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Abstract. Examples of non-Gaussian multivariate distributions 
with Gaussian conditional moment structure, Gaussian marginals and 
normal projections are provided. 

1. Introduction. Gaussian-like distributions are intriguing probability ob- 
jects. Numerous constructions of such measures are given in the literature. 
They include among others: 

- non-Gaussian n-dimensional measures with all Gaussian (n - 1)-variate 
marginals - see, for example, Stoyanov 1141; 

- non-Gaussian measures with any finite number of normal projec- 
tions - see Harnedani and Tata [8]; 

- non-Gaussian measures with normal conditional distributions - see, 
for example, Castillo and Galambos [ 5 ] .  

Further comments can be found, for example, in Hamedani [7] or Arnold 
et al. [I]. 

In this note we are interested in Gaussian conditional moment and mar- 
ginal structure. Additionally, normal linear forms are considered. The examples 
we provide sontribute towards better understanding of the miracle of the 
Gaussian measure in finite dimensions. 

Consider a real square integrable random element X = (X,),,. Assume (to 
keep everything in the simplest form without losing generality) that E (X,) = 0, 
E (X:)  = 1, t E T, and denote by E its correlation matrix. We say that X (or its 
distribution) has a Gaussian coaditional structure of order s (belongs to 
GCS,(T)) iff all conditional moments E(X;k I X, , ,  ..., Xtm), t, t l ,  . .., tnr€ T, 
m 2 1, k = 1 ,  . . ., s, are exactly like for the Gaussian distribution with the 
same correlation matrix E. The GCS, (T) measure has been intensively inves- 
tigated during the last ten years. Main results are reviewed in Wesolowski [15]. 

* This research was done partially as the third-named author visited the Bowling Green 
State University in the autumn 1994. 
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It is known that if T =  [O, GO) (Plucitiska [lo]) or T =  (0, 1, . . .) (Bryc and 
Pluci6ska [3]), then under mild technical conditions GCS, ( T )  measure is 
Gaussian. However, in the two-dimensional case IT = (1, 2)) a non-Gaussian 
example was given by Kwapien (reproduced in [3], where also infinite inte- 
grability of the GCS, families was proved) - it is a measure concentrated on 
four points (1, 11, (1, -I), ( -  1 ,  I), (- 1, - 1) with weights p/2, (1 -p)/2, 
(I -p)/2,  p/2, respectively. No analogous construction in the n-variate case and 
no other nowGaussian distribution belonging to GCS, (n), n > 2, have been 
known up to now. Such examples are given in Section 2. Recall that GCS, (n) is 
a convex set (see Bryc [2]) - a nice property which is not utilized here. 

In the ceIebrated Kagan et al. book [9] on characterization of probability 
distributions the following problem of identification of normaIity via Gaus- 
sian-like polynomial regressions and normal marginal is posed: Assume that 
Y is a normal r.v. and 

where Q,-, is a polynomial of degree not exceeding k- 1. Is X normal? A coun- 
terexample with two-point distribution for X was given in Shanbhag [13]. 

Bryc and Szablowski [4] considered a symmetrized version of that prob- 
lem involving the following conditions: 

E(x~~Y)=P,(Y) ,  E ( Y ~ ~ x ) = Q ~ x ~ + Q ~ - , ( x ) ,  k = 1 , 2 ,  ..., 
for normal N(0, 1) random variables X and Y with Q = E(XY), where P,  and 
Q, are polynomials of degree less than or equal to k. It appears that such 
assumptions ensure bivariate normality. This approach imposes a question of 
considering jointly GCS, and Gaussian marginal structure. In Section 2 we give 
an example of a measure belonging to GCS,(n) for some arbitrary (but fixed) s 
which has all Gaussian (n - 1)-variate marginals. Moreover, joint conditional 
moments up to some order are also like in the Gaussian case. It means that 
Theorem 3.1 of Bryc and Szablowski 141 cannot be essentially improved. Let 
us point out that the simplest case, i.e. non-Gaussian GCS, (2) distributions 
with normal marginals, was considered in Ruymgaart [I21 - see also Feller 
C6, P. 991. 

