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ON COMPOUND APPROXIMATIONS 

BY 
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Abstmct. We prove that Le Cam's theorem for compound Pois- 
son can be extended to a much larger set of compound distributions. 
Signed compound negative binomial measure is introduced. Relations 
between compound Poisson and other compound approximations are 
discussed. 

1. Introduction. Poisson distribution was studied in a comprehensive way 
by many authors, see [I], [ 5 ] ,  [B], Compound Poisson, though not so com- 
pletely explored, has also received a lot of attention, see, for example, the 
classical papers by Le Cam [17], [18]. Interest in compound Poisson is es- 
pecially fast growing in recent years - see [4], 171, [8], [20], [23] and refer- 
ences therein. Remarkably it turned out that compound Poisson can be of 
major practical importance, see [lo], [Il l ,  [14]. In comparison with com- 
pound Poisson very little general results were obtained for other compound 
distributions. This paper deals with theoretical aspects of general compound 
approximations. We prove that the accuracy of compound approximation de- 
pends only on its simplest characteristics. It does not really matter is the 
structure of compound distribution of the exponential form or not. It is possi- 
ble to extend results originally obtained for compound Poisson to a much larger 
set of compound distributions. Mainly we concentrate on the extension of Le 
Cam's [18] theorem. Le Cam's result is one of the most general results ever 
obtained for compound Poisson and assumptions in it are minimal: only the 
independence of summands. Thus, one may suspect that the estimate depends 
heavily on the exponential structure of approximation. As we prove in this 
paper, Le Cam's result depends on the exponential structure only in this way: it 
allows us to reduce the decomposition of approximated distribution from the 
approximating distribution. Below we review Le Cam's [I81 theorem, but first 
some notation is needed. 

Let 9 be the set of all distributions. Let E, denote the distribution concen- 
trated at a point a, E = E,. The notation C, is used to denote positive absolute 
constants. Products and powers of measures are understood in the convolution 



sense: F G  = F * G,  FR = F'", Fo = E. For any finite variation measure we 
denote its Fourier-Stieltjes transform by @(t), and its exponential measure by 

LU 

exp { W )  = C Wk/k l .  
k = O  

The analogue of the uniform Kolrnogorov distance will be denoted by 

and the total variation (the norm) of W by 
. . 

1 1 ~ 1 1  = w+{R}+w- {R)  
Note that the total variation has the following useful properties: for any F E 9 

where the supremum is taken over all Bore1 sets. For F E F ,  h 2 0, Levy's 
concentration function is defined by 

Q ( F ,  h) = supF{[x, x + h ] ) .  
5 

The real part of j ( t )  is denoted by Rep(t). We define the compound dis- 
tribution by 

It is easy to check that @(F)(t) = q(@(t)). 

Remark.  Note that (1.1) can be viewed as a distribution of a random 
number of summands, i.e., Iet el, 5,, . . . be independent identically distributed 
random variables with common distribution F, and let (' be a nonnegative 
integer-valued random variable independent of {gi]i>. Then q (8') is the dis- 
tribution of z=, <,. 

Remark. Note also that F can be regarded as the degenerate case of 
compound distribution, i.e., F = q (F)  with q ( E , )  = El. - 

In 1965 Le Cam obtained the following result: 

THEOREM 1.1 (Le Cam 1181). The following inequality holds: 

Le Cam's result is closely related to the first uniform Kolmogorov's theo- 
rem, i.e., to the problem of approximation of arbitrary Fn by the class of all 
infinitely divisible distributions. This problem was considered by KoImogorov, 
Prohorov, Ibragimov and Presman, Meshalkin and many others. Though the 
optimal rate was determined by Arak [2] to be of order n-213, Arak's ap- 
proximation had no such explicit form as compound Poisson in (1.2). (For 
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a comprehensive discussion on the problem we refer readers to the book by 
Arak and Zaitsev [3].) There are some remarks on (1.2): 

1. the estimate in (1.2) is uniform with respect to F, i.e., an absolute 
constant C ,  is the same for all distributions; 

2. from (1.2) we see that the limiting distribution is not necessarily the best 
choice for approximation (limiting distribution may not even exist but (1.2) 
holds); 

3. note that (1.2) can be rewritten as 

. sup inf I(FE,)" - exp (n (FEE - E)}  I d C, n- ' I 3 .  
F E ~  a 

Hence, it is crucial to center F befurs applying the compound Poisson ap- 
proximation. This fact is a very important one, because the usual choice of 
compound Poisson does not include the centering of distribution, see, for ex- 
ample, [4]. As follows from (1.2), it is sometimes necessary to center the dis- 
tribution loosing even such a nice property as latticeness, but gaining in ac- 
curacy. The estimate in (1.2) is optimal (cf. [15]); for the proof see [3]. Note 
that for symmetric distributions (1.2) can be improved and has already been 
generalized by ZaItsev [25]. We extend Le Cam's result in Section 2. 

