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Abstract. Chebychev's inequality provides a bound on 
P[IX-pI 2 kc], where X has an arbitrary cdf F with u2 < oo. We 
extend this result by placing further restrictions on F. We first assume 
that X is n times divisible so that X can be viewed as an average of 
n i.i.d. random variables. 

Camp-Meidell's inequality provides a tighter bound than Cheby- 
chev's by assuming that X is absolutely continuous with unimodal 
density function. We also extend this inequality by placing additional 
smoothness assumptions on the density of X. 

1. Introduction. Statistical inference in regression analysis often assumes 
that the error terms are normally distributed. The bootstrap (cf. [6]) is 
a nonparametric procedure in which the data are used as an empirical 
distribution of the errors. The theoretical results on the bootstrap involve 
proving that the bootstrap distribution of a statistic as n -, ao converges to the 
true distribution (see [3] and [7]). The conditions under which the bootstrap 
distribution converges to the distribution is that p/n +O for the estimation of 
one regression coefficient and p2/n + 0 for the simultaneous estimation of all 
regression coefficients. In contrast, the validity of the normal approximation 
(for one coefficient) depends on the stronger uniform convergence of the 
diagonal of the hat matrix to 0 (see [13]). A control versus treatments 
experiment is described in [4] to illustrate the asymptotic properties of these 
approaches. 

Since the theoretical results are asymptotic, we did some empirical work to 
study the bootstrap distribution of a statistic and the distribution of rt: statistic 
assuming normality for finite sample sizes. By varying p and n in the 
experiment described in [4] and using the rates of convergence as a guide, we 
created three situations: (i) neither the bootstrap nor the normal distribution 
works, (ii) only the bootstrap works, (iii) both work. We also used three 
different distributions for the error terms: (i) U (- 3, 3), (ii) T with 3 d.f., 
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and (iii) exponential. To our surprise, the empirical findings from the computer 
simulations showed that the normal distribution worked well in all nine cases 
and outperformed the bootstrap. 

One reason that the normal confidence intervals appear to be doing well 
could be due to the fact that the quantiles of the distribution under the actual 
distribution are reasonably close to the quantiles of the statistics under the 
normal distribution. If we consider X in the extreme case of n = 2, then we 
know that P[, , /FIx,  +X,I G 1-96] = -95 under normality. The probability 
that $11, +X,I = 1.96 is close to .95 for the uniform, exponential and 
T-distribution with 3 d.f. is evident from Table 1.1. 

Table 1.1. P , [ J Z J X , + X , ~  < c] 

c = 1.645 c = 1.96 c = 2.575 

Uniform ,8921 .9600 3974 
Exponential ,9296 ,951 1 .9764 
T with 3 d.f. .9295 ,9559 ,9800 i 

(I)  A linear transformation is performed so that y = 0 
and a2 = 1. 

The results of the experiment raise the following questions which are the 
focus of this paper. Is the coverage probability .95 because of the choices of 
the distributions? Would the coverage probability be approximately the 
same as the coverage probability assuming normality for different levels (e.g. 
would + 1 standard error correspond to approximately 68%)? Sharpe [17] 
shows that using 1.96 standard errors is robust, over a wide class of 
distributions, in obtaining 95% tolerance intervals. Using the requisite number 
of standard errors from the normal distribution for other levels of confidence, 
substantively different from 95%, could lead to coverage probabilities that are 
quite different from the actual ones. 

One approach for obtaining insight into the coverage probabilities of 
confidence intervals for p assuming normality is to consider 

where Xi are i.i.d. with cdf F. One bound on (1.1) follows from Chebychev's 
inequality 

This bound clearly is not tight except if n = 1 or n = 2 and c = $, since 
Chebychev's inequality places no restriction on the distribution of 8, but 
B must be n times divisible. In the next section, the random variables 
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that provide the bounds for the more general problem of independent but 
not necessarily identical random variables are characterized and the bound 
for n = 2 is derived. Motivated by the solution far n = 2, we consider 
P p  [IR-pl 2 CCJ/&J for a specific F in Section 3. We show that as 
n+ cx, this F is a local optimum to (1.1). Interestingly, the bound given 
by F as n+ m is close to Chebychev's bound. 