Another interesting question is: What happens if additionally a x +  b y  is 
also normal? - see Theorem 3.3 in [4], which states that if all the conditional 
moments of X given Y and of Y given X are of polynomial type, marginals 
are normal and additionally a X + b Y  is normal, then the joint distribution 
is Gaussian. Again due to the examples of non-Gaussian GCS,(n) measures 
with Gaussian marginals and normal projections, we provide in Section 3, 
it follows that this result cannot be improved by considering a finite number of 
regressions. 

Also one cannot get rid of normality of a projection, while keeping all 
polynomial regressions. A simple example of a bivariate non-Gaussian measure 
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with polynomial conditional moments and normal marginals is given in Sec- 
tion 4. The distribution is not of the type considered in the previous sections 
since it involves Gaussian mixtures. 

2. Gaussian conditional moments and Gaussian marginals. In this section 
we give three examples of non-Gaussian measures with Gaussian marginal and 
conditional structure. Since the construction of the n-dimensional example is 
based essentially on modifying two- and three-dimensional case, which, in turn, 
makes use of the ideas developed in the univariate case, we present our exam- 
ples in the order of increasing complexity, starting with a 'warm up' construc- 
tion in one dimension. 

Denote in the sequel an n-dimensional standardized Gaussian density 
function (i.e, with zero means, unit variances and a correlation matrix X) by 
f,(., E). Let further SEN be a given positive natural number and let h, be 
a function h,: R -+ R, bounded in ( -  1, 1) and satisfying the condition 

1 

(2.11 1 xkh,(x)dx = O  for k = 0 ,  1, ..., s. 
- 1 

For example, one can take 

where (ci)t:; is a sequence of constants satisfying the following system of linear 
equations : 

The existence of the sequence { c i ) ~ ~ ~  follows from the fact that the 
(s x +matrix with the entries 

is a generalized Hilbert matrix, which is known to be of full rank. 
In our first example we provide a formula for a univariate density function 

that is non-normal but has its first s moments exactly like a standard normal 
distribution. Moreover, it is related to the X 2  (1) distribution in exactly the same 
way as normal M(0,  1) distribution. 
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E X A I ~ L E  23. A nun-normal random variable with normal moments and xZ (I)  
distribution of its square. 

Let us consider a one-dimensional p.d.f. g , ~  given by the formula 

fl(x, l)+a,h,(x) for 1x1 < 1, 
Q s , l ( ~ )  = otherwise, 

where h, is an odd function satisfying condition (2.1) (we may take for instance 
that given by formula (2.2)), and a, is a normalizing constant depending on h, 
assuring that g,,, is non-negative. 

. ~ l e a r l i ,  'g,,, defines a density of a non-normal r.v. X with its first s 
moments being equal to those of standard normal distribution. Let us also note 
that since 

&,I (x)+gs,,(-x) = \/57;;exp {-~~/2iz). 

it follows from Roberts and Geisser [ll] that X2 has to be distributed ac- 
cording to the x2 (1) law. 

In the next paragraph we give an example of a two-dimensional 
non-Gaussian measure with normal margnals belonging to GCSS(2). Let us 
point out that an example of a non-Gaussian measure belonging to GCS,(Z) but 
without normal marginals was given by Kwapien (see Bryc and PIuci6ska [3]). 
On the other hand, non-Gaussian distributions with GCS, (2) structure and 
normal mar~nals  were constructed in Ruymgaart 1121 (here Gaussian mixtures 
are quite natural examples - see Example 4.1); see also Feller [6, p. 991. 