The case of compound negative binomial distribution is considered in 
Section 3. Quite recently it was proved that in many situations signed com- 
pound Poisson measures can dramatically improve the rate of approximation, 
see [14], [16]. The improvement is possible even in the general case, as con- 
sidered in (1.2), see [6]. We introduce the signed compound negative binomial 
measure and prove that it has an analogous property. 

In Section 4 we show how the solution of Urbanik's problem enables us to 
review the role of the Poisson distribution in the classical theory of infinitely 
divisible distributions. 

2. Extension of Le Cam's theorem. First we introduce the set of lattice 
distributions that will serve as a basis for compound distributions. Let cp (F) be 
defined as in (1.1). Then cp (El) is a lattice distribution concentrated on non- 
negative integers with probabilities cp (El) {k} = p , .  We denote the factorial 
moments of cp(El) by 

m 

vj(cp) = C k(k-1) ...( k- j+  l)p,, j = 1, 2, .,. 
k =  0 

Let us denote by JV (a, b)  the class of lattice distributions on (0, 1, 2, . . .), 
having v,  (cp) = a, v, (rp) < b. Quite analogously to the well-known expansion in 
factorial moments we can show that for rp (El) E A (a, b) and any F E P the 
following relation holds true: 

Here B < v,(cp) G b, ~ E R .  



In the following we need the decomposition of F. Let p = n-lt3, F E F .  
Then there exist a E R, h -  , h+ > 0, A, 3 E 9 such that 

For the proof see -[15], [18]. 
Decomposition (2.2) was used by Kolmogorov and Prohorov, who applied 

the Gaussian approximation to A. Le Cam's result is remarkable also in the 
sense that it was probably one of the first general results where the approximat- 
ing measure had no Gaussian component. On the contrary, even for the most 
smooth F  the compound Poisson has an atom at zero. The Kolmogorov 
-Prohorov approach and Le Cam's approach were combined by ZaYtsev 1241, 

Now we give the main result of this paper. 

THEOREM 2.1. Let F E P ,  p = n-'I3 and a, A, B be defined b y  (2.2H2.5). 
Then for any rp, (El), q, ( E l )  E dl (1, C,) the foI1owing inequality holds: 

Remark. To get (1.2) one must take q, ( E l )  = cp, ( E l )  = exp { E l  - E )  and 
note that 

= exp {((I - P )  A + p ~ )  - E )  = exp (FE,  - E )  . 
Proof  of Theorem 2.1. It suffices to prove (2.6) for n >, g3 (C, $ 

Assume first that h = max(h-, h, )  > 0. Set 

Then 

(See, for example, [15].) 
By the variant of Esseen's smoothing lemma (see [18]), we have 
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From (2.8) it follows that 

(2.101 Q (HWH",, 2h (Cz + 1)) 6 C, Q (HWH", , h)  

G c, (2 IHWHZ -(FE,)"I + Q ((FE,)", h)) < C,, ((np)-'I2 + (p/n)112). 

From (2.11, (2.3), (2.4) we infer that, for [tl < 1/(2h+2hC2), 

< exp (- a 2  t2/8), 

where aZ = 1 x2 A {dx) . 
Analogously, for I tl < l/(2h + 2hC2) 

(2.12) IA, (t)l < exp ( - s2 t 2 / 8 } .  

Consequently, from (2.1), (2.111, (2.121, for )tl < 1/(2h+2hC2), we obtain 

(2.13) Iqg(Al (t))-fil (t)l < na1l8 exp ( -na2 t2/8) C, [ H ,  (t)- 112/2 

d Cil n exp ( - nu2 t2/8) (v2 t2)' < C12 exp (-no2 t2/16} CT Irl n-lI2 

Taking into account (2.13) and (2.10) we see that the right-hand side of (2.9) is 
majorized by CI3 ((np)-'I2 + (p/n)'I2 + l/n). 

