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Abstract. In this paper we investigate a quantum stochastic cal- 
culus built of creation, annihilation and number of particles operators 
which fulfill some deformed commutation relations. 

Namely, we introduce a deformation of a number of particles 
operator which has simple commutation relations with well-known 
q-deformed creation and annihilation operators. Since all operators 
considered in this theory are bounded, we do not deal with some 
dficulties of a non-deformed theory of Hudson and Parthasarathy 
181. We dehe  stochastic integrals and estimate them in the operator 
norm. We prove Ita's formula as well. 

1. INTRODUCTION 

The aim of this paper is to construct a quantum stochastic calculus in 
which all operators are bounded and which would unify classical examples we 
mention below. 

1.1. Classical examples of quamturn stochastic calculi. The fundamental 
observation which inspired the development of Hudson-Parthasarathy sto- 
chastic calculus [8] was that a family of commuting self-adjoint operators and 
a state z induce (by the spectral theorem) measures which can be interpreted as 
joint distributions of a certain stochastic process. 

The most important examples are B (t) = A(t) + A* (t), which corresponds 
to the Brownian motion, and P,  (t) = 4 B (t) + A (t) + ltl, which corresponds to 
the Poisson process with intensity I .  Quantities A(t), A* (t), A(t) (t 2 0) called 
annihilation, creation and gauge processes, respectively, have values being 
unbounded operators acting on some Hilbert space called a bosonic Fock 
space. 

For all s, t 2 0 they fulfill the following commutation relations: 
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[ A  01, A MI = 0, 

[ A  (t) ,  A* (s)] = min (t, s) 1, 

[ A  (t), A (41 = A C h  ( t ,  41 , 
[ A  ( t )  , A* (s)] = A* [min (t , s)] . 

In the Fock space there exists a unital cyclic vector bd such that A(t)Q = 0. The 
state z is defined as follows: 

z (S) = (9, SIR). - 

Stochastic integrals with respect to the Brownian motion or Poisson 
process can therefore be written as integrals with respect to creation, annihila- 
tion and gauge processes. A stochastic calculus in which such integrals are con- 
sidered was constructed by Hudson and Parthasarathy [%]. However, the fact 
that operators considered in this theory are unbounded causes serious tech- 
nical problems. For example, equations jlH5) can be treated only informally 
and have to be clarified in a more complicated way. Moreover, a product of 
two stochastic integrals (considered in Itb's formula) is not well defined and has 
to be evaluated in the weak sense. 

The second important example is a fermionic stochastic calculus (see [I] 
and [2]) in which in equations (1)-(5) commutators were replaced by anticom- 
mutators. 

The third group of examples is connected with free probability in which 
the notion of classical independence of random variables was replaced by 
a noncommutative notion of freeness. Biane and Speicher [3] considered in- 
tegrals with respect to the free Brownian motion which are a generalization 
of It6's integral. On the other hand, the approach of Kiimmerer and Speicher 
[9] is rather related to the calculus of Hudson and Parthasarathy: a free Brow- 
nian motion is represented as a family of noncommuting self-adjoint operators 
B (t) = A (t) + A* ( t )  ( t  2 0), where A (t), A* ( t )  fulfill only a relation 

(6) - A ( t )  A* (s) = min (t , s) 1 

for all t, s 2 0 and a state z is defined as z (9 = (0, SO) for a unital cyclic 
vector O such that A ( t )  B = 0. Stochastic integrals are evaluated with respect to 
A ( t)  and A* (t)  separately. 

1.2. Overview of this paper. In order to avoid problems of Hudson and 
Parthasarathy's theory we postulate that all operators considered in our sto- 
chastic calculus should be bounded. Therefore, we shall replace commutation 
relations of Hudson-Parthasarathy's calculus by some deformed analogues. 

We start with the q-deformed commutation relation which was postulated 
by Frisch and Bourret [7]: 
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for all #, $EX, where &' is a Hilbert space, a(+), called an annihilation 
operator, and its adjoint a* ($1, called a creation operator, are operators acting 
on some Hilbert space T'. 

If in equation (7) we take q = 1, we obtain a bosonic commutation relation 
(31, for q = - 1 we obtain a fermionic anticommutation relation, and for q = 0 
we obtain a free relation (6). Therefore q-deformed commutation relation uni- 
fies these three basic cases. 