EXAMPLE 2.2. A non-Gaussian GCS,(2) measure with normal marginals. 
Let us define a function la,,,: R2 + R by 

where hs is a function satisfying condition (2.1), and let us consider 
a two-dimensional p.d.f. given by 

for I x i l < 1 , i = l , 2 ,  
g s , ~  (x) = otherwise, 

x € R 2 .  Here a, is a normalizing constant depending on hs,Z and assuring that 
g , ,~  is non-negative. Let (Xi, X,) be a random vector with density gS,2. 
Then, by the definition of lasg2, we easily see that 

(i) X, and X, are both normal N (0, 1); 
(ii) (X, , X,) E GCS, (2). 
See Fig. 1 for an example of such a density with s = 2. a 

In the following paragraph we construct a three-dimensional non-Gaus- 
sian measure with Gaussian marginals and belonging to GCS,(3). This is 
a slight modification of the previous one but, as indicated in the Introduction, 
may be of independent interest, since no non-Gaussian GCSs(3) measure has 
been known until now. 
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Fig. 1. The graph of the density 

g2,, (x,, x,) = - exp (- (xi + x41/2) 
2n: 'i 

EXAMPLE 2.3. A non-Gaussian GCSs(3) measure with Gaussian rnarginals. 

As in the previous example let us first define a function hs,,: R3 + R by 

where hs satisfies condition (2.1). Now let us consider a three-dimensional p.d.f. 
given by 

f3(x, E ) + U ~ ~ ~ , ~ ( X )  for lxil < 1, i = 1 ,  2, 3,  
gs.3 (4 = otherwise, 

x = (x,, x,, x3)€R3. Here, as in the previous cases, u3 is a normalizing con- 
stant depending on hSs3, assuring that g,,, is non-negative. Let (XI, X,, X,) be 
a random vector with density g,,,. Then 

(i) (XI, X,), (XI, X,), (X,, X3) are all standardized Gaussian vectors; 
(ii) (XI, X , ,  X3) E GCSs(3). 

Observe that in this example also the conditional moments 

where I < s or m < s, are of the Gaussian form. cl 

The generalization of Examples 2.2 and 2.3 to the case of n-dimensional 
measures, n > 3, is straightforward. 
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EXAMPLE 2.4. An n-dimensional non-Gaussian measure with Gaussian 
(n - 1)-variate marginab and multivariate Gaussian conditional moment structure. 

A further modification of Examples 2.2 and 2.3 gives us an example of 
n-dimensional non-Gaussian measure (n 2 3 )  with Gaussian marginals and 
n-variate Gaussian conditional moment structure which imposes even more 
restrictions than that of GCS,(n). Following the scheme of the previous two 
constructions, let us define 'a function h,,,: Rn + R by setting 

where h,, as before, satisfies condition (2.11, and let us consider an n-dirnen- 
sional p.d.f. given by 

x ,E)+a ,h , , , (x )  for l x i l < l , i = l  ,..., n, 
gs,n = 

otherwise, 

x = (x, , . . . , x,) E Rn. Here, as before, an is a normalizing constant depending on 
h,,,, assuring that g,, is non-negative. Assume that an n-dimensional random 
vector X = (XI, . .., X,) has the density g ,,,. Then we can easily see that 
(n-  1)-variate marginals of X are Gaussian. Moreover, using again condition 
(2.1) and definition (2.3), we conclude that the conditional moments 

where ( s , ,  . .., s,} is a set of positive integers such that s, < s for some I,  
1 <Id k,and { i  ,,..., i k } u { j l  ,..,, jn-k}  = (1 ,2 ,  ..., n},  areequal to those of 
n-dimensional standardized Gaussian distribution. PA 

3. Gaussian conditional moments, Gaussian marginals and normal pro- 
jections. In this section we give some refsnements of the examples from Sec- 
tion 2 by imposing an additional condition of normality of a finite number 
of linear forms. That question is settled by employing additionally an ap- 
proach involving ch.f.'s. At first we consider a bivariate case and two linear 
forms. - 

EXAMPLE 3.1. A non-Gaussian GCS,(2) measure with normal marginals and 
two normal projections. 

