
PHOBABILlTY 
AND 

M4THEhlATICAL STATISTICS 

Vol. 23, Yasc. 2 (2003). p p  413-dY 

CENTRfi  LIMIT THEOREM FOR A GAUSSIAN INCOMPRESSIBLE 
PLOW WITH ADDITIONAL BROWNIAN NOISE 

T O W 2  MIERNO WSKI  (LYON) 

Abstract. We generalize the result of Komorowski and Papanico- 
laou published in [I. We consider the solution of stochastic differentid 

equation dX(t) = V ( t ,  x (t)) dt + (t), where E (2) is a standard 
d-dimensional Brownian motion and V (t, x), It, x) E R x Rd, is a d-dirnen- 
sional, incompressible, stationary, random Gaussian field decorrelating in 
r i t e  time. We prove that the weak limit as s 1 0  of the family of 
rescalcd processes X, ( t )  = &X(t/&') exists and may be identified as 
a certain Brownian motion. 
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1. INTRODUCTION 

Consider the turbulent transport of a tracer particle modeled by the sto- 
chastic differential equation 

dX( t ;  w ,  u) = V ( t ,  X ( t ) ;  w ) d t + & d ~ ( t ;  a), 

X ( 0 ;  w, u) = 0, 

where V(t, x; w), ( t ,  x) E R x Rd, is a d-dimensional random field over a certain 
probability space Yo = (0, P), and B ( t ;  a), t  2 0, is a standard d-dimen- 
sional Brownian motion over another probability space TI = (C, Q). The 
constant u 2 0 stands for a molecular diffusivity of the medium. Let E and 
M denote the expectations in To and Yl, respectively. 

This model is widely used in physics literature to describe the motion in 
a turbulent flow. We are interested in a long time, large scale behavior of 
passive tracer over the product probability space. Namely, we consider the 
macroscopic scaling x  - x / ~ ,  t - t /e2.  The rescaled process X, ( - 1  satisfies the 
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following stochastic equation: 

We ask the naturd question about the convergence in law of X , ( t )  as E 40. 
This problem has a long history and several results, varying with the 

assumptions concerning the random velocity field are well known. Let Y be 
stationary, incompressible and centered. The first group of results deals with 
the velocity field having a so-called stream matrix 8, i.e. - 

Papanicolaou and Varadhan [lo] and also Rozlov [8] proved the convergence 
of rescaled processes given by a time-independent field Y(x) ,  X E R ~ ,  with the 
stationary stream matrix H ( x ) ,  under the assumption of boundedness of V 
and BI. A similar result was proved in [9] under the same conditions but for the 
time-dependent velocity field V ( t ,  x). In [4] Fannjiang and Komorowski give 
the proof of convergence for the random fields V not bounded but with a finite 
p-th moment (for some p > d + 2 ) .  

In the second group we have results concerning the time-dependence as- 
sumptions imposed on the velocity field. Here we have for example the conver- 
gence for an Omstein-Uhlenbeck velocity field of finite modes (Carmona and 
Xu [37) and for a class of Markovian fields with strong mixing properties 
(Fannjiang and Komorowski [ 5 ] ) .  

In this paper we follow the idea of Komorowski and Papanicolaou pub- 
lished in [7] which contributes to the last group of results. Assume that the 
field V is Gaussian, incompressible, stationary, centered and that it decorrelates 
in finite time. The authors considered the equation (1.1) with K: = 0 (without 
additional Brownian noise) and proved that the jaws of the family of processes 
X,( t )  = .sX(t/.s2) converge as 810  to that of the Brownian motion with covari- 
ance matrix given by 

We show that convergence still holds in the presence of molecular diffusivity 
rc > 0. Namely, we prove that the weak limit of the laws of X,(.) over 
C([O, +GO); Rd) is a Brownian motion with covariance matrix 