The bound can be made smaller by restricting the nature of the 
distribution. Lf, for example, Xi is unimodal and symmetric, then 
Camp-Meidell's inequality implies that 

A discussion of Camp-Meidell's inequality and an extension to distri- 
butions where the density has a bounded derivative are given in the last 
section. 

I An alternative approach that appears in the literature dates back to the 
work of Bernstein 121. Since P [X 2 c] = P [g ( X )  3 g (c)] for any strictly 
monotonic function g, additional bounds are obtained by appropriate choices 
of g.  This approach is used in [I], [9] and [Ill .  For an excellent review of this 
literature see [i4]. 

2. Results on bounds. In this section, we first characterize the behavior of 
F that bounds (1.1). We then determine the member from this class for n = 2. 
We know that Chebychev's bound applies for n = 1, so if c = 2, the bound 
is .227. We also know that as n - t  a, the bound must be greater than the value 
obtained by our special case in Section 3 which is .209 for c = 2. The bound for 
n = 2 at e = 2 is .2 as will be demonstrated in this section. This shows that half 
of the distance between the bound as n+ oo and n = 1 is obtained at n = 2. 
Samuels [I61 uses the same approach except for nonnegative random 
variables. 

i Let 52 be the class of cdf's corresponding to symmetric random variables 
I X with p = 0 and aZ = 1. We consider the following extension to our previous 

problem. Let X,, ..., X, be independent but not necessarily identically 
distributed random variables with Xi -- F ,  E for all i. Find 

sup P[IX,+ ...+ X.1 zc/&]. 
F I ,  ..., Fn 

By symmetry, we clearly only need to consider P , Xi 2 c A. Let 
F:, . . . , F,X be the cdf s that achieve the supremum in (2.1). 

The next two lemmas serve to characterize FT as the cdf corresponding to 
the random variable with point masses at ,a and + 6 for 0 < a < 1 < b. The 
characterization also follows from a general result in [lo]. 
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LEMMA 2.1. Let Go be the subclass of cdf's such that F ~$2, if F ~ 6 2  
and F cannot be written as EF, + ( 1  - E )  F2 for F 1 ,  F z  E D and 0 < E < 1. Then 
FT E !2, for all i. 

P r o  of. Assume that 

X i - f ' = ~ F 1 + ( 1 - c ) F 2 ,  where F , ,  F2€Si? and O < E <  1. 

Then 

Since the last expression in (2.2) is linear in E, the probability is maximized at 
E = O  or 1. 

LEMMA 2.2. A random variable X - PEG?, iff X is a discrete ran- 
dom variable, X ( a ,  b), with point masses of (b2-1) /2(b2-a2)  at +_a and 
(1-a2) /2(b2-a2)  at _+b for 0 < a ,< 1 < b.  

Proof.  If F E O  but F is not as in the statement above, there exists 
a, E [O, 11 such that F (I) > F(a,) > F (0) and/or there exists b, E (1, co) such 
that 1 > F (b,) > F ( 1 ) .  We consider the case for a, since the argument for b, 
follows in a similar manner. Let p ,  = F(ao)-F(0) and p, = F(1)-  F (a,). 
Define 

and 

Then F (x)  = E F ~  (x)+ ( 1  -c)F2 (x), where E = p2/lp, +p,). 
We now turn to the special case n = 2. Based on Lemmas 2.1 and 2.2, 

we need to maximize P [XI + X 2  2 k = e $1, where Xi = +ai with prqbabi- 
lity (b? - 1)/2 (b f  -a?) and Xi = f bi with probability (I -aT)/2 (b: -a?) for 



Extensions of Chrbychev's inequality 

0 < ai d 1 < b, and i = 1,2. We prove a lemma which reduces the number of 
cases and defer the tedious task of going through all of the cases to a working 
paper (Bickel and Krieger (1 99 1)). 