It is easy to check that for any compound signed measure Cq, Fi the 
following inequality holds : 

Thus 

(2.15) Iq"lH1) H", - ~ 1  (HI) v H " ,  (H&I d I I  Y"lff1) I I  IH", V? (Hz11 

G I I ( ( ~ - P ) E + P E ~ ) ~ - v z ( ( ~ - P ) E + P E , ) I I .  
We have 

q2(1-p+peit) = 1+p(e"-1)+C,Bp2)e i t - l )2 /2  
and 

Now, we can proceed exactly as in the proof of Theorem 1 from [21] (see also 
[19]) proving that the right-hand side of (2.15) is inferior to C14 n-lj3. This 
evidently completes the proof for h > 0. But in the case h = 0 the proof simply 
reduces to the estimate of (2.15). Thus the theorem is proved. 



3. Compound negative binomial measures. For FEF let us introduce the 
compound negative binomial distribution using the following notation: 

For the sake of convenience its n-fold convolution will be denoted by 
(2E-F)-". Note that the compound negative binomial distribution is infinitely 
divisible. 

.Obviously, in (2.6) we can take rp, ( E l ]  = cp,(E,) = (2E - E l ) - ' .  However, 
we cannot write the analogue of (2.7) for compound negative binomial. Never- 
theless, there are situations when decomposition (2.2) can be reduced from 
approximating distribution. We do not know if it is possible in the general case, 
but we prove that it is possible at least for compound negative binomial. 

W O ~ M  3.1. The following inequality holds: 

Proof.  We decompose FE, as in (2.2), Obviously, it suffices to consider 
the case h > 0, n > 163. Set q = 1 - p .  

In view of (2.6) it is sufficient to estimate 

But, by the smoothing inequality, 

Just as in (2.10) we establish that the concentration function in (3.2) is inferior 
to C, ,n - l i 3 .  Analogously to the proof of Theorem 2.1 we obtain 

11 - q ( A  (r ) -  1)l-' < exp { - a 2  t2 /8)  for It1 S 1/6h. 

On the other hand, 

< 1 + p (Re 3 ( t )  - 1)/2 < exp { p  (Re 8 ( t )  - 1) /2) .  

Noting that for It1 < 1/6h the estimate 1 -Re A ( t )  2 r2 t2/3 holds (see [3,  Theo- 
rem 1.1.10]), we obtain 

(3.4) 1(2 - eita P (t))  - I < (2 - Re (eita P (t))) - < (1 + r2 t2 q/3 + p ( 1  - Re d (t)))  - ' 
< exp ( - a 2  t 2 / 1 0 + p ( ~ e  8 ( t ) -  1) /3) .  
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We have 

(3.5) ~(I-~(A(~)-I)}-~(I-~(B(~~-I))-~-(I-~(A~~)-I)-~(~(~)-~))-~~ 
l q ( J ~ ~ ) - l ) ~ ( ~ ( ~ l - l ) l .  

But 

(3.6) 1 A ( t ) - l l < a ~ t ~ / 2 ,  13( t ) -11<2JCE@r>.  

Consequently, for It[ d 1/6h 

~j(t)l  G C,,exp (-c18 n(a2 t2+p(~e8( t ) -  1))) p ( l -~ed ( t ) )1 t2  G' t2n. 

From the last estimate and (3.2) it is not difficult to obtain 

Thus the theorem is proved. 

It must be noted that the centering of F does not depend on q. Therefore, 
by the triangle inequality, we obtain the following corollaries: 

COROLLARY 3.1. Let cp, ( E l ) €  4 (1, C20), q2 ( E l )  E A (1, CZ1). Then 

(3.7) sup inf 1 q",E, F) - qz (E,  F)I 6 C2 n - 'I3. 
F E F  a 

COROLLARY 3.2. The following inequality holds: 

(3.8) supinfI(2E-E,F)-"-exp{n(E,F-E))I < CZ3n-ll3. 
F E ~  a 

Presman [19], Hipp [14], Kruopis [16], CekanaviGus [6] considered 
signed compound Poisson measures of the form exp {A (F - E ) )  with F E S and 
1 E R (not necessarily nonnegative). Such measures can ~ i ~ c a n t l y  improve 
the accuracy of approximation. 

The idea to use signed compound measures probably was introduced by 
L.e Cam [17], where the signed compound binomial measure was applied. In 
L.e Cam's paper [I81 it was proved that compound binomial distribution can 
be expressed as convolution of compound Poisson distribution with signed 
compound Poisson measure. However, compounding distributions had a much 
more complicated structure than the compound binomial. Thus, there is a very 
serious (and in general not solved) problem of what restrictions must be im- 
posed on signed compound approximations. The usual practice is to use sign 
measures as some sort of asymptotic expansion to the main compound ap- 
proximation, ensuring that their structures are quite comparable with the main 
term. We shall end this section by introducing signed compound negative 
binomial measure. For F E 9, IIF- E 11 < 1/4, let I) (F) denote the compound 
measure with Fourier-Stieltjes transform 

J(F)(~) = J,(P(~)) = ( l - ( ~ ( t ) - l ) + ( ~ ( t ) - l ) ~ ) - ~ .  