The function 

x = (x,, x2) E RZ, where f, (-, Z) is defined in Section 2, a ,  b are some positive 
constants, and hf ) ,  i = 1 ,  2, are some odd functions bounded in the interval 
(- 1, I), satisfying condition (2.1) for a given s, is a density function for some 
constant ol. 
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I 

It is easily seen that its ch.f. takes the form 

for any real t 7  u, where #, is a ch.f. of the density f, (., E), and 

1 

#i (t)  = J h!) ( x )  sin (tx)dx , i = 1, 2. 
0 

A random vector (XI, X2)  with a density g (or a ch.f. $1 has the following 
properties: 

(i) X ,  and X, are normal N(0, 1); 
(ii) (Xi 7 X,) E GCS, (21; 
(iii) ax, f b X ,  are normal. 
Only a comment on (iii) seems to be necessary: A ch.f, of a X ,  + bX, has 

the form 

I E(exp { i t ( a X ,  + bX,))) = $(at ,  bt) = &(at ,  bt), ~ E R .  
! 

I Hence a X ,  + b X ,  is normal. Observe that &,, d = 1 ,  2, are odd. Consequently, 
I 
I ax,  - bX, is also normal. ~ See Fig. 2 for an example of such a density with a = b = 1, s = 2. rn 

Fig. 2. The graph of the density 
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Performing an extension similar to that which led us from Example 2.2 to 
Example 2.4 we arrive at the example of an n-dimensional non-Gaussian mea- 
sure with even more unexpected property of linear forms. 

EXAMPLE 3.2. A non-Gaussian n-uariate measure with Gaussian (n- 1)- 
-dimensional mmginals, Gaussian conditional moments structure and uncountable 
number of normal projections. 

Let 

; A (t, 4 = $1 ( t )  4 2  (4-  $2 (t) $1 (4, t7 UERY 
. . 

where 4's are defined in Example 3.1. Take positive constants a, b and define 
an n-dimensional ch.f. by setting 

for any t = (t , , . . . , t,) E R", where 4, is a ch.f. of n-dimensional standardized 
1 

Gaussian measure, d j  (t) = So h, (x) sin (tx)dx, j = 3, . . ., n, for some odd func- 
tion la,, bounded in (- 1, 1) and satisfying condition (2.1) (see Example 3.1), and 
C is a constant. In other words, the p.d.f, associated with $ takes the form 

for any x = (x,, . . . , x,) E Rn, where 

and cl is some constant. 
Now consider a random vector X = [XI, . . . , X,) with a ch.f. $ (or density g,). 

It is easily seen that X is non-Gaussian and has the following properties: 
(i) all (n- 1)-dimensional marginals are Gaussian; 

(ii) all conditional moments of the form (2.4) are exactly like in the Gaus- 
sian case; 

(iii) all linear forms a x ,  f bX2 + c,X, + . . . + c,Xn7 where c,, . . ., cn are 
any real numbers (a and b are fixed), are normal. a 

However, an extension of Example 3.1 to any finite (fixed) number of 
normal linear forms in two dimensions is not immediate. To get them we need 
a result relating GSC2(2) structure to some properties of ch.f.'s. 

LEMMA 1. A bi~ariate standardized probability measure with correlation 
coeflcient q and a ch$ z belongs to GCS, (2) ifthe following four identities hold: 
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This is an immediate consequence of Lemma 1.1.3 of Kagan et al. [9 ] .  

EXAMPLE 3.3. A non-Gaussian GCS,(2) measure with Gaussian marginuls 
and an arbitrary; (but fixed) number of normal projections. 

We use notation introduced in the preceding examples. Assume here that 
the functions h,'s, upon which 4;s are built, satisfy (2.1) with s = 2. Observe 
that A ( t ,  0) = A(0 ,  u) = 0 for any t, U E R .  Now by Lemma 1 and Example 3.1 
we conclude that 

Consider now pairs of positive reals (ai, bJ, i = 1, . . ., K, where K is an 
arbitrary, but fixed number. Put additionally 

diA ( t ,  14) diA(t ,  u) 
aui 

LEMMA 2. The function 
K 

Y = @ + c  fl Ai 
i = l  

is a bivariate ch.& for some constant c. 

= O ,  i = 1 , 2 .  
u = o  

Proof.  Let 
m 

Y , + = # F k c , n A i ,  m = 1 ,  ..., K. 
i=  1 

Apply mathematical induction to show that there exists cm such that Y,' are 
ch.f.'s, m = 1, . . ., K. For m = 1 this follows from Example 3.1. Now assume 
that !P: for some m = 1, . . ., K- 1 are ch.f.'s and consider . 