LEMMA 2.3. I f  X 2  is a random variable as described above, then in order to 
maximize P [X, + X 2  ), k ]  

(i) a, must satisfy P [a, + X 2  = k] + P [-al  + X2 = k]  > 0 provided that 
O < a , < l ;  

(ii) b,  must satisfy P [b, + X 2  = k] + P [- b ,  +X, = k ]  > 0. 

Proof.  Let 

where 

x(a,) = +{p[a,+X, 2 kl+PC--a,+X2 2 kl)  

and 

I (i,e., a (a,) and B (b,) are the conditional probabilities that X, + X, 2 k given 
I X I  = f a ,  and X ,  = f b , ,  respectively). 
I (i) Assume (i) does not hold. That implies 8u (a,)/da, = 0. Hence by taking 

derivatives it follows that &$(al, bl)/8al = 0 if a(a,) = P(b,). But this implies 
#(a1, b,) = a(a,) SO that a, can either be decreased or increased until 
P [ a l + X 2  = k]+P[-a ,+X,  = k] > O  or until a ,  = 0 or a, = 1. 

(ii) The argument for (ii) is similar to the argument for (i). 

Clearly, the same conditions as (i) and (ii) in Lemma 2.3 for a, and b, 
apply to a,  and b2. 

LEMMA 2.4. I f  X I  and X, are independent with cdf's F , ,  F , E O ,  then 
P [ ( X I  + X,) 2- k] is maximized for k $ 2 if either 

(i) X, has point masses at 0 and f (k - 1); X 2  has point masses at f 1; 
(ii) X, and X, have point masses at 0 and f k; - 

(iii) X ,  has point masses at a and & b;  X ,  has point masses at f (k - b) 
and + (k-a); 

(iv) X I  has point masses at _+a and _+k; X ,  has point masses at 0 and 
f &-a); 

( v )  X ,  has point masses at f a  and f (2k- a); X ,  has point masses at 0 and 
& (k - a). 

Remarks.  1. The only solution that is a function of two variables is (iii). 
In the technical report we show that case (iii) can be reduced to a one-variable 
problem. 
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2. There are situations in which (iii), (iv) and (v) are optimized at 
an interior point. However, in all cases that we tried cases (i) and (ii) 
dominate. 

3. Solution (ii) dominates solution (i) iff k 2 2.1939 which is equivalent to 
c 2 1.55. Thus case (ii), theUonly i.i.d. case, is not extremal in general for the 
problem we considered. However, we do not know whether case (ii) is extremal 
for the case of i.i.d. summands or not. 

4. Similar results for two independent random variables, but where the 
random variables are nonnegative with given mean, appear in [5] for the case 
where XI and X, do not necessarily have the same distribution and in [12] for 
the case where X, and X, are identically distributed. 

3. Special case. We want bounds on P, [IX-pl 3 cu/&]. Since we are 
implicitly assuming that a is known, we let a- = 1 without loss of generality. 
Also, since we consider Xi in deviation form (i.e., Xi - p), we let p = 0. Hence 
the problem reduces to considering the functional 

where Xi are i.i.d. with cdf F. 
Motivated by the solution for n = 2 in the previous section, we consider 

the discrete random variables that have probability mass of p,, = 1/[2c2n] at 
& c & and the remaining mass of 1 - Zp, at zero. Of course, n 2 c- '. We 
assume c 2 1 to avoid restrictions on n. These random variables are such that if 
the number of positive Xi differs from the number of negative Xi by at least 
one, then Izr=, xi/ 3 c 6. For these random variables, with corresponding 
cdf denoted by G,, it is easy to see that 