In Section 2 we shall repeat Boiejko and Speicher's [6] construction of the 
q-deformed Fock space I'' and bounded operators a ($1, a* (4) which fulfill (7). 
Furthermore, we construct a bounded operator 1, which acts on I'' and is 
a deformation of the Hudson-Parthasarathy gauge operator and an auxiliary 
operator y,: T, + r, which is a deformation of the identity. We show com- 
mutation relations fulfilled by these operators. It turns out that these com- 
mutation relations allow us to write any product of these operators in a special 
order which is a generalization of Wick or normal ordering. 

In Section 3 we d e h e  stochastic integrals with respect to four basic pro- 
cesses: annihilation A (t), creation A* (t), gauge A, (t) and time T (t). Since in the 
non~ommutative probability the integrand does not commute with the in- 
crements of integrator, we have to decide if the integrand should be multiplied 
from the left or from the right by the integrator. In fact, we shall investigate 
even a more general case, namely after Biane and Speicher [3] we consider 
so-called bioperators and biprocesses, so that the increments of integrator are 
multiplied both from the left and the right by the integrand. 

Just like in the classical theory we first define stochastic integrals of simple 
adapted biprocesses and then by some limit procedure we extend stochastic 
integrals to a more general class of biprocesses. 

In Section 4 we show that (under certain assumptions) an integral of 
a stochastic process in again an integrable stochastic process and that such an 
iterated integral is continuous. 

Section 5 is devoted to the central point of this paper, ItB's formula, which 
can be viewed as an integration by parts. 

2 DEFORMED CREATION, ANNIHILATION 
AND A NUMBER OF PARTICLES OPERATORS 

2.1. Fock space. Let X be a Hilbert space with scalar product (-, .). 
Elements of &' will be denoted by small Greek letters: 4,  $, ... 

We shall denote the standard scalar product on X@" by (., .),,,, and call 
it afree scalar product. S@" furnished with this scalar product will be denoted 
by By Ti,,, (X)  or simply Tire, we shall denote the direct sum of %::=, 
n E N  = (0 ,  1, 2, . . .). The space s@* which appears in this sum is understood 
as a one-dimensional space CQ for some unital vector Q. 



If E: 93 (E)  + r,,,, for 9 (E )  G r,,,, is a (possibly unbounded) strictly posi- 
tive operator, we can introduce a new scalar product {., .), = {., and 
a Hilbert space FE(&') or simply rE, which is a completion of 9 ( E )  with 
respect to {-, The norm in rE will be denoted by l l . l l E .  

We choose now a parameter of deformation q~ (- 1, 1) which will be fixed 
in this paper. 

For n E N we introduce after Bozejko and Speicher [6] a q-deformed sym- 
metrization operator P("): %@"' + SBn, which is a generalization of a symmet- 
rization (for q = 1) and antisymmetrization (for q = - 1) operators: 

- 

where inv (a) = # {(i, j ) :  i, j~ { I ,  . . ., n), i < j, ~ ( i )  > D (11) is a number of inver- 
sions in permutation a. 

THEOREM 2.1. F(") is  a strictly positive operator. 

The proof can be found in [6]. H 

By P: 9(P)  + r,,,, ( 9 ( P )  c T,,,) we shall denote a closure of the direct 
sum of P'"), and by r we shall denote rp. Since it does not lead to confusions, 
by {., -) we shall denote both the scalar product in 2 and the q-deformed 
scalar product <-, in the Fock space r, and by II-II both the norm in r and in 
Z. Elements of the Fock space will be denoted by capital Greek letters: @, Y,  . . . 

From now on %@" will denote the tensor power of &' furnished with 
q-deformed scalar product {., -). 

Let nj: r + i@@j denote the orthogonal projection on %@j. 

The state z which plays the role of a noncommutative expectation value is 
defined as z (X)  = <O, XO) for X: r -, T. 

2.2. Operators of creation and annihilatian. For 4 E % we define action of 
operators a (#), a* (4) : r' -+ rx on simple tensors as follows: 

23. Namber of particles operators. Now we need to introduce a deformed 
analogue of a number of particles operator known also as a gauge operator or 
a differential second quantization operator. For this deformation we require 
the operator to be a bounded operator and to have simple commutation rela- 
tions with a(4)  and a* (4). 

For a bounded operator T: % + 8 we are looking for i, (T): rs + r'& the 
action of which on simple tensors is defined as: 

n 

~ ( T ) ( $ I @ . . . @ $ ~ )  = xf  (n)$l@. ..@$i-l@T($i)@$i+l0*.-@$m* 
i=  1 
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Except the factor f (n) this definition coincides with a non-deformed gauge 
operator. This factor was added in order to make R (T) a bounded operator. As 
will be proved in Lemma 2.3, this holds if and only if sup,,, If (#)I n < CO. 