This result confirms the turbulent diffusion hypothesis of G. I. Taylor coming 
from the early 1920's (see [15]). 
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Let us describe the main steps of the proof. Thanks to the key assump- 
tion of the incompressibility of the field V, in the proof we use the result of 
Port and Stone Ell], namely the stationarity of the Lagrangian velocity pro- 
cess ( ~ ( 1 ,  x (I.))),~,. We develop, as in [7], the idea of the "transport operator" 
Q, being a linear operator acting on the space of elements integrable with 
respect to B. The operator Q preserves densities and satisfies 

for s 2 where T is the decorrelation time of the field V Establishing estimates 
of the rate of convergence of the sequence (IIQ" YllLl for any Y measurable 
with respect to { V ( t ,  -), t < 0) and satisfying EY = 0, we prove the conver- 
gence of the integrals in (1.2). In addition, we show that for- any L > 0 

for any 0 < s d t < u d Land some constants C, v > 0. This gives us the tight- 
ness of the family (X,(.)), E > 0, in the Skorohod space D([O,  L ] ,  Ed) for any 
L > 0 and, by the continuity of trajectories, also in C([O, L ] ,  Rd). Thanks to 
Stone [13], it gives tightness in C([O, + m), 9. Finally, we identify the limit 
as a certain Wiener measure with the help of the Stroock-Varadhan martingale 
problem. 

This idea is strongly based on [7] and we make the references to lemmas 
presented therein. We skip the proofs which may be generalized to our situa- 
tion in a straightforward way. However, we present the complete argument for 
the results which are new or involve some major adjustments. 

2. NOTATION AND FORMULATION OF THE MAIN RESULT 

By E := E ( O ,  "y; P) we understand the space of E-integrable random 
variables over the space Yo equipped with the standard Il-llp-norm. Let 
E [. id] denote the conditional expectation with respect to some sub-u-algebra 
d c V .  

Let r,,,:. i2 -, a ,  ( t ,  x )  E R x Rd, be a group of measure-preserving transfor- 
mations, i.e. such that the map (t, x ,  a) H z,,, (a) is jointly a (R)@B (Rd)@V to 
"Y measurable, z,,, z,, = z,,,,,,,, z$ (A)€ V- and P [zz (A)] = P [A] for all 
( t ,  x), (s, y)  E R x Rd, A E 'K Here 3 (Rd) denotes the a-algebra of Bore1 subsets 
of Rd. 

Suppose now that v: 0 -, Rd is a d-dimensional random vector such that 
the random field given by V(t, x;  o) := B ( z , , ( a ) )  satisfies the following con- 
ditions: 

(Vl) It is centered, i.e. E V =  0. 
(V2) It is Gaussian, i.e. all its finite-dimensional distributions are Gaussian 

random vectors. 
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(V3) It is divergence-free, i.e. divY(t, x) : = z:=, V, (t , x) = 0. 
(V4) Its correiatiun matrix R ( t ,  x) : = [E [K(t, x) y(0, O)]] i , j =  l,...,d sat- 

isfies 

for some constant C > 0 and all (t, X) E R x lZd. According to [2], Theorem 
3.4.1, this guarantees a version of P being jointly continuous in - (t, +) and of 
C1-class in x. 

(V5) The field V decorrelates in finite time, i.e. there exists T > 0 such that 
for all It1 2 T and XER' we have R ( t ,  x) = 0. 

Remark.  For a Gaussian field G (t), where t E F is some abstract parameter, 
2 1/2 we d e h e  a d-ball as related to the pseudometric d (tl , tz) = [E (G(tl} - G (tz)l 1 . 

Let N(E) denote the entropy number of the field K i.e. the minimal number of 
d-balls, corresponding to K with radius E > 0 needed to cover R x Rd. By the 
condition (V4) this number can be estimated by 

fur some constants K,, K, > 0 independent of E. According to [2], p. 121, (2.1) 
will allow us to use some of the Borell-Fernique-Talagrand type of tail es- 
timates later on. 

Let B ( - )  denote the standard d-dimensional Brownian motion starting 
from O, considered over a certain probabiIity space Fl = (Z, W, Q), with 
mathematical expectation corresponding to the probability measure Q. 