where (x) denotes the greatest integer in x. When n is one, 4, (G,; c) coincides 
with Chebychev, and so 4, (GI; c) = c-'. Clearly, 4,(G,; c) < c - ~  for all n. We 
show that 4, (G,; c) decreases monotonically in n for all c. We then find G,, the 
limiting distribution of G, as n + m, and hence 4, (G,; c). We show that G ,  is 
a local maximum of 4, (F; c). Finally, we show that 4, (G,; c)/4, (GI; C) 

increases in c to one as c-, a. The fact that there is an infinitely divisible 
distribution H such that 

lim $,(H, c)/c-' = 1 
c-  OC 

is shown by Robbins in [15]. His H is different from G ,  and is not tight since 
6, ( H ;  c) g bw (G,; 4. 
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The most difficult result to show is that #, {G,; c) decreases in n. We prove 
that result by studying the behavior of 

where x = c2 2 1. clearly, i f  p(n+ 1; j ,  x ) / ~ ( n ;  j ,  x) 2 1 for all n,  j and x, we 
would be done. This is not quite the case but something close is true as is 
apparent from 

LEMMA 3.1. (a) P (n+ 1 ; j ,  x) /p (n; j ,  x )  has the following properties: 
( i )  it increases in x for j = 1, 2 ,  . . . , (n/2)  ; 

(ii) it decreases irl x f i r  j = 0;  
(iii) it is at least one for j = 0, 2,  . . ., ( 4 2 )  for all x; 
(iv) it is at least one for j = 1 and x 3 2. 
(b) PCni-1; 0, x ) + i P ( n + l ;  1 ,  x )  2- P(n; 0, x ) + $ J ( n ;  1 ,  x) for all x. 

The proof of Lemma 3.1 appears in the technical report. 

We now turn to finding the limiting behavior of the sequence of random 
variables {Xn (e)h where P [x,, (c) = 2 c f i ] = 1/[2c2n] and P [X,, (c) = 01 
= 1- 1/[c2n] for a given value of c. The following lemma is standard: 

LEMMA 3.2. We have 

if XI,, . . ., Xnn are i.i.d. according to X ,  (c) and Z ,  (c) and 2, (c) are i.i.d. Poisson 
p = 1/(2c2)). 

We now focus on proving certain results about Y(c). It is easy to verify 
that 

where p = 1/(2c2). The following corollary to Lemma 3.2 is proved in the 
technical report. 

COROLLARY 3.3. (i) f (p)  L) [ I -  C:= eP2' p2i/(i!)2]/2p decreases in ,u and 
(ii) limp+o f (p)  = I. 

This says that the ratio of the bound provided by Y (c) to the Chebychev 
bound increases in c and goes to one as c+  oo. 

In Table 3.1, dn(Gn; c) (see (3.2)) is presented. Note that the last 
row, which is labelled n+ co, is the asymptotic result as given in (3.4). 
The three properties of r$,{G,; c), namely, $,(G,;  c) decreases in n, 
4, (G,; c)/#,  (GI; c) increases in c, and this ratio goes to one as c +  co are 
evident from the table. 
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Table  3.1. Bounds for the special case 

Ratio ('1 1 ' 1.3601 1.1963 1.1236 1.0851 1.0302 . 

(I) Ratio is the value at n = 1 divided by the value as n+m. 

We now turn to showing that G ,  is a local optimal to 4,. If F%, 
1 < i < n, achieves 

then {(X, + . . . t x,)/&) is necessarily tight. Further, since 

any limit law of (X, + . . . + x n ) / f i  must be infinitely divisible, symmetric about 
0 ,  with variance d 1 .  If L is infinitely divisible, symmetric about 0 ,  and 
E (LZ) < 1, we can only increase P [ILI > c] by scaling L up to 1. We conclude 
that 

!& sup P[IX ,f...+ x n I 2 c & ]  =supP,[ILI>c], 
n F I ,  ..., F, RW 

where i2, = ( F  infinitely divisible, symmetric about 0, EF(L2) = 1). 
We conjecture that 

PG, ClLl 2 C] = max R, PF [ILI 2 C] 

