0 Vx,zel‘ 3u,TSTo SOT(“) <B9 yx.u(T) =2z and in

_the time interval [0, T] the controlled trajectory does not enter K2 ' w;
(AS) Vo(x) lnf V(x, y) is continuous in the nelghbourhood of the origin;

(A6) for ‘each r] > 0, F compact, F nD = @, there exists a & > 0 such that,
for x eF

inf V(x, y) < Vo(x)+n, where'D_a = \yeD, g(y, 3D) >0} # O;

yeD_ 5
(A7) jor any 6 >0
. (19 lim sup| inf Vi(x, y)— inf V(x, y)| —0.
. ] T~ow xeI' yeD_ g yeD _ 5
Then
(15 , lime?Inn,(D) = —inf V(0, x).
g0 xeD

Proof. The proof is based on Corollary 3. Namely, we estimate the
term of inequality (8) from above and from below.

We get first the approximation of limit (15) from above. For a given
arbitrary small A,

defl

0<h<inf V(0, x) =

xeD

VO >

there exists a up such that, for u < iy, assumption (A3) with 8 =3"'h.is
‘satisfied. We fix u < p, A i for which ¢(0, D) > 21 and (A0) holds. Then
take & from (A2) with F=D and f=3"'h

The following result will be useful in our estimations:

Facr 1. Let Dy = {x: o(x, D) < 8}. Then, for any T >0, there are no
control u for which the controlled trajectory, starting from I', enters D in the
finite time interval [0, T and Sor () < Vo—%h.

Indeed, suppose that there exists a control u; and the corresponding
trajectory y,(0)€T, y;(t;)€D,, for which Sy, (4;) < Vo—3%h. Then, by (A3)

and (A2), there are controls u, and u, such that the corresponding trajecto-

7 — Probability Vol. 10, Fasc. 1
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ries satisfy y;(0) =0, y,(t2) = y;(0), y3(0) = y;(t1), ya(ts)€D and S, (u,)
<37'h, So,(us) <37'h Thus for a control u; =u,(s) for s€[0, 1,], u
=u,(s—t,) for seft,, t;+t,] and u, =uy(s—ty;—t,) for selt,+t,, t; +¢t;
+15], the trajectory starting from O enters D and Sc,,lJ,,zJ,,3 () < So,l(ul)
+ 801, (U2) + S, (u3) < Vo, a contradiction.

We continue the proof of Theorem 1. From (A0), for ¢ < g, (y, I') form
a cycle for X*. Therefore there exists an invariant measure 7, and, in view of
estimates (8), we have
(16) 7. (D) < (inf E, T))™ ' sup P, { T3 < T;} sup E, {T}’}

yel yel yeD

Moreover, for any T = 0,

(17) . -~ supP, {Tg < T*} <supP,{T, < T}+sup P, {TF > T}.

yel yel yel

From (Al), for F =T, L=V,, r =4~ 'y, there exists a T > 0 such that,
for any control u, So;(w) <L and xerl, there is a t < T such that the
controlled trajectory enters K (4~ 'y) at time z. Thus, for such a T,

{T; > T} < [gor (X™°, BF (Vo)) > 471}
and, by Proposition 2 for F=T,n=V,,a =4"'p, { =27 hand ¢ <g;, we_
get
(18) sup P, {TF > T} <exp{—e 2(Vp—2""h)}.

yel
In a similar way, applying Fact 1, we have
{T5 < T} < {oor (X**, Bf (Vo—}h)) > 6}
and, again from Proposition 2 for F =T, n=Vo—3%h, { =671h, for ¢ <,
we get .
(19) sup P, {TE < T} <exp{—e 2(Vo—3h)}.

yel
Summariiing (17), (18) and (19), for ¢ <&y =gy A& A g, we have

(20) ‘supP, (T < T7} <exp{—e 2(Vo—3h}+exp{—c > (Vo—3h)}.

h : yel

But, for a, b, { > 0, there exists an £ > 0 such that, for ¢ <, exp(—ae™?)
+exp(—be~2) < exp(—e~2(a A b={)), so, finally, for & <e,,
(1) sup P, {T < T?} < exp{—e *(Vo—h)}.

. yel

Since f and o satisfy Lipschitz condition and ¢ is bounded, Proposi-

tion 6 [9] implies that X* converges in probability uniformly on compact
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intervals and uniformly with respect to initial values from compact sets to
the solutions of the deterministic system (2) as ¢ — 0. Therefore, there exist a
constant a > 0 and &5 > 0 such that, for & < &5, :
(22) infE {T;} > a.

yel
Finally, from (20)<(22), since (AO) implies

supE, { 7;’8} < o0,
yeD

and h could be chosen arbitrarily small, we obtain

(23) - limsupe?lnn, (D) < —V,.

e—0

Consider. now the estimation from below. First we need an upper
estimate for C,. Namely - ,
(24) : C, <supE, Ti+supE, T}.
) xey yel -

"Let y°(n) = closure {yeR": y = y%*(t) for some t < T and u such that
Sor () <n}. From Theorem 1 (i) [9], for all xeK (u),

(25) limsupe? InE, Tf < sup {n: y°(n) < K (u)}.

g0

An analysis of the proof from [9] shows that limit (25) is uniform with
respect to x €y. Thus
(26) limsupe?Insup E, T¢ < sup {n: y°(n) = K(u)).