Let us consider a probability space Yo@Yl = (52 x Z, VOW,  POQ) and 
a stochastic process X(.) over this space, given by the following stochastic 
differential equation: 

dX(t; w ,  a) = ~ ( t ,  X(t; w,  a); o)dt+dB(t; D) ,  

For simplicity we suppose ,,/% = 1 in (1.1) but the proof is still valid for any 
~c > 0. For E > 0 define X, (t) : = EX (t/cZ), t 2 0. We will prove the following 
result : 

THEOREM 1. Suppose that the d-dimensional random Jield V satisJies the 
conditions (VlHVS) listed above. Then the integrals 

m 

(2.3) Dij = j ME[E(t, ~ ( t ) )  q (0 ,  O)+y(t,  X(t)) K(0, O)] dt+6isj, 
0 

converge. The laws of the processes {X, (t)It3, induced on the space C ([0, + co ), Rd) 



Gaussian incompressible flow with Bruwnion noise 417 

converge weakly, as &LO, to the law of the Brownian motion with covariance 
matrix D = [ D i j ] .  

Some additional notation: for any x E R, Ent ( x )  denotes the biggest integer 
less than or equal to x; for any x, y E R, x A y denotes min (x, y). 

3. AUXILIARY LEMMAS 

Consider the processes Y ( , )  over the probability space Fo@Fl given by - 
the equations 

By the assumptions (V1)+5) we can apply the following result of Port and 
Stone [ I l l .  First of all, given x E R ~ ,  the equation above determines a unique 
process Yo?". Next, we have: 

LEMMA 1 (cf. [Ill, Theorem 3, p. 501). For any t 2 0 the random map 
X H  Y0,=(t)  preserves measure on HZd and satisJies 

For all X E  Rd, G E E  and t B 0 the random element o H T ~ o , ~ ( ~ ; ~ ~ , , ( w )  has the law 
P on a. I 

As a corollary we get the following lemma: 

LEMMA 2. Let 0: SZ x E + R be my random variable such that 0 EC (FoOFl) 
and deJine 

For any x E Rd and 0 E C (FQ@F1)  the process {U (t , x ) ) , ~  is  strictly stationary 
over F o @ S l .  

Proof.  Using the integral form of expressing Y 03" ( t)  it is easy to see that 
for any t ,  h 3 0 we have 

(t+ h; m,  a) = YO'"(h; w ,  a) + Yo'' (ti T h , y o , ~ ( h ; ~ , ~ )  (0), 0). 

Moreover, from Lemma 1 it follows that the measure P @ Q  is preserved by the 
transformation 0,: (a, CT) H (T~,~~,,(,;,,,, (a), CT). We finish our proof essentially 
with the same argument as used to prove Lemma 1 ,  p. 240, of [7]. rn 

Recall that the random field V ( t ,  x; w) = ( & ( t ,  x ;  w) ,  ..., K ( t ,  X ;  o)) is 
Gaussian. Let us introduce some notation. As in [?I, let Lt,b denote the closure 
in L?-norm of the linear span of T/, ( t ,  x), t E [a ,  b ] ,  x ER*, i = 1, . . ., d .  By 
Yu,, we denote the a-algebra generated by all random vectors from Lt,,. Let 
L?& = i% ,, + , @E,, be the orthogonal complement of Ea,, in L? ,, + , , and 
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.Ykb the a-algebra similarly generated by elements of Lt,fb. According to [12], 
Theorems 10.1 and 10.2, p. 181, the a-algebras -tT,,, and Vkb are independent. 
Let &(t,  X) be the orthogonal projection of V ( t ,  nc) onto LZ,,,, i.e. each component 
of KTb(t, X) is the projection of the corresponding component of V ( t ,  x). We 
define Va3b ( t  , x) : = V ( t  , x) - V,,, (t , x). Of course, ( t  , x)  is Vo,b-measurable 
while Vaib( t ,  x) is Y;,-measurable. We can also see that K,,(t, x) is jointly 
c o n ~ u o u s  and C1-smooth in x, P-as. (see e.g. [I], Theorem 3.4.1). Finally, let 
Fa., denote the probability space (Q x O ,  YO, ,@Tib ,  POP). 

Over the space 3,,@T0 = ( a x  62, V@V, P O P )  we d e f e  the random 
field by 

Let c E R  and consider now the process given by the following stochastic dif- 
ferential equation: 

dg:?*(t; W ,  a', c) = &(t+c, f,byS(t); W ,  ml)dt+dB(t+c; a),  
(3.1) 

(6) = x. 