Then the following result holds: 

7 - PAMS 16.2 



THEOREM 3.2. Let F E  9, p = 1/10, a, A, B be defined b y  (2.2H2.5). Then 

Remark.  Note that (3.9) provides the accuracy of order n-'I2 for any 
F and, unlike Berry-Esseen's theorem, there are no assumptions of the exist- 
ence of moments. 

Remark.  Conditions on F and p in the definition of $ can be changed. 
We simply assumed conditions sufficient for finiteness of $ ( F )  variation. 

- p r o o f  of ~ h e o  rem 3.2. In [ 6 ]  it was proved that for p = const the 
right-hand side of (2.6) is inferior to C, ,  n-'I2. On the other hand, (2.7)(2.13) 
hold true for p < 1/10. Therefore it suffices to prove that 

But this estimate follows from the general result (Theorem 1) in [21]. Thus the 
theorem is proved. 

4. Compound distributions and the weak convergence of convolutions. We 
considered so far Le Cam's theorem and its extensions. Of course, there are 
many other results that can be extended from compound Poisson to the gene- 
ral compound case. However, we have some doubts about this. Poisson and 
compound Poisson are probably the most convenient to use. The scope of this 
paper is not to discredit compound Poisson; on the contrary, we are very much 
in favour of it. Our main goal is to change the common-spread attitude toward 
Poisson and compound Poisson as to the distributions of utmost theoretical 
importance and uniqueness. We hope that we succeeded in proving that, as 
good as it is, compound Poisson is not unique and usually it suffices to know 
very little about the compound structure of distribution to get the meaningful 
results. Note also that all results above are formulated for convolutions. It 
would be interesting to have an answer to the problem of the possible exten- 
sions (or analogues) of Le Cam's theorem for some generalized convolutions 
that correspond to other schemes different from summation. 

In this section we show that even in the most classical situation of charac- 
terization of infinitely divisible distributions the Poisson distribution is just one 
of many possibilities. 

Let (X,,} (n 2 1, 1 < k < k,) be the triangular array of independent ran- 
dom variables satisfying 

lim max P (IXnkI > E) = 0 ( E  > 0). 
n+m k 

Then the set of possible limit distributions for the sum 
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where A, is a suitable constant, coincides with the set of infinitely divisible 
distributions. The role of the Poisson distribution illustrates the following theo- 
rem, see [22, p. 741: 

THEOREM 4.1. The totality of injinitely divisible distribution laws coincides 
with the totality of laws which are composed of a finite number of Poisson laws 
and of limitn of these laws in the sense of weak convergence. 

We show that even in this situation Poisson distributions can be replaced 
by some others. This fact is closely connected with the solution of Urbanik's 
problem obtained by Hildebrand [13]. Urbanik 1221 posed a problem on 
limiting behaviour of the sums of two-valued random variables. We do not 
review the problem and its solution in full (readers can find it in [13]), because 
for our purposes more important is the following adjacent result from 1131: 

THEOREM 4.2 (Hildebrand [13j). Let G be an infinitely divisible distribution. 
Let p,,, n 2 1, I 6 k d kn, be real numbers satisfying 

Then there exist real numbers an, such that i fXnk are independent random uaria- 
bles with distributions 

then (4.1) holds and, with suitable constants An, the distribution of the sums (4.2) 
converges weakly to G. 

From Theorem 4.2 it is not difficult to deduce the following result: 

THEOREM 4.3. Let G be an infinitely ditlisible distribution. Let pnk, n 3 0, 
1 < k < kn, be real numbers satisfying (4.3) and let 

(4.5) p =  max pnk+O (as n + c o ) .  
1 S k S k .  

Then there exist real numbers a,, (k = 1 ,  2 ,  . . . , k,) and constants A, such that 
for c p ,  (El ) ,  . . . , qk, ( E l )  E ( 1 ,  C2,) the convolution 

converges weakly to G as n + co. 

Proof.  From Theorem 4.2 we obtain a,, A, such that 

converges weakly to G. Set for the sake of brevity 



Then 

Just as in (2.161, for large n we get 

On the other hand, 

Applying (4.8) and (4.9) to (4.7) we infer that the left-hand side of (4.7) is infe- 
rior to 

The assertion of the theorem now follows from (4.5). 

Rernar k. According to Hildebrand [13, p. 741 condition (4.5) is not very 
restrictive. 
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