We can only show the following local maximum result. 
It is well known that 

{ 
m (COS t X  - 

Q, = F : E, (eifx) = exp j' 
-co x2 ' )*M(*) ,  M ~ A ) ,  

where A = (probability measures on (- CQ, a), symmetric about 0). Paramet- 
rize 52, by A and write P,. Then G, corresponds to M ,  = $(6,+6-,) ,  where 
6, is point mass at c. 
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THEOREM 3.4. With the above notation, if M ,  -- (1 - E) M, +&Ad, where 
M E  A is arbitrary, and c 2 f (2 + f i l l 2  = -924, then 

unless M = M, .  

The proof proceeds by a series of lemmas. 

LEMMA 3.5. Suppose A, = {ME A: j ym x L 2  ~ M ( x )  < a). Then, t > 0, 

- X - ~ ( P [ L ~  >, C] - P  [Lo+ D, 2 GI)] d M ( x ) ,  

where Lo - F,, D, - 3(6,+6-,) and is independent of Lo. 

Proof.  Let the probability measure M* correspond to M via 

1 d M ( x )  41 

dM* (x) = where A(M) = 1 ~ - ~ d M ( x ) .  
A(M) x2 - rn 

Then it is well known that X - M if 

where Ui are i.i.d. with common distribution M* and N  - Poisson ( A  (M)). 
Further, 

(3-6) P M , [ X  B c] = P [ X , + Y ,  2 c], 

where X, - F ( ,  -,,,, and Y, - I;,,. Combining (3.5) and (3.6), we obtain ' 

where Ui are i.i.d. Mg = M, = D, and are i.i.d. M*, N, ,  - Poisson(A, (1 -&)), 
Nle  Poisson(A~) all independent and A, = A(Mo) = cP2, A = A(M). Then 

Further, 
Ni, 

P [ X , > c ] = P [ X , + X : > c ] ,  where X : =  C Ui, 
i = l  

where U: are independent of U i  and i.i.d. M,* and N;,- Poisson(A,~) is 
independent of everything. So, 
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Combining (3.7) and (3.Q we get 

PM, [X 2 c] - PMo [X 2 c]  = (eNAa-A)-  I )  P [ X o  2 c j  

+A&P[X,+V, 2 c]  

-Ao&P[X0+U; 2 c]+ObZ). 

Hence 

-A(PIXo 3 c]-P[Xo+V1 2 c]). 

Write 

(3.10) A ( P [ X o 2 ~ ] - P [ X o + V l / , ~ I )  

= Aj(PIXo B c ] - P [ X 0 + D ,  2 c])dM*(x) 

= Jx-'(P [x, 2 c] -P[X,+D, 3 c])dM(x). 

The lemma follows from (3.9) and (3.10). 

By Lemma 3.5, the theorem foI1ows fo'r M E - A ,  from 

LEMMA 3.6. For a11 c 3 1/$ and all x 

The proof of this lemma uses 

LEMMA 3.7. If Y = X - X f ,  where X and X' are independent Poisson(i) and 
3. 6 2-$, then P [ Y =  j+IJ--PLY= j] is increasing in j for j 2 0. Hence 
P [Y = j ]  is decreasing for j 2 0, viz. Y is  unimodal. 

Proof. If j 2 0, then 

Hence 

The quadratic in parentheses has roots 

for all k, j > 0. The result follows. Note that Y is unirnodal under the weaker 
condition A 2 1. . 
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Proof of  Lemma 3.6. Using the notation of Lemma 3.7 it is enough to 
show that, for all u 2 0, 

(3.12) P L Y 2  11-P[Y+D, ,2  I] 2 t k 2 ( P [ ~ 3  11-PIY+D1 3 11) 

if = 1/2c% 1 (or c 3 I/$). 
Suppose 0 < u < 1. Then (3.12) reduces to 

which holds by Lemma 3.7. Tn general, if j ,< u < j +  1, then 

P [ Y + D ,  11 = P [ Y + D j  3 11, 
so that if (3.12) holds for ti = j 2 1, it holds for all es. Now, if j 2 1, then 

P L Y 2  l j -$ (P [Y>  1 -j]+PCY> 1+j]) 

= -%(P[Y= O]+P[I-j G Y <  -11-PC1 ,< Y , < j ] )  

= - % ( P [ Y =  01-P[Y=j]). 