The choice off {n) = pn for a complex number p (JpJ < 1) seems to be the 
easiest solution. Therefore we define 

n 

(10) Ap(T)($l@- *.@$'m) = pn$'1@- * -  @$i-~QT($i)@$i+~@-*.@$n. 
i= 1 

As we shall see in Section 2.4 in order to interchange the deformed number 
of particles operator with creation or annihilation operators we-need to in- 
troduce for 1,uI i 1 an operator y,: rs + r2 as follows: 

This operator is a deformed identity operator and for ,u = 1 is equal to identity. 

THEOREM 2.2. For 4 E &', 1p1 < 1 and a bounded T :  X + a?, operators 
a(#), a*(&), R, (T)  and y, are bounded and 

Operators a* (4) and a(#) as defined in equations (8 )  and (9) are adjoint as the 
notation suggests. Furthemore we have 

Proof. It is obvious that for lpl < 1 the operator y, is a contraction. 
The second inequality will be proved in a more general context in Sec- 

tion 3.3. 

Since %@" are mutually orthogonal invariant spaces of 1, (T), from Lem- 
ma 2.3 it follows that 

The proof of the fact that a (4) and a* (4) are adjoint can be found in [6]. 
Proofs of the remaining two equations are straightforward. H 

LEMMA 2.3. Suppose that -yi (i = 1, 2) are vector spaces. furnished with 
scalar product (., .>i is a Hilbert space denoted by X.. 

If P i :  x. -+ Xi are strictly positive bounded operators, we can furnish 
^y; with another scalar product (., P i . ) i ,  and the resulting Hilbert spaces will be 
denoted by x!. 

Then operator norms of S :  XI + X2 and S:  ST; + Xi are equal for every 
operator S:  Vl + "Y; such that SPl = P,S. 



P r o  of. For any polynomial f (x) we have Sf (PI) = f (P2)  S. Therefore, 
by approximating the square root by polynomials, we obtain SA = AS. 
Note that for V E Y ~  we have 

Consequently, 
IlsllJP;.4xi P-; llsltxi+x2. 

If in the preceding calculations we replace by (and - vice - versa) and 
replace Pi by PY1, we obtain the converse inequality. a 

2.4. Commutation relations. 

THEOREM 2.4. For #, $E*, a bounded operator T :  &f + X and for 
(pi, ( 0 1  < 1, aha following equalities hold: 

If bounded operators TI, Tz: P + 3' commute, then 
' 

The proof is straightforward and we omit it. rn 

Since y1 is equal to identity, we see that in the limit q,  p + 1 relations (12), 
(15), (I 6)  and (17) correspond to non-deformed relations (3), (4), (5) and (2). 
Note that contrary to the non-deformed case among these commutation rela- 
tions there is none which would allow us to interchange the order of adjacent 
two creation or two annihilation operators. 

2.5. Agebra d. Suppose 3EP = X @ X L  and Xi is an infinite-dimensional 
separable Hilbert space. We denote by dfi,,(X) an algebra of bounded ope- 
rators acting on #, generated by operators a(#),  a*(g5), y,, A,(T@O) for 
all + E X ,  < 1 and bounded operators T :  X -t X.  We shall denote by 
d x ( X )  the completion of at,,,(&') in the operator norm. 

26. Normal ordering. In algebras generated by (bosonic, fermionic or q- 
-deformed) creation and annihilation operators one introduces normal or 
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Wick's ordering where in each expression one writes creation operators on the 
right-hand side and annihilation operators on the left-hand side. Now we in- 
troduce an analogue of such an ordering in algebras dfi,. 

THE~REM 2.5. Every element S of an algebra dfin can be written as a$nite 
surn of products of the folbwing form: on the Ieft-hand side - crwtion operators, 
some L,(T) operators, a y, operator Vor some p, Ipt 6 I), and on the right-hand 
side - annihilation operators: 

P r o  of. Note that an expression is in the above-mentioned form if and 
only if it does not contain any subexpression being the left-hand side of one of 
equations (12H18). If it does not hold, by replacing the left-hand side of the 
appropriate equation by the right-hand side, we obtain an expression (or a sum 
of expressions) which is either shorter or has the same length but a smaller 
number of disorderings. We can easily see that this procedure has to stop after 
a finite number of iterations. s 

