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Abstract. Let (X, X,, n E Zd, be independent and identically 
distributed random variables satisfying xP(IX1 > x) a L(x) with either 
EX = 0 or ElXl = m, where L(x)  is slowIy varying at infinity. This 
paper proves that there always exist sequences of constants {a,,) and 
{BN) such that an Exact Strong Law holds, that is 

a, XJB,  + I almost surely as N -r co. 
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1. INTRODUCTION 

Consider independent and identically distributed random variables 
(X, X,, n E 2:). Under the condition that EX = 0 or E 1x1 = oo we study 
whether there exists an drnost sure non-zero limit for some weighted sum of 
our multidimensionally indexed random variables (X,, rr E 25). In other 
words, we examine whether or not 

lim Xjnl Xm 
= 1 almost surely 

~ - r m  BN 

for some sequences of constants {a,) and {B,). This is known as an Exact 
Strong Law. Several papers, e.g. [I]-[5]? have been devoted to exploring the 
conditions for (1.1) to hold. It was shown in [I] that if the random variables are 
nonnegative with EX = co, then 

lim = I almost surely 
N-rm BN 
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fails for any sequence {BN, N 2 1). As a matter of fact, Exact Strong Laws 
hold only for some special classes of random variables and for only some 
carefully selected weights {a,, n E 25). AS mentioned in [ S ] ,  in order for (1.1) to 
hold when d = 1, we have to require the random variables either to barely 
have a first moment or to barely just miss having a first moment. To this end it 
was assumed in previous work that XP (1x1 > x) was a slowly varying function. 
Later, this condition was relaxed in [4] and [ 5 ] ,  see (2.1) below. This relaxation 
allows us to obtain an Exact Strong Law for the St. Petersburg game. Our 
primary interest in this paper is to show that for any distribution in this class, 
(2.1), whether or not the Exact strong Laws (1.1) hold for some sequences {a,) 
and (EN}. The answer is affirmative. 

In the earlier papers the normalizing constants {BN] were predetermined. 
As was (4). Although (a,) are dependent on the distribution of X, their 
dependence on {en) (defined in Section 2) limits the application of the theorems 
only to a smaIler class of distributions contained in (2.1) since an extra con- 
dition (2.3) cannot always be established. In this paper we allow more flexibility 
for the choices of the sequences (am) and {BN). 

The paper is organized as follows. In Section 2 we state our two main 
theorems and then demonstrate an example. In Section 3 we provide all the 
proofs. Prior to that a few comments about notation are in order. The generic 
constant C will denote a bound that is not necessarily the same in each ap- 
pearance. We define lg x = log (max (e, x))  and lg, x = lg, - (lg x) for k 2 2. 
Also, we let x* = max(+x, 0) .  

2 MAIN RESULTS 

The assumptions about the distribution of X in this paper are the same as 
those in 151. First, we assume 

(2.1) xP(IX1 > x) x L (x), where L(x) is slowly varying at infinity, 

where a (x)  z b(x)  implies cl a (x) < b (x)  < c2 a(x )  for some positive constants 
c, and c,. If E 1x1 < ao, we assume EX = 0 and define 

In this case our parameter of symmetry is 

E X -  I ( X -  > x) 
c = lim 

x- tm E 1x1 I(IXI > X) ' 

If E 1x1 = co, we define 
X 

P ( ( X  = jP(IXI > t )dt  
0 
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and in this situation the parameter of symmetry is 

EX- I ( X -  < x) 
c = lim 

x+ m E 1x1 i(fxl< X) ' 

Our definition of the parameter of symmetry is different from that in [ S ] .  
In [5]  the parameter of symmetry is defined as 

E X -  I(X- > x) 
c' = lim 

x-+a, EX'i(2Lf > x) 

in the finite first moment case and - 

E X -  Z(X- < x) 
c' = lim 

x+, EXf I(X' < X) 
in the infinite first moment case. There is no essential difference between the 
two. There is a simple relationship between c and c': c = c'/(l + c'). Obviously, 
0 < c < 1 while 0 < c' < oo. We avoid the case c = m in the definition for 
convenience. 

Like in 151, we partition the space Zd, into disjoint sets {A,, n 2 1) so that 
the union of {A,, n 3 I) is Zd,. One possible partition is 

A, = { n :  n ~ Z d ,  and 1111 = n}, 

that is, the points in A, are those that are n units from the origin. However, 
from the proofs below one may find that for any choice of (A,, n 2 1) our 
theorems are true. Of course, one can also define the distance In1 in an arbitrary 
way as long as JnJ is integer-valued for any n  EZ$. TWO common choices are 

d 

In(= C n i  and Inl= m a n i  for n = ( n l ,  ..., nd)€Zd,. 
i =  1 l < i S d  

The purpose of the introduction of (A, ,  n 2 1 )  is that we can then set 
a, = a, whenever n E A,, where {a,, n 2 1 )  are some constants to be defined. 
We also let dm = IAd, the number of points in A,. Thus d ,  2 1 for all n 2 1. 

Let {h,) be a sequence of positive numbers satisfying 

z h n = a o  and limh,=O. 
n =  1 n-r m 

Define 

c, = inf ( x :  x /p ( x )  2 d,/h,). 

Since p ( x )  is slowly varying at infinity (see [4]), we have x/p(x)  -+ ao as x -+ oo. 
Therefore (c,} is well defined and c, - d, p (c,)/h, as n + oo. 