I f  a = - og and b = 0, we shorten the notation by writing 

The following lemma concerning the conditional expectation of the pro- 
cess along its trajectory is the compilation of the adapted versions of Lemma 3, 
p. 241, and Lemma 4, p. 242, of [7] and may be proved with the help of the 
same argument as presented therein. 

LEMMA 3. Let f € L 2 ( Q ,  K , , + , , P )  and -a < , a d  b < +m. Then 
there e x i s t s y ~  L2 (z,b) such that f (w) = J(w, w) and both f andyhave the same 
probability distributions. Let C E R .  Then for any CE we have: 

where E,, denotes the expectation applied to the variable w' only. 

4. TRANSPORT OPERATOR Q AND ITS PROPERTIES 

Recall that X" is given by (3.2). For a given (w, a) define a transformation 
Zi,,,: Q -+ i2 by 

z:,, ( 0 ' )  = Z*,f(t;co,ro',,) (0'). 

Let S(.; o, a) be the probability measure on (Q, "l/'&,,,) given by 
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Denote by 9 the family of densities f EZ (62, Y?,,o, PI, f 2 0, fa fdB = 1. For 
any f €9 we define a measure on (a, e m s o )  by 

Let VIT denote the u-algebra generated by the random vectors VUmy0(t ,  x), 
0 < t < T, x€lPd, and let Yf!,,o = T ~ , ~ ( V ~ , ~ )  s -tr_w,o.  As in [7] we conclude 
that for any f E B, [Q f] is absolutely continuous with respect to P and that its 
Radon-Nikodym derivative is Vl,,-measurable. Moreover, we have - [Ql] = P .  

Now we define the transport operator acting on f €9: 

d CQf I Qf=T  0 T- T,O. 

Similarly to Lemma 7, p. 247, of [7] we infer that Q: E ( Q ,  C m,o, + 

fi (D, K , , o ,  P) is a positive linear operator, preserving densities, Q1 = 1 and 
it extends to a contraction in every space E (a, 9'- m,O,  P), 1 < p g a. Now 
we will prove the following lemma, which displays the usefulness of the trans- 
port operator Q. 

LEMMA 4. Let f, g E L? (a) be random uariubles F- " T O -  and Y"- ,,o-rneasu- 
ruble, respectively. k t  t 2 T > 0. Then we have 

ME [f (~t,X(t;,,,) (4) g (41 = ME [f (TI- ,X(t- T;u ,o ,  (4) Qg (41 . 
Proof.  To shorten the notation, from now on dP, dQ, dl" and dQ' will 

stand for P(do), Q (da), P(dor) and Q (da'), respectively, and we will omit the 
argument a. If not indicated otherwise, all the integrals should be understood 
as the integrals over the whole space O x C. Using Lemma 3 we may write 

The last equality above comes from the fact that 

Let pmpW'(s, x,  t, y) denote the density of probability distribution of the process 
p*x (t; w, mr), t 2 S .  If we introduce the notationcy : = 2 (T; w, a'), we may 
rewrite (4.3) in the form 

for t 2 T, Since t 2 where T is the decorrelation time of the field K from the 
definition of X" we infer that, in fact, ZTs0(t; ~ ~ , ~ ( 0 ) ,  T~,,,(O')) = XT,O(t; T ~ , ~  (w')). 
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Hence (4.4). is equal to 

Define 

for any K,,,-measurable g. It is easy to see that it is an equivalent way of 
expressing the transport operator Q introduced before. We get the assertion of 
our lemma. a 

As a corollary we have 

LEMMA 5. L R t p 3 O , N , k ~ N a n d s ~ + ~ 2 ~ ~ + 1 2  ... asI 2 N T , i = l ,  ..., d. 
Assume that YEL?(O ,  -yi.m,o, PI. Then 

S k * Z  

ME[I J v(ei ~(e ) )d ,o l 'V ( s , ,  X ( s l ) ) . . . V ( ~ k ,  X(sk) )Y]  
Bk+ 1 

s k + z - N T  

= M E [ [  S v(eYX(e) )de lP  
sk+ I - N T  

x v(s , -NT,  A & - N T ) ) . . . T / ( S ~ - N T ,  x ( s ~ - N T ) ) Q ~  Y ] .  