B y  d'k-') we shaU denote the completion of the space of operators which 
can be written in the normal ordering (20) with exactly k creation operators 
a * ( - )  and 1 annihilation operators a(.). Let 

For an integer number n E Z we define drnl to be a completion of the space 
of operators which (not necessarily in the normal ordering) contain exactly 
n more creators than annihilators, 

For S E ~ ,  n E Z, let SLnl E dCnl be a part of S which contains exactly n more 
creation than annihilation operators. More precisely, 

iBO,i+nBO 

Note that IIS["]II < IlSll because 

IISCnl Y1l2 = CIlni+nsni yIl2 G C llsni yl12 G HsIl2C llni yIl2 = llsll llF1l2. 
i i i 

2.7. Extension of operators. 

LEMMA 2.6. If XI = X8LfI and S2 = X@S2, where Yl and 92 
are separable infinite-dimensional Hilbert spaces, then there exists exactly 
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one continuous *-isomorphism T/: dx I S l )  + & (&) of Banach algebras, which 
maps operators a(#), a* (#), A,(T), y, E dx(S1), raspectively, on a(&), a*($), 
Ap (T), yp ~d'. (Z2). Moreover, this *-isomorphism is an isometry. 

Particularly, if HI c z2, then this *-isomorphism assigns to an operator 
SE ds(Rl) its extension f~ dx (X2) (since no confusion is possible, we shall 
often denote both operators by the same letter). 

P r o  of. Let U: -, X2 be an isometry such that U limited to X is equal 
to identity. Such an isometry exists because Zl and Z2 have the same dimension. 

We define now a second quantization of U,  i.e. an isometry r_(U): r2, + rs, 
by the formula 

r ( U ) ( $ l @ . . . s $ A  = U($l)@...@U($,). 

The required *-isomorphism is 

The uniqueness of such an isomorphism follows from the fact that it is 
uniquely defined on a dense subspace df,,. 

The lemma remairis true if in the formulation we skip the assumption of 
separability, the proof of this fact is however more complicated. 

3. STOCHASTIC INTEGRALS 

Since we are interested in stochastic calculus, from now on we have 
S = g2(R+). We also introduce the notation: d = ds, St = 9 2 ( 0 ,  t) and 
&itt = dst. 

We shall investigate stochastic integrals with respect to four basic stochas- 
tic processes with values in the algebra d :  annihilation A(t) = a ~ ~ o , t l ) ,  creation 
A* (t) = a* (X(a,s), gauge A, (t) = A, and time T (t) = tl, where XIE i@ de- 
notes a characteristic function of a set I c R ,  and n,: LP(R+) + Y2 (I) de- 
notes the orthogonal projection. 

3.11. Biopemtors and Ibiprmesses If S:  W+ + d is a measurable function, we 
shall call it a process. Iffor almost all t E R, we have S (t) E d,, we say it is adapted. 

Elements of d @ d  will be called bioperators. A bioperator can be multi- 
plied by an operator from the left or the right and the result is a bioperator: for 
F, G, S E ~  we define 

Furthermore, we define a "musical" product of a bioperator by an operator such 
that the result is an operator: 

(F@ G) # S = FSG. 

We shall introduce a convolution: (F@G)* = G*@F*. 
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If R: R+ + d@d is a measurable function, we shall call it a biprocess. If 
for almost all t ER+ we haye R ( t ) ~ d ~ @ d , ,  we say that R is adapted. If for 
almost all t E R+ we have R (t) E dt@d or R (t) ~ d B d , ,  we say that R is 
left-adapted or right-adapted, respectively. 

A simple biprocess is a biprocess of the form R (t) = Ef=, B i f ,  (t), where 
B, ~ d @ d  and I i  are intervals. 

32. Stochastic integral of a simple biprabcess. A stochastic integral of a sim- 
ple biprocess is defined as a Riemann sum 

i( Bi~f i ( t ) )  #dS = Bt#[S(si)- S(ti)]l where Ii = (sf, ti). 
i = l  i =  1 

3.3. Stochastic intqrds with respect to the creation and a d l a t i o n  pmess. 
3.31. Tensor product Q,, For 4,  $, , . . ., $, E ~ 2 '  we define a tensor prod- 

uct @Ik as 

and an operator l@,P[*:  &'@("") -r x@""+~' which for n 3 k is defined as 

= qinv(u)~n(~)@..-@$n(k)@#@$n(k+~)@ - -  -@$c(n) 
ass, 

and is a modification of a q-deformed symmetrization operator, which does not 
move the factor on the k+ 1 position. For n < k we take I@, P(") = 0. 