=0 xey .

Since ¢(0) # 0 for an arbitrarily small h > 0, we can find a o such that,
for p<po, F'MD =@ and supin: y°() = K(w} <4 'h. Therefore, for
B < Ho,

27 limsupe’lnsupE, TF <41 h.
=0 xey

Next we estimate the second term of the left-hand side of (8). From (A5),
for u < pg and xel', we have

(28) Vo(x)—Vol <1271 h.

For B=12""h and u < ug, there exists by (A4) a T, such that any
points x, z€I' can be connected with a controlled trajectory y*“(-) in time
T.. < Ty for which Sop(#5) <127 'h, and the controlled trajectory does not
enter in time [0, T,] the set K(27! p).

1

Fix p <po A pg A o' A . We will prove the following
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Fact 2. For & <gy we have

(29) inf P, {T5_, < T¢} > exp {—e2(Vo+2" 1 h)}.

xel

Indeed, by (A6), for n = 1271 h, there exists a § > 0 such that

(30) inf V(x,y) <Vo(x)+12"'h for xel.

yeD 33

Moreover, by (A7), for T > T,
(31) sup| inf Vp(x, y)— inf V(x, y) <127 1h.

xel' yeD_35 veD— 25

- Fix~T > T'. For a given xeI, let u, be such a control that

SOTx(ux) < -inf VT(xa y)+12_1 h: ’1; <T
yeD_2;5
and the corresponding y**(0) = x, y**(T,) eD_,;. If the trajectory y** enters
7, then denote by ¢ the last exit time from y before T, and, using (A4), we
connect x and y(f). Otherwise we do not change the trajectory. Then for
T = T+ Ty, by Proposition 1 for { =12"1h, ¢ <¢), xel" we get -

(32) P.iT5_, <T7} > P, loor (X, y™*) < &)

-2 ’
= ¢xXp ‘{_8 : (SOTx}'(l_)

(#)+ Ser () +127 1 h)},
where we put u(s)=iu(s) for s< T,5, u(s)=u(s—T,gz+0 for
s€[Ty@, Toye+ T.—1t]), and u(s) = O elsewhere. Therefore, substituting (30),
(31), and (32), we get : :

(3 infP ATy, <Ty

xell

>exp {—& 2127 h+ inf Vi(x, ) +1271h+1271h))

yeD 35

>exp{—e (4" h+ inf V(x, y)+1271h)}

_ . yeD_3;
Zexp {—& (4" h+Vo(x)+127 h4+1271 h)}
> exp {—o~2(Vo+27 1 )}
and Fact 2 is proved.

To finish the proof of the lower estimation we take (8). For ¢ <¢,,
because of (AQ), (y, I') form a cycle. By the same reasons as in (22), there exist
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M, a > 0 such that, for ¢ <&, and a sufficiently small 6 > 0, we have

(34) supE, T <M and inf E, Lf)(,,(.wcs).f,isI >a>0.

yel yeD_ 5
From (27), for ¢ <e3,
(35) e?lnsupE, TE <271 h.

X€e€y

Substituting (33), (34) and (35) to (8) and taking into account that h
could be chosen arbitrarily, we obtain -

(36) ’ liminfe? 7, (D) = —V,,
. £—0
which, together with (23), gives identity (15), and the proof is completed.

Remark. It is easy to see that to get the upper bound we needed
assumptions (A0)-(A3) only. In the proof of the upper bound we applied (A0)
and (A4){(A7).

4. Remarks on assumptions. Let us recall first a Lyapunov stab1hty result
from [37:

PROPOSITION 3. Suppose there exists a continuously differentiable function
v(x), v(0) =0, which has a strong infimum for x =0 and scalar product
(f, W) < 0. Assume, moreover, that for any & > 0 there exists a >0 such
that, if |x| > 0, then

(37 (f, W< -8.

Then the system (2) is asymptotically stable to the point x = 0.

We can formulate the following sufficient condition for (A0):

-ProposITION 4. If there exists a bounded Lyapunov function v from
Proposition 3, which has a bounded second derivatives, then (AQ) is satisfied.