So (3.12) becomes 

But, by Lemma 3.7, 

and (3.14) and the lemma follow. 
To complete the proof of the theorem we need 

LEMMA 3.8. If jzcc x - ~  dM (x) = a, then F ,  is continuous. 

Proof  (due to P. W. Millar). Argue by contradiction. Without loss of 
generality suppose F ,  has a mass at 0. If it does not, consider FM * P ,  = F2,. 
Let ( I . ; :  t  2 0) be the LCvy process having Yo = 0,  I: = Y, - F,. By LCvy's 
inequality, 

P [  sup ~ > 0 ]  < 2 P [ Y 1  >0]  < 1 
0 4 t d l  

by the symmetry of and P [Y, = 01 > 0. But P [sup,, , x 2 01 = 1 since 
Yo = 0. Hence 

P [  sup F=O]>O. 
O < t < l  

The events E ,  = (x < 0 for t arbitrarily close to 0) and E, = (I.; = 0 for all 
0  < t < to ,  some to > 0) have, by the Blumenthal O-I law, probability 0 or 1. 
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By (3.15), P [ E l ]  = I or P [E,] = 1. But, by symmetry, PIEl] = 1 implies 
P [E; > 0 for t arbitrarily close to 01 = 1, which contradicts (3.15). Therefore, 
P [ E 2 ]  = 1 and it follows by standard theory (see, e.g., [a], pp. 274275) that 
ME A,, a contradiction. 

We can now complete the proof of the theorem. By Lemma 3.8, if M + A,,, 
then FM is continuous. Then, if X - F,, X, - F(,  -,,,,, - FtM are indepen- 
dent, we have 

= P[X,+X 2 c]-P[X,+Y, 3 c]+P[X,+Y, 2 c]. 

Now, 

as E-0.  But 

As E+O,  we have 

0 i f k < l ,  
P [ x  c(1-k)]+ and PLY, 2 01 = ) 1 if k 2 2, 

since FEM is continuous. By (3.16H3.18) we obtain 

The theorem follows. 

4. Unimodal densities. In this section, we first prove Camp-Meidell's 
inequality constructively so that we can extend this result in two directions. We 
consider sup,,,, #, (F; c), where F E i l l  if F corresponds to a unimodal density 
with F E D .  We then turn to the problem of maximizing # , ( F ;  c) over all 
F E Q2 (s), where FED,  (s) if F E 62, and IF' (x)l d s. 

LEMMA 4.1. Let X be a symmetric absolutely continuous random variable 
with p = 0, a2 = 1 an8 unirnodal density function f(x). Then P [JX -PI 2 ca] is 
maximized when X is a nzixture of point mass at zero and U ( - k ,  k), 
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Proof.  Without loss of generality we can assume that ,u = 0 and c2 = 1. 
By symmetry, we only need to consider P IX 3 c ] .  Let Y be a random variable 
with decreasing density over (0, a). Let g(y) be the constant function on 
(0, k) with value equal to f,(c), where k = c- i -PLY2 c)/f ,(c) .  Let X 
be a mixture of U (0, k) with probability f,(c)k and point mass at zero with 
probability .5 - f, (c)k. Since fy [x) 3 fy (c) for c 6 x < k, we have kf, (c) 
< P [Y> 01 = .5. Also E(X2) < .5. Hence, we can increase k and reduce the 
probability that X equals zero either until E(X2) = .5 or P [X = 01 = 0. If the 
latter occurs first, we can then reduce the height of the uniform and increase 
k to obtain U ( 0 ,  K), where Y = fi. 