LEMMA 3.1. There exists a positive constant w(q) such that for each n 

There exist positive constants c ~ , ~  and dk,q such that for each n 2 k 

P ( n + l ) < ~ k , q ~ @ k P ( n ) ,  l@kp(n)<dk,qp(n+l). 

P r o  of. The proof of the first two inequalities can be found in 141. Now 
we show the third one: 

The last inequality can be proved similarly. ra 



COROLLARY 3.2. FOP any YE r we have 

If furthermore Y E Onlk 2@", then 

II'PII & ~ l ~ l l l S * P .  

For every #E%' we haue 

Proof. The last inequality holds since for each ' P E ~  we have 

33.2. Properties of Qk. Let S E d X ( e  and let # be a unital vector perpen- 
dicular to &. By Lemma 2.6 there exists an operator S: S O 4  + S O 9  which 
is an extension of S :  2 4 2. 

It is easy to see that for each @ E rs there exists an element of r2 denoted 
by Qk(S) @ such that 

(21) 4 @ k C Q k ( S ) @ I  = (n+@kl)Sa*(d)@, 
where denotes the orthogonal projection on the subspace spanned by #, 
and II4ak1 is an operator which on tensor products of not more than k vec- 
tors acts as O and on longer tensor powers acts on the (k+ 1)-st factor by I14. 

Of course, Qk(S): r + r is a linear operator. We shall prove that Qk(S) is 
an element of the algebra dX (S) and that this operator in the normal ordering 
has exactly k creation operators, i.e. Qk (S) E d$ ' ) (2) .  

Indeed, if S is of the form 

then a simple computation shows that 

and therefore Qk (S) E (2) .  
The general statement follows from the fact that Qk : d T ( S )  + dx (X)  is 

a continuous map: 

(22) IIQ,(S) YII = II#@k CQ, (XI Y l l l r c w  = I I C n @ k  IlSa* (4) Y l l ~ e , ~  

In the following we shall often use the notation Qk: d x ( S ) Q d T ( 2 )  + 

+ dx ( 2 )  defined on simple tensors by Qk (PBR) = Qk (P) R. 
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3.3.3. Norm of an integral with respect to the creation and annihilation 
processes. 

THEOREM 3.3. If R: R+ 4 d@d is a simple left-adapted biprocess, then 

111 R (t)#dA* It) YII C (Q,, j 1IQk CR (tll Yll2 
k 

Proof.  Let R (t) = xi Bixl, (t), where Ii are disjoint intervals. Since R is 
left-adapted for any YET,, we have 

C &#a* (1~rJ y = C C X I ~ B ~  CQk Pi) YI . - - 

i k i 

Therefore 

which completes the proof. rn 

Now we shall define appropriate seminorms on the space of biprocesses: 

THEOREM 3.4. Simple ~dapted (respectively, left-adapted or right-adapted) 
biprocesses are dense in the space of adapted (respectively, left-adapted or right- 
-adapted) biprocesses in seminorms 3 1  - 1 I A  and 11 -] IA*.  

The proof of an analogous fact can be found in the paper by Biane and 
Speicher [3]. 

Therefore we can define an integral with respect to the creation (or an- 
nihilation) process of a left-adapted (or, respectively, right-adapted) biprocess 
R (t) with finite seminorm 11 - ] I A ,  (or II.IIA) as a limit of integrals of a sequence of 
simple biprocesses. 

We have the following 

THEOREM 3.5. If R: R+ + d@d is a left-adapted biprocess and YET, 
then 

16 - PAMS 21.1 



If R :  R ,  + d@d is a right-adapted biprocess, then 

3.4. Stochastic iwtegral with respect to t b  gauge process. For an operator 
S: T + T and subspaces V, W of T, we shall denote by ItSllr+w the operator 
norm of S defmed as 

IISllv-w = sup SUP I<@, SY>I. 
cMv,~~@~t= l  'f'€V,~]YIl = I  

- 
For 1 ~ 1  < 1 we introduce a gauge seminorm of a bioperator BE at,@&,: 

and if a biprocess R is adapted, we introduce its gauge seminorm as 

THEOREM 3.6. If R ( t )  is a simple adapted biprocess, then the following es- 
timation holds: 

As we shall see in the sequel the assumption that R is simple can be 
omitted. 