5. RATE OF CONVERGENCE OF {Q"Y}'),po 

In this section we will prove the following lemma which will constitute the 
main tool in establishing diverse estimates later on. 

LEMMA 6. Let Y E  LZ (a, V- ,,o, P )  be a  random variable such that 
EY = 0. Then for any s  > 0 there exists a  constant C depending only on s and 
llYllL2 such that 

I]Qn YllLl < C/ns for all n E N .  

Proof.  This proof is a modification of the proof of Lemma 10, p. 249, 
of [7]. According to [6], the part of JT(dw'; w ,  CT), which is absolutely con- 
tinuous with respect to P, has a density given by the formula 

S 
v:(dx; w ,  o', 6) 

Rd G T  (0; a, ~o , , (w ' ) ,  a)' 
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i where v,T(U; W, w', CT) stands for the cardinality of those ~ E U  for which 
$tt(y;  w ,  w', u) = 0 and 

G T ( x ;  W ,  0', LT) = det %$,(I-; w ,  w', c), 
where 

(5-2) $ t ( ~ ;  O ,  o', P) = ~ + g ( t ;  W ,  To,~(w'), D). 

As in [7], using the integral form of expressing IY" (coming from (3.111, we get 

+ vx' ,Yw~O(t ,  X(t; w, w', a); w') V$,(O; w ,  w' ,  0) 

and 

I 
Let a (g) be a smooth function, increasing on Q 3 0, satisfying a ( -  Q )  = a (g),  

I 

a(0) = 0, and a (Q) = & for Q 2 1. Let q~ (x) = a (1x1) for x E Rd. Fin y E (4, 1) and 
for any II > O let us introduce a set 

I 

K R ( 4  = [w E a: sup CIE/-,,o(t, x)l+ IVx V,,o (t, x)l] < I(u, (x)+logY n)] 
O S t S T  

According to the Remark of Section 2 and Theorem 5.4, p. 121, of [I], we may 
find A > 0 such that for A 2 A we have 

P [a\& (A)] = P CK, (A)? < C exp ( C ,  121(z+tr)) exp ( -- d;::) < ceXP(-$). 

where 

Hence 

P [KC,] = P [a\& (A)] < Col exp { - Coz A 2  logzy n) 

for some constants C,,, Co, > 0. Take v ~ ( 0 ,  1) such that [A/(A+ l)] eviAf ' I T  < 1 
and vA < 1 .  Define also two families of sets by 

I 

L , = [ w ~ f i :  sup [ ~ V - m ~ O ( t , x ) ~ + I ~ x V - m ~ O ( t , x ) : ) I ] ~ v ~ x ~ + l o g Y m ] ,  
O < t < T  

S,  = [a€ C: sup IB(t; ~ ) l  < logzy p]. 
O < t < T  
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Since the field V( t ,  x ) / ( J m )  is P-a.s. bounded, we get lim., , , P [LA = 

= 1. From the properties of Brownian motion we obtain 

L 

Q [Sg = Q [Z\S,] = Q [ sup IB (t; c)l 2 logzY p] < - 
O S ~ S T  10g47 p 

for any p 3 2 and some constant C > 0. 
The properties of a ,  imply that there exists a constant C ,  such that 

q (x) < v 1x1 + C , .  For w E K,(A), of EL, and PES, we get - 

< v ( A  + 1) 12 (t)l+ AC, + A logY,n + logY m 

Hence, by the Gronwall inequality 
ev(A+ 1)T - 1 

sup ~ g ( t ) - ~ ( t ) l  < [v (A+ 1) logZYp + AC, + AlogY n + logY rn] 
O d r Q T  v ( A + ~ )  

and since CT E S p ,  we get 

e v ( A + l ) T -  1 
(5.3) sup Ix"(t)l < 

0 6 i S T  v (A+ 1) 

x [v (A + 1) logZyp + AC, + AlogY n + logY rn] + logzY p. 