COROLLARY 4.2. If X is an absolutely continuous symmetric unimodal 
random variable, then 

Proof.  The results follow from Lemma 4.1 and the best choice of k. 

Remark. If c = 2, the bound is 1/9 which is much closer to .05 than 
Chebychev's bound. 

We can follow the same approach as in Section 3 to obtain a lower limit for 
bounds on 4, in (3.1) for symmetric absolutely continuous unimodal random 
variables. Let Xi be a mixture of U (- b f i ,  b &) with probability 3/(b2n) and 
point mass at zero with probability 1 - 3/(b2n). As n -+ a, the number hf of Xi 
that are not zero has a Poisson distribution with ,u = 3/b2. Hence 

n m m 

(4.1) l i m ~ [ I z ~ ~ l 2 k & ] =  lim z P [ I Z  ~ ) > k & ] e - ~ ~ " / r n !  
n +  m i =  1 m i = l  

2 ,ue-'(b - k)/b + .5,u2 e-"(2b - k)'/4b2 

+ .5 (1 - e -p  (1 + p + p2/2)) (2b - k)'/4b2, . 

where Y ,  are i.i.d. U (- b A, b &), The first term on the right-hand 
side comes from P[IY,(>, k f i ]  and the second term comes from 
P [I Y, + Y,J 2 k  &I, where Y, + Y2 has a triangular *density. Note that 
neither term depends on n. The last term comes from the inequality that, 
for any j 3 3, 

P [ ( Y l +  ...+qI 2- k& 

2 P[IY1+Y,I 2- k& PLY,+ ...+q has the same sign as Y,+Y2] .  

The probability that the signs agree is .5. 

Remark  1. If c = 2 and b = 3, as in Camp-Meidell's inequality, then the 
right-hand side of (4.1) is approximately .099, which is close to . I l l .  

9 - PAMS 13.2 
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Remark  2. We can of course get a tighter result on (4.1) by considering 
the probability relating to the convolution of three uniforms. If c = 2 
and b = 3, however, then P ( N  3 3) = .0048, so the n = 3, 4, . . . terms are 
negligible. 

Remark  3. Let b = 1.5~ as in Camp-Meidell's inequality. As c +  a, the 
right-hand side of (4.1) behaves as 

But 

So for large c the ratio of the bound for infinitely divisible random variables 
and Camp-Meidell (which is sharp for n = 1) goes to one. 

Let ~ E S Z  if f is a symmetric (about zero without loss of generality) 
unimodal density function with j:2x2 f (x )dx  - 1 as above. Consider 

Camp-MeideII shows that supfEays(c) = P [ X ,  2 c] ,  where X ,  is of the 
form: mixture of U(-k, k) and point mass at zero with respective prob- 
abilities 3/k2 and 1 - 3/k2.  Strictly speaking, X ,  is not an absolutely continuous 
r.v. but there exists L E G  such that 

The supj-,, yf (c) can be reduced by restricting D to T ,  a subset of 51. One 
logical course would be to place a restriction on f'(x). To this end, we define 
r (s), where f E r (s) if f E !J and - f ' ( x )  d s for x > 0, where s > 0. Note that 
the restriction of f' makes sense since f is decreasing for x > 0. Of course, we 
need only consider f(x) for x > 0 by symmetry. 

We state the following known result since it is used throughout the 
ensuing discussion. 

LEMMA 4.3. If j'rf(x)dx = jrg(x)dx and there exists x , ~ [ t ,  u] such that 
f (x) 2 g (x) for t < x < x0 and f(x) < g ( x )  for xo d x G u, then 

where h is any non-decreasing function. 
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Lemma 4.3 implies that s must be at least 1/6. This follows by considering 

~ ( b - x )  for 0 < x  < b ,  
for x > b ;  

then b must be s - I t 2 ,  which implies E(X2) = I / ( & ) .  
The proposition of interest uses the following subset of functions H(s)  

contained in r ( s ) ,  i.e., h(x;  a ,  b ,  d ) ~ H ( s ) ,  where 

s ( a - x ) + s ( d - b )  for 0 d x < a, 
s ( d - b )  for a 6 x G b,  

(4.4) h ( x ;  a, b,  d )  = s(d  - x )  for b < x  d d ,  

Lo for x > d .  