Proof. Let us consider a Hilbert space 2 @ *  such that there exists an 
operator U: H 0 2  j &?@*, which restricted to S is a unitary operator 
U: S -2 and restricted to 3 is equal to 0. We introduce a process 
&(t) = 1,(17(0,r,-), where fi- denotes the orthogonal projection on the sub- 
space U [S2 (I)]  for a set I c R +. 

For any operator X: &'@$+&'@$ we define R(X) = 2 , (X) .  Of 
course, this operator is not bounded, and therefore any manipulations with it 
have. to be done carefulIy. Lemma 2.3 ensures that R (U) on S@'" is bounded 
and its norm equals 6. 

Let rs3 Y = x P,,, Ts 3 8 = @,, where Yn7 @,EX@". For any measu- 
rable set M we have 

Let R (t) = xi Bi xri (t), where ii are disjoint intervals. For different values of i, 
operators Bi #A, (Ill,-): A (U)  + r ( H e  2) have mutually orthogonal im- 
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ages and cokernels. It follows that 

IIC 3 i  #',(n~)llA,,*m+A,,smn = max IIsi grip (n(t,,mp)ll~cLJ)flmm+ , q U ) x m n  . 
i i 

- - max i IIBi $4 (n(t,,mJlI~~,~,mm~(,,~,mn =  ma^ 1 IIBi #A, (n(t,,,))~~smm,N,,, 

where in the last equality we used Lemma 2.3 and in the last but one equality 
we used the fact that the second quantization T(U+U*) :  I-(%@$)-, 
+ r(&'@i@) of unitary operator U +  U* defined as 

is again unitary and 

Bi #A, (fl~qt,,,,) = r (U + U*) [Bi #A, ,,,, ,I] r (U + U*). 
Hence 

We would like to extend the definition of a stochastic integral with respect 
to the gauge process to all biprocesses with finite seminorm I I . I I A ,  by taking the 
limit. However, since this seminorm is of 9" type, the space of simple bi- 
processes is not dense in this space. However, we may have the pointwise 
convergence. 

THEOREM 3.7. For each adapted biprocess R(t ) ,  llRllAp < a, there exists 
a sequence of simple adapted biprocesses Ri, IIRillA, G llRIIA,, such that 
Ri(t) + R(t )  (convergence in the seminorm [ I . J I A F )  for almost all t. 

The proof of this theorem follows the well-known proofs in the classical 
theory of stochastic integration and we shall omit it. 

THEOREM 3.8. If (RJ is a sequence of simple adapted biprocesses such that 
supi lIRillA, < cr, and Ri (t)  converges to some R (t)  in the seminorm 1 1  - ! I A F  , then the 
sequence JR, #dAp (t)  converges in the strong operator topology. 

Proof. It is enough to prove that for each E > 0 and all vectors Y ~r 
lim sup [IIRi- Rj] #dA,(t) Yll < E .  

N - t m  i , j>N 



k t  Mij = { t :  IIRi(t)-Rj(t)lli, > ~/2) .  We have 

1 CRi (tI - R j (tI1 #dA, tt) 

(24) = J CRi Ct)-RjCt)l #dAp ( t )  + 1 CRi (t l-Rj(t) l  #dAp (t) 
M1j R+\Mlj 

and the operator norm of the second summand does not exceed 42.  
We shall use the notation introduced in the proof of Theorem 3.6. Since 

n N U i , j > N M i j  has measure 0, we obtain 

lim sup IIR (UnMi,) !Pmll = 0 
N - r m  i,jWN 

for any fixed vector ' P E ~ .  
If we rewrite inequality (23) replacing M by M i j  and R (t)  by Ri(t)-  Rj (t), 

we see by the majorized convergence theorem that the first summand in (24) 
tends strongly to 0. n i  

The preceding theorems allow us to extend the definition of an integral 
with respect to the gauge process to all adapted processes with finite norm 
I l - l l n ,  and to remove from the formulation of Theorem 3.6 the assumption that 
the integrand is simple. 

3.5. Integrals with respect to h e .  For a biprocess R we introduce its semi- 
norm m 

Of course, we have 

I I J R # ~ T ( ~ ) ~ ~  G IlR11~. 