Using the estimate from above we write 

< [v (A + 1) sup IX" (t)I + AC, + AlogY n + logY m] I K$, (0)l 
O S t 6 T  

+ [v (A+  1) sup 12 (t)) + AC, + nlogy n] < a lVx$t(0)l + b,  
O 6 r b T  
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where a and b come from the estimate (5.3) of supoGtGT ~X(t)l. Again from the 
Gronwall inequality we get 

= 2exp [ T  [exp (v (A + 1) T)]  (v (A -I- 1) log2' p + AC, + AlogY n +logy m)] 

6 cZ1 exp (c,, logY n) exp (Cz3 logY m) exp (C24 logz7 p)  
- 

for OEK,(A), o'EL, and ~ES,. 
Let B(O, R) denote the ball of radius R centered in O E R ~ ~  We will now 

investigate the size of the set [ x :  (tT (x )  = 01 for w E K, (A), w' EL,,, and G E Sp. 
We have the following lemma which may be proved in the same way as Lem- 
ma 11, p. 252, of [7]. 

LEMMA 7. For w E K ,  (A), w' E L, and a€ S, the random set [x: $, (x) = 01 
is nonempty and there exists a constant CJ1 > 0 independent of n, m, p such that 

[ x :  $ r ( ~ )  = 01 G B(0 ,  ~ ~ ~ ( l o ~ 7 n + l o g ~ r n + l o g ~ ~ ~ ) ) .  rn 

For w' E L, and x, E 3 (0, C31 (logY n +logY m+ logzY p)) we have 

Q v 1x1 + C31 (log' n + log7 rn +log2yp), 

provided CS1 is chosen sufficiently large, since v E (0, 1). Hence z,,,, (L,) c 
LEntIM) + 1, where logY M = C, (logY n + log' m + log2' p), and 

Using all these arguments we have 

1 1 1 
2 C43 exp (C44 log7 n) exp (C,, logY m) exp (C46 log2Y p) 
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for w E K ,  (A) ,  W'E L, and U E  S p a  Hence 

where 

r ( w f )  = CSl 
1 

for O' EL, + l\L,, 
exp (C45 logY m) - 

1 1 
A ( o ,  a) = for OEK,+,\K,, ~ E S ~ . + I \ S ~ .  

exp ( ~ 4 4  logY pa) exp (C46 logzy P) 

Finally we obtain the formula equivalent to the formula (50) of 171: 

Now let us put Y, = Q" I.: Choose the minimum of j,S, 'Y,' AdPdQ and 
j,j, Y,- AdPdQ;  say it is the first one. Then we have 

< 1 1  Y,H,I - exp (- C4, logyn) exp (- C46 log2yn) J 1 Y,+dPdQ J r d P  
S, K, a 

X ( S  Y ; ~ P ~ Q +  j j Y , + ~ P ~ Q +  J J Y , + ~ P ~ Q - J J  X+ a ~ d ~ ) .  
s, K:, S: K:, SC, K, r ra 

Since J ,  TT, d P  = 0, we get Y,+ dP = 3 11Xll,1. From this and the Schwarz 
inequality we have 

for some positive constants. We conclude with 
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where the constants depend only on l (Yi(L~.  Following the same argument 
we get 

n It 

l l  Y n l l ~ l  < C I I  exp (- CT3 logzy k) fl (1 - CI0  exp (- CT2 logyp)) 
k =  1 p=k+l 

Since 1 - x  < e-", the k-th term in the sum above can be estimated by 

We will estimate the last expression in two separate cases. For- k > [n/2] we 
may estimate it by 

For k < [n/2] we have 

where r ~ ( 0 ,  1) and n is sufhiently large. Hence the k-th term of the sum is 
estimated by C,,  exp (- C,, nl-9, which completes the proof of Dur lemma. 

Remark. One can see that the proof above remains valid for the sequence 
of E-norms of the iterates Q" Y for any p ~ ( 1 ,  2). 

6. TIGHTNESS 

To establish the tightness of the family {X,(t)),,,, E > 0, we will use the 
following lemma (see 171, Lemma 12, p. 259): 

LEMMA 8. Suppose that {Y,(t)],,,, E > 0, is a family of processes with tra- 
jectories in C.[O, m), such that Y,(O) = Ofor E > 0. Suppose further that for any 
L > 0 there exist constants p, C ,  v > 0 such that for any 0 < s < t < er < L 

(6.1) M E  [IK(t)- Y,(s)I2 I%(u)-x(t)lP] < C(u- s ) l f v .  