Obviously, there are constraints on a ,  b and d since 
-- 
J h ( x ;  a ,  b ,  rl)dx = 1/2 and J x2h(x;  a ,  b ,  rl)dx = 1/2. 
0 0 

Straightforward calculus gives 

(4.5) s (d2+a2-bz )  = 1 

and 

(4-6) s ( d 4 + a 4 - b 4 )  = 6 .  

Letting x  = a', y = b2 and z = d Z  it follows from (4.5) and (4.6) that 

(4.7) y = z -  k / (zs-  1) 

and 

(4.8) x = (1,'s) - k/(zs - I ) ,  

where k = 3 - 1/(2s). 
We are now prepared to prove the main result. 

LEMMA 4.4.  SUP^^^(^) yf (c)  OCCUYS if f E H(s).  

Proof.  Let g  be any element in T(s). There exists an a~ [0, c] such that 

where 

s ( a - x ) + g ( c )  for 0 < x  < a ,  
h ,  ( x ;  a) = 

for a < x  < c. 

This is so since h, ( x ;  0) < g ( x )  for all X E  [0, C] and h ,  ( x ;  c) 2 g ( x )  for all 
X E  [0, c ] .  Similarly, there exists a b E [ c ,  oc] such that 
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where 

for c < x  < b,  
for b < c < b+gfc)/s, 
for x > b + y (c)/s. 

This is so since h, ( x ;  c) 6 g (x)  for x 2 c and h, (x, m) 2 g ( X I  for x 2 c. We 
can now consider 

It follows that 

m m m rZI 

J h, (x ;  a,  b)dx = g(x)dx and x2ho(x;  a ,  b)dx < j x2g(x)dx.  
C c 0 0 

The inequality holds by Lemma 4.3 and the facts that there exists x, E [u,  c ]  
such that h , ( x ;  a) 2 gtx) for 0 < x < x ,  and h,(x; a) < g(x)  for x ,  < x < c 
and there exists x,  E[C ,  c0J such that h,  ( x ,  b) 2 g (x )  for c < x < x ,  and 
h, ( x ,  b) < g(x) for x,  < x. We can now alter h, ( x ;  a ,  b) in (4.9) by in- 
creasing b and reducing a so that the area constraint is maintained until 
1, x2h0(x;  a ,  b)dx = 1/2. This adjustment increases jPho(x; a ,  b)dx. The only 
concern is whether j ,"xZh,(x; 0, b)dx > 1/2 so that no a 3 0 exists satisfying 
the second moment constraint. 

Consider h(x;  0, b,  d )  as defined by equation (4.4). If h(0; 0, b, d) 2 g(c), 
then 

by Lemma 4.3. If h(O; 0 ,  b ,  d )  < g(c), then h(x;  0 ,  b, d) < g(x) for all 
0 < x < c, and so 

Hence g cannot be optimal. 
The solution to the calculus problem of finding a, < c < b, < do such that 

m m 

h(x;  a,, b,, do)dx 2 J h ( x ;  a,  b ,  d)dx for all a Q c < b Q d 
c C 

appears in the working paper. 
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We illustrate the results for c = 2, that is we want P [IX-p( 2 201. 
Chebychev's bound is .25 and Camp-Meidell's bound is 1/9. The bound here 
depends on s (see Table 4.1). We observe that if the underlying density has 
slope no steeper than the maximum slope of the density of the normal, then the 
bound of -067 is close to .05. 

Table  4.1. Bounds on P [[XI 3 21 

(I) .2419707 corresponds to ( 1 ) f i ) e - ' 1 2  which is the 
maximum slope for a standard normal density. 
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