4. ITERATED INTEGRALS 

LEMMA 4.1. If R: R+ -+ d@d is a biprocess such that there exists an 
integer number j such that R: R+ + @ lir jd[a, then for any process S :  R, + d 
we have 

IIRSllApl llSRlls s m ( 2 j +  1) SUP llS(t)ll IIRIIA.. 
~ E R  + 

Proof.  We have 

c J jT1(2 j+ 1) I F I I  1 1 1 3 1 1 ~ ~  

because m-i  2 l and m/(m-i) < j + l .  H 
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LEMMA 4.2. For any biprocess R(t) ,  a process S( t )  and Y ~r we have 

Proof. It is enough to notice that Qk [R (t)S(t)] = Qk[R(t)]  S( t )  and re- 
call the definition of the norm I I - I 1 ,  and Theorem 3.5. ra 

LEMMA 4.3. There exists a constant C,, such that if R( t )  is a biprocess 
such that R ( t ) ~ @ ~ ~ , d ~ ' ? ' ) @ d  and S( t )  is a process such that S ( ~ ) E  
@ d i 3 ' ) ,  then 

I fR is la biprocess such that R ( t ) ~  and a sequence of processes Si(t) 
converges strongly to 0 and fi@lls Si (t)  E d''.'] and supi sup, ]ISi (t)[l < a, 
then integrals 1 Si (t)  R (t)  #dA* (t)  converge strongly to O as well. 

Proof. For a unital vector i,h orthogonal to 2' we have (see inequal- 
ity (22)) 

and therefore for some constants C1, C2,  C3 which depend only on q and n we 
have 

The second part of the lemma follows from the majorized convergence 
theorem. PA 

THEOREM 4.4. Let the following assumptions be satisfied: 
1. 7,: R+ + R+ is a sequence of measurable functions, 0 < r,(t) 6 t and&nc- 

tions zn(t) tend to t uniformly; 
2. S1,  Sz are processes, S1 € { A * ,  A, A,, T ) ,  Sz€ (A* ,  A, A,, T ) ;  
3. R1, R2: R+ + d are adapted biprocesses and their appropriate norms 

are finite: IIRlll s,, llR211s2 < a); 



4. if Si = A,, then there exists j such that for each t E R +  we have 

5. if S1 = A, then there exists j such that for each t E R +  we have 

R (t)  E @ d i  and 1 R2 #dS2 E @ d('li); 

i S j  0 i 6 j  

6. $ S, = A,, than there exists j such that for each ~ E R +  we have 

7. if S2 = A*, then there exists j such that for each t E W + we have 

t 

R, (t)  E @ d(il')@d cad R1 #dS1 E 0 dtiv'). 
i<j 0 i s  j 

Then 

R1 (t)  [I R, (s) BdS, (s)]#dS, ( t)  = lim R,  (t)  [-ST R2 (s) #dS2 (s)] XISl ( t) ,  
0 0 n+m 0 0 

w s  m m ( ~ )  

j [I R ,  (t) #dS, (t)] R2 (s) #dSz (s) = lim S j Ri ( t )  # ~ S I  It)] R2 (s) (s). 
0 0 " + W O  0 

Pr  o of. For S2 # A,, functions I I J :m(r l  R2 BdS, (s)ll tend uniformly to 0. 
Therefore by preceding lemmas appropriate norms of biprocesses 
R, (t)  u:",, R, (s) #dS2 (s)] tend to 0, which proves that the limit in the first 
equation holds in the operator norm. 

For S2 = A, and S,  E {T, A*) for each Y ET, hlnctions IIJ:n(tl R, (s) #dS, (s) 4 
by Theorem 3.8 tend uniformly to 0, and Theorem 3.5 shows that the limit in 
the first equation holds in the strong operator topology. 

For S ,  = A, and S2 = A*, Lemma 4.3 and Theorem 3.8 assure that the 
limit in the second equation holds in the strong operator topology. 

For S1 = A,, S ,  = A,, we introduce a Hilbert space S$i@@$ such 
that there exist operators U and V which restricted to $02 are equal to 
0 and which map isometrically S onto 2 and 9, respectively. In the fol- 
lowing, for I c R+ we denote by n, and I7,, the orthogonal projections 
onto U [p2 ( I ) ]  and V [g2 ( I )] ,  respectively. Furthermore 4 (t)  = I ,  (I7(,,,,d 
and jil, (0 = 2, ( ~ ( o , , A ) .  
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We have 

Note that even though 1 (U) and A (V) are unbounded operators, the right-hand 
side of this equation is well defined on the domain T(%) (see the - proof of 
Theorem 3.6). 

For each n we consider a sequence tfi,k = k/n and a bounded operator 

defined as 

where h,i = in&,( ,",,, l,,.+,) z,,(x). It is easy to see that the sequence (En) tends 
strongly to 0, and since 

the expression (25) tends strongly to 0, which proves the first equation. 
All the other cases can be obtained by taking the adjoint of considered 

cases. EA 

5 . 1 ~ 6 ' ~  FORMULA 

5.1. Properties of Po. We introduce a map Po: at''(%) + d s ( S )  as 
follows. Let 4 be a unital vector perpendicular to 2. The map P,(R) is an 
operator defined by 

Po (R) P = a (4) Ra* (4) Y for all 'P E I''. 