Then the family (Y,(t)),,,, E > 0, is tight. rn 

We will show that the process (X,(t)) satisfies the condition (6.1) with 
p = 1 and v = 4. Let us introduce the notation 

V ( Q ) : =  V ( e ,  X ( e ;  wl 4; w)  

and similarly for each component K,  i = 1, . . ., d, of the field I.: To begin with 
we show that 

14 - PAMS 23.2 
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LEMMA 9. For any L > 0 there exists a constant C > 0 such that for any 
O < s < t < u < L  and E > O  we have 

Proof,  The left-hand side of the inequality above may be rewritten in the 
form 

For any E > 0 the process {EB (t/&')jt,  has the law of the standard Brownian 
motion in Rd, SO 

The first term of the right-hand side of (6.3) may be estimated as follows. Using 
the stationarity of (V( t ) ) tBO (see Lemma 2) we may write 

Then from the Schwarz inequality for the last term above we have: 

for a constant C > 0. Now we will estimate the first sum of the right-hand side 
of (6.4). Notice that for Q E [q - kT, q - ( k -  1) TI we have q -Q E [ (k-  1 )  T, kT]. 
From Lemma 5 we get 

Using the stationarity of (V( t ) ) t30  and the estimation coming from Lemma 6 we 
may rnajorize the k-th term of the sum under consideration by C / k 2  for some 
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constant C > 0 depending only on IlVllg. Hence the whole sum will be bounded 
from above by C'(t-s). This completes the proof of (6.2). s 

Since the sum zkm=, l/kz is convergent, from the argument above we can 
deduce the following corollary: 

COROLLARY 1. The integrals 

- 
for i, j = 1, 2, . .:, d are convergent. 

To make use of Lemma 8 we will now establish the estimates of the 
following: 

We will estimate each of the four terms of the utmost right-hand side of (6.6) 
separately. From (6.2) and the Schwarz inequality we infer that both I1 and IV 
can be estimated from above by C ( U - S ) ~ / ~ .  NOW turn to the term I of (6.6). 
Define 

We transform I in a similar way as we did in (6.4) to get 

We will now estimate ME [r ,,, r,,, Qk- (c (O))]. We have 
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where the constant v > 0 will be determined later. The first integral above will 
be less than or equal to Ck- ' (~- t) l /~.  Since by (6.2) we have 

for the second term of (6.7) we may write 

for some p,, P 2 ,  P3  > 0, b1 +Pz + P3 +$ = I, vP1 > 0. From the same argu- 
ment it follows that 

Finally we have 

Now, with the help of Holder's inequality, the proof of-the estimation of the 
third term in (6.6) may be reduced to the problem of showing that 

Since 

it suffices to show the inequality in the case of Q, 2 e2 2 e3 (other cases are also 
covered by symmetry of the term under the last integral above). But now we can 
use the same method as presented in the proof of the estimate of I and we finally 
get 

111 < C (u - s ) ~ / ~ .  

This completes the proof of the inequality 

ME [IX, (u) -XE (t)l IX, (t) - X, (s)I21 < C (u - s)3t2 

and by Lemma 8 the family of the laws of processes {XE(t)),30, E > 0, is tight 
on C ([0, + a), Rd). 
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I 

7. LIMIT IDENTIFICATION 

To complete the proof of our theorem we have to show that there exists 
only one process that can be the weak limit of the family (X, (t)),, , as E 10. We 
prove this with the help of the Stroock-Varadhan martingale identification 
theorem. We start with the following lemma: 

LEMMA 10 (cf. [7], Lemma 13, p. 260). For any y E (0, I), M E N ,  
~:(R")na+R+ continuousandbounded,Odsl 6 ... d s M < s a n d  i =  1 ,  ..., d, 
there exists a constant C > 0 such that for any E > 0 and 0 < s 5 t d L 

IME [(XE (t  + - Y,1 ( t ) )  $ (Xe (~11, . - ., Xe (SM))]~ G CE. 