Proof. Because a;;(x) = co*(x) is bounded, for any é > 0 there exist a
B > 0 and an go > 0 such that, for ¢ <&y, |x| > é implies

(X)

j

Aav(x) 2t 22 11( )+Zf(x)_ _2_1ﬁ‘

Applying now Corollary 2, Proposition 1 and Lemma 2 of [7] we get,
for any u >0,

sup E(T? <o and supE, T} < 0.
yellp) yeD
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Take i > 0 such that o(x) # 0 for xeK(i). Then from Corollaries 1
and 2 of [7] for u<p,
sup E,(TH)? < 0.
xey(r)
Thus, for p < j, (y(u), I'(4) form a cycle for X* with & <&,.
ProPOSITION 5. If there exists a Lyapunov function v satisfying the
assumptions of Proposition 3 and, moreover Vv(x) is bounded, then (Al) is
satisfied. L SR
Proof. Suppose for some compact F, constants L >0, r > 0 and_any
time T > O that there exists an x€F, a control u and S,7(#) < L such that,
for any t >0, |[y*“(t)) = r. Then from Lyapunov condition (37), for é =r,
there exists a f > 0 such that (f, W)(x) < —f for |x| >r. Therefore, since
lo| €M, |Vv| < M for some constant M,
C : . T ‘
(38)  v(y* () —v(x) = [(f+ou(s), W)(y™(s)ds
0 .
T
0

< - BT+ [ (ou(s), Vv)(y""" (s))ds

< —ﬁT+ M(E |M(S)|2 ds)o.s (T" IVV|2 (y""‘(s))ds)o's
0 0

< ~BT+2M? LT3,

If T — oo, then the right-hand side of (38) converges to — oo, which
contradicts the positivity of v. Thus (Al) is satisfied. '

Assumptions (A2)-(A7) concern contrcllability of system (3). Therefore
we will impose suitable local controllability conditions.

ProrosiTiON 6. Suppose

) (39)_ A Vﬂ >035>0 Vzex(x,a)ar,u Sor(u) < B, y*(T) =x.-

Then (A2) and (A6) are satisfied. |
Proof. Let R(x) = {z: 3, 7 Sor () < B, y**(T) = x}. As R(x) is open by

"(39), the set

G= ) R(»)
xeF
is also open. Since the function x —g(x, dG) is continuous, it attains its
positive infimum on OF. Therefore there exists a ¢ satisfying (A2).
To prove (A6) it is sufficient to show that there exists a 6 > 0 such that,
for any zedD, there exists a yedD_; such that V(z, y) <#. By similar
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arguments as above, we infer that the set G = DU |J R(z) is open, 0D is
zedD

compact and ¢(x, dG) attains a positive infimum for xedD.
ProposiTion 7. Suppose

(40) V. V5503550 Vyeknny 3ty Sor(@ < B, y**(T) =y
and
(41) Vx Vﬁ>036>0,T0>0V eK(x, .5)3T<T0u Sor() < B, y(T) =x

are fu!ﬁlted Then (A7) is- satisfied.

Proof. For each xerl’ and B8 > 0 we find a §(x) which satisfies (40) and
(41). Moreover, for any f > 0, there exists a T(x) such that

yeD_ 5 . yeD_ 5

The family K(x 5(x)) con51st1ng of balls satxsfymg (40) and (41), covers
I'. Since I' is compact, . .

rc\K(x,d(x)) for some x,, ..., x,€l.
i=1

Let T¢ be the upper bound for the time from (41) corresponding to x;.
Write T=max{T(x)+ T, i=1,..., s}. Then, for each x €K (x;, 5(x)),

i]]f VT(xa y) ]Ilf [VT (x xl)+ VT(x‘) (xu y)]

yeD_ 5 yeD Fi
| < Bt inf Vi ( ) < 2+ inf V()
yeD_5 yED_a
< 3B+ inf V(x, y)
yeD_;

and (14) is satisfied.

It is almost obvious that

CoRroOLLARY 4. Under (40), (A3) holds. Moreover, (39) and (40) imply (A5).

Assumption (A4), as it is easy to check, is satisfied for nondegenerate
systems, i.e. when the eigenvalues of go* are uniformly bounded away from
0.

We consider now an example of stable degenerate deterministic systerhs
for which (A4) holds.

Example. Suppose r = 2. We have

42) . -~ dx{ = Ax;+¢&eBdw,,
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~ where

-l e ) o[l]

and the eigenvalues of 4, 4; and A,, are real and 0> A, > A,. The ‘corres-
ponding deterministic system is

43) - % = Ax+Bu

and coincides with the second order controlled system x+2bx+c X=u
studied intensively in [2]. The eigenvectors of 4 are

S ey

Consider the system in new coordinates (y 3 generated by the basis
g1, qz) If (x!, x?) are old coordinates, then x' = —y'—y% x? = -1, y'—
—2A,y% and (43) has the representatlon

= 'l.l y '—u(ll —‘_lz),

(44)
: = by +u(d; —4y),

which is nondegenerated linear system. In (g,, ;) basis the sphere (x')%+
+(x?)? = p? becomes an ellipse with the symmetry center in origin. Plotting
the curves corresponding to constant positive and negative controls u
respectively, we see that (A4) in this case is really satisfied.
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