It is easy to see that for 

we have 

Po (R) = q i f j v l . .  . vIpR9 

and therefore Po (R) E dz (S).  



52.  It#s formula. 

THEOREM 5.1. If assumptions 2-7 of Theorem 4.4 are fulfilled, then 

(26) [J R,  (s) #dSl Is)] Rz ( t )  #dSz (41 = CRl(u) [ull [Rz (4 #dS2 (u)] 

+I R, (s) [ j R2 (t)ffdS2 (tl]  #dS1 (s) + [i RI (s) (s)] R2 ( f )  #dS2 ( f ) ,  
0 0 

where the first summand on the right-hand side is defined as follows: 

(31) [ R ,  (u) #dS, (u)] [R, (u) #dS, (u)] = 0 for other vahes of Sl, S2.  

Informally, we may write this as follows: 

P r o  of. For n = 1,2 let R, = Rnizli be simple adapted biprocesses. We 
assume that intervals (Ii)  form a partition, i.e. that they are disjoint. Note that 
we can replace the partition (Ii)  by a refined partition (I?]) so that maxi IIp)I < E. 

We have 

The second and the third summands tend by Theorem 4.4 to the second 
and the third summands of the right-hand side of (26). We shall find the weak 
limit of the first summand when the grid of the partition tends to 0. 

If S1 = T or S2 = T, then it is easy to see that the term (33) tends strong- 
ly to 0. 
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If Sl = A*, Theorem 3.5 gives 

= IIRIIIA* SUP llR2i #SZ ( J i )  YII, 
i 

which tends to 0 as the grid of the partition ( I i )  tends to 0. 
By taking the adjoint we see that if S2 = A, then the term (33) tends 

- 
weakly to 0 as the grid of the partition (II) tends to 0. 

The cases we have already considered show that equation (31) holds, 
If S1 = A and S2 = A*, then we can split the normally ordered form of the 

expression [Rl i  #a(li)] [R,i#a*(Ii)] into two parts: the first which does not 
contain operators a* (I i ) ,  a(&) and is equal to 11;1(1@ P o @  1) [Rl i  Rzi], and the 
second, which contains these operators in this order. The sum over i of 
the second part tends in operator norm to 0 as the grid of the partition tends 
to 0 because it is of the form (33) for S, = A* and S, = A, which proves 
equation (27). 

If S1 = A, and S2 = A*, then we can split the normally ordered form of 
the expression [Rli #A, (I l ) ]  [Rzi #a* (Ii)] into two parts: the first part equal to 
[Rli #y J [Rzi #a* (Ii)] and the second one which contains operators a* (Ii) ,  
A,(&) in this order. The sum over i of the second part is of the form (33) with 
S1  = A* and S2 = A@, SO tends strongly to 0  as the grid of the partition tends 
to 0, which proves equation (28). 

By taking the adjoint of (28) we obtain equation (29), i.e. the case S1 = A, 
S2 = A , .  

If S1 = A,, S2 = A,, we introduce a Hilbert space %'@$@2 such that 
there exist operators U, V which restricted to $09 are equal to 0 and which 
map isometrically %' onto 2 and 2, respectively. We have 

It is easy to see that, as the grid of the partition ( I i )  tends to 0, the operators 
~ k A ( U 1 7 , J A ( V ~ , k )  tend strongly to 0 ;  therefore the first summand tends 
strongly to 0 ,  which proves (30). 

Now it is enough to notice that any biprocesses can be approximated by 
simple biprocesses. H 



Particularly, we can obtain Itb's formula for noncommutative Brownian 
motion: 

B ( t )  = A(t)+A*(t ) ,  

and Poisson process with intensity 1 and deformation parameter p:  

We have 

dSz 

6. FINAL REMARKS 

In this paper we have presented foundations of q-deformed stochastic 
caIculus. The lack of space does not allow us to present its applications, among 
them the connection between q-deformed stochastic integral and noncommuta- 
tive local martingales. Especially interesting is the possibility of interpolation of 
classical Brownian motion and Poisson process by their bounded q-deformed 
analogues for q -, 1, where new tools are useful. There are also many questions 
concerning deformed Poisson process. 
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