Proof.  We have 

The second term above is equal to 

The first term on the right-hand side of (7.1) can be rewritten in the form 
~ l - 2  

M E [ &  J &(el w?]? 
0 

where Y is a V'-,,,-measurable random variable for any D E E .  We get 

The last integral above is of order E. Since ME [&(@)I = 0, we may estimate as 
we have already done in the previous section: 
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Now we have 

LEMMA 11. Under the assumptions of Lemma 10, for any E > 0 we have 

I M E  [[(xi (t + EY) - X: (t)) {xi (t + E Y )  -xi (t)) - EY D ~ ~ ]  $ (x. (s,), . . . , X, (s,))] 1 = o (E? 

for i ,  j = 1, ..., d ,  where the matrix [Dij] is given b y  (2.31, i.e. 

- 
Proof.  Notice that 

(7.2) ME [(Xi (t + 8') -Xi (t)) (Xi (t + 9) - X:'(t)) $ (X, (sd, . . -% bd)] 

= ME [E' I ' ' ' & ( p )  V, (Q') d~de'$] 
t /e2 r/az 

It is easy to see that 111- Sij ME [$I I = 0. Following [7] we also get the 
estimate: 

To complete the proof of the lemma we are left with the proof of the fact 
that the terms 111 and IV in (7.2) are of order O(E~). Once again we may find 
a V-,,,-measurable random variable Y such that I11 can be rewritten in the 
form 

le2'yj2ME [K(~)B, (&Y-~)  !q dpl. 
0 

Notice that up to a term of order o(E') we have 
EY-2 

6' J IMECK(Q)B~(E~-~)YI I~Q 
0 
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Since E Y - ~  -, + co as E 10, it suffices to show that 

We may write 

Continue this way and we see that (7.4) is equal to 

Now let = Y-MEY.  Since QP = 1,  (7.5) can be rewritten in the form 
I N-I T 

since E [v(e)] = 0. The first term above may be estimated with the help of 
Lemma 6. We have I I Q " ~ ~ ~ ~  < C/k2 for any q~ [I, 2),  EN, the constant 
C > 0 depending only on q and l l ! & q .  And we estimate (7.5) from above by 

This completes the proof of Lemma 11. 

LEMMA 12. For any y ~ ( 0 ,  1) and 0 < y' < y there exists a constant C > 0 
such that 

ME [ ~ x , ( t  +cY)- X, (t)141 G CE~Y' .  
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Proof.  We have 

Define 

It suffices to find the estimates of the following type: 
(i) ME [IA41] d C1 E ~ ~ ' ,  

(ii) M E  []A3 311 < C2 E 'Y ' ,  

(iii) ME CIA2 B21] < Cg z2Y', 
(iv) ME [IAB31] < C 4 ~ 2 Y ' ,  
(v) ME [IB41] G Cs E ~ ~ '  

for some constants C,, .. ., C,  > 0. It is easy to see that once we have estab- 
lished (i) and (v) we get (iitiiv) by the Schwarz inequality. But (v) is obvious. To 
prove (i) we have to find an appropriate estimate from above of the term 

and this is exactly the result of Lemma 15 of [7]. H 

Now let f E C," (Rd). Let $I be as in Lemma 11 and let t, = s + r n ~ ~ .  From 
the Taylor expansion formula we have 

where 8, is a point in the segment [X,(t,), X,(t,+ ,)I. The first term of the sum 
above is estimated with the help of Lemma 10 by the term of order o(cY). The 
third one, by the Holder inequality and Lemma 12, may be estimated from 
above by CE~Y'I~. Choosing carefully y ~ ( 0 ,  1) and y ' ~ ( 0 ,  y) we get again the 
term of order o ( E ~ ) .  The second term can be rewritten in the form 
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where 

And this, by Lemma 11, up to the terms of order o(cY) is equal to 

Thus the limit of the family of processes {X, (t)),> as E 1 0 must have the law 
p on the space C([O, + m), Rd) such that for any f EC; (Rd)  

is a martingale under p. By the theorem of Stroock and Varadhan (see e.g. [14]) 
it may be identified as a diffusion with covariance matrix I) = [D,,]. This 
completes the proof of our theorem. ra 
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