Observe that, again by Example 3.1, p:+ are ch.f.'s. Since convex combina- 
tions of ch.f.'s are again ch.f.'s, the result follows from the formula 

m +  1 

(Y; g:+l+~; 9:+J/2 = &Sf ' *~ ,c" ,+~ n Ai. 
i =  1 

Consider a random vector (X,, X, )  with a ch.f. 
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Obviously, (XI, X,) is non-Gaussian and has the following properties: 
(i) X, and X ,  are normal JV (0, 1); 

(11) (XI, X,) f GCS, (2); 
(iii) a iX ,  + biX, is normal, i = 1, 2, . . ., K .  
Now (iii) holds by means of the same argument as in Example 3.1, 

(i) follows from the fact that A = 0 if only one of its arguments is zero, and 
(ii) follows from Lemma 1 and (3.1). w 

The last example of this section extends the idea of Example 3.3 to any 
finite.dimension and a more restrictive Gaussian structure. It summarizes all 
the ideas developed in Section 3. 

EXAMPLE 3.4. A non-Gaussian n-variate measure with jn- 1)-variate Gaus- 
sian marginah, Gaussian conditional moments structure and normal projections. 

As in Example 3.3 it can be proved that 

i =  1 

where 

(Afs are defined in Example 3.3), is a ch.f. for some constant c. Then a random 
vector X = (XI, . .., X,) with the ch.f. Y has the following properties: 

(i) all its (n- 1)-dimensional marginals are Gaussian; 
(ii) all its conditional moments (2.4) are exactly of the Gaussian form; 

(iii) all linear forms aiX, +biX,+c,X3+ . .. +c,X,, i = 1, . . ., K, where 
c,, . .., c, are any real numbers, are normal. 

Properties (i) and (iii) are immediate, and (ii) follows from an analogue of 
Lemma 1 for higher conditional moments - it involves higher order derivatives 
of the ch.f.; see, for example, formula (13) in Bryc and Szablowski [4]. rn 

4. Polynomial regressions and normal rnarginals. Here we are interested in 
bivariate measures for which all the conditional moments are of polynomial 
type and marginals are normal. A symmetrized version of the Kagan-Linnik 
-Rao problem is discussed (Example 4.1). 

In the preceding section we presented an example of a bivariate non- 
-Gaussian measure with normal marginals, Gaussian-like (polynomial) condi- 
tional moments up to some arbitrary (but fixed order) and normal projections. 
Consequently, Theorem 3.3 of Bryc and Szablowski [4] - see Section 1 - 
cannot be improved by considering only a finite number of conditional mo- 
ments. On the other hand, in Section 2 we gave an example of a non-Gaussian 
measure which yields that the same kind of refinement for Theorem 3.1 
of that paper (see again Section 1) is impossible. 
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Both the above-mentioned results rely on assumptions of normality of 
marginals and polynomial regressions. These assumptions are completed by 
some conditions, seemingly of technical nature - a special form of leading 
polynomial coefficients or normality of a linear form. However, the Gaussian 
mixture example, given beneath, proves that these additional assumptions are 
really important. 

EXAMPLE 4.1. A bivariate non-Gaussian measure with normal rnarginals and 
all polynomial regressions. 

Let F be a c.d.f. of a distribution with the support (- 1, 1). Denote by& the 
standardhed bivariate Gaussian density with a correlation coefficient r. Let 
(X, Y) be a Gaussian mixture with the density 

Then it can be easily checked that the marginals are normal N ( 0 ,  1) and the 
regressions take the forms 

where Q k - l  is a polynomial of order less than or equal to k -  1 and 

Obviously, the identity q, = gk, k = 1, 2, . . ., where q E (- 1, I), implies bivari- 
ate normality (since then F is degenerate). rn 

Acknowledgement. We would like to thank Arjun K. Gupta for encour- 
aging discussions and the reference [12]. 
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