Throughout the paper we will let {B,,  n 2 1) be non-decreasing and 
{b,, n 2 1) be strictly increasing (in order to apply Kronecker's lemma) with 
limn,, b, = ao and £3, = C:=, b, hi, We also set a, = b,,/cn. 

Our first result is the extension of the theorems that can be found in E51. 
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THEOREM 2.1. Assume that (2.1) holds and 

lim sup (b,/B3 < a, 
R'm 

then - 

lim & ~ I I G N ~ ~ ~ ~  = 2c - 1 almost surely 
N - r m  BN 

when EX = 0 and 

(2.6) lirn = 1 -2c almost surely 
N - m  BN 

when E ]XI = ao . 
Re m a r k 1. If we set h, = l/(n l g  n) and b, = (lg n)b for some b > 0, then 

3, - (lgnIb/b = bdb. Thus (2.4) holds. This reduces to the theorems in [5 ] .  

It ema r k 2. The condition (2.4) provides a general rule for the selection 
of b,, and thus B,. For any sequence (h,) with property (2.2) we can carefully 
select (b,) so that (2.4) is satisfied. For example, we can set b, = S, + S,- , where 
S, = XI=, hi for n 2 1 and So = 0. Then B, = S i .  So (2-4) is trivial in this case. 
This follows from the calculations 

Remark 3. In general, if g (x )  is a non-decreasing function on (0, CQ) 

satisfying 

(2.7) lim g ( x )  = m and lim = f l  E LO, m) 
X+ w x-+m g (x )  

and b, = g (S,), we have 
n n S. 

Bn = C bihi = C g(Si)(Si-Si-1) 2 S g ( x ) d x ,  
i =  1 i =  1 0 

and thus, by L'Hospital's rule, 

yielding (2.4). A large class of functions satisfies (2.4). For example, g (x )  = xa 
for u > 0 and g ( x )  = exp (gx)  for fl> 0 are two such functions. 
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From our remarks the existence of b, for (2.4) to hold is no longer a problem 
as long as one can h d  a sequence {h,) that ensures both (2.2) and (2.3). It is our 
task to show the existence of such a sequence {h,) in the following theorem. 

THEOREM 2.2. Under (2.1) there exists a sequence {h,} so that both (2.2) and 
(2.3) hold, and hence (2.5) or (2.6) holds for some sequences (a,, n ~ ~ d , )  and 
{Bn, n 2 I}. 

Several examples were given in the earlier papers. As we mentioned in 
Remark 1, only a special case was considered in [S], that is, h, = l/(nlgn). In 
the situation when the theorems in [5] hold our Theorem 2.1 can give more 
choices about the weights as pointed out in Remarks 2 and 3. In the situation 
where the theorems in [ 5 ]  do not hold, Theorem 2.2 guarantees the existence of 
some appropriate weights for our Exact Strong Law. Following the proof of 
Theorem 2.2 one gets the idea on how to find such weights. We will just present 
one example (Example 3) in [5]  where the lack of choice in selecting {h,) 
complicated matters. 

EXAMPLE. Let {X, X,, a ~ Z d , )  be i.i.d. random variables with 

For simplicity assume that X > 0. In [5]  it has been shown that an Exact 
Strong Law does not apply in the one-dimensional case, i.e., d = 1, when (h,)  
was equal to l/(nlgn). However, when d > 1, an additional condition d, = an 
was needed in order to establish an Exact Strong Law. 

Without any additional conditions we will show how to define {h,) and 
{b,) so that an Exact Strong Law can be established for any d 2 1 and any 
choices of d,. From [53 we have 

Define h, = l/(n(lg n)(lg2 n)). Then (2.2) is trivial. Since c, - dn p(c,)/h, > n, it 
follows that 

N 
1 

< 
1 

alg n 1g2 n 1g2 c, n Ig n(lg, n)" 

which yields (2.3). Observe that x;=, hi - lg, n. From Remark 3 we can take 
bn = (lg, n)" and B, - (lg, N)"+l/(a+ 11, where a > 0. Or we can set b, = (lg, n)p 
and BN - (Ig2 N)@//? for some B > 0. With either of these choices we have 

lim &rnl C N  4 X a  
= 1 almost surely. 

N + m  BN 
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The proof of our first theorem is mainly based on the techniques utilized 
in [5].  However, the proof of the second theorem concerning the existence of 
the constants in (1.1) is new and more difficult. 

Proof of The o r  em 2.1. Since the proof is almost the same as those in 
[5], we will only consider the case of EX = 0. As usual we use the partition 

where c, = cn whenever n€An. Note that a, = bJc, and bN/BN is bounded 
by (2.4). In order to show that the first two terms converge almost surely to 
zero we need to verify that 

as in [ 5 ] ,  by applying the Khintchin~Kolmogorov convergence theorem and 
Kronecker's lemma (see, e.g., [fl). The proof of (3.1) is the same as that in [5]. 
For completeness of the proof we display it here: 

To complete the proof we still need to show that the third term converges to 
2c - 1. Since EX = 0, we have 

EX1 (1x1 < c,) = - EX1 (1x1 > c,) - (2c - 1) E 1x1 I(IX[ > c,) = ( 2 ~  - 1) p (c.). 

Therefore 

This completes the proof of Theorem 2.1. 
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P r o  of of The o re rn 2.2. From [4] it follows that p (x) is a slowly vary- 
ing function and El (x) = L (x)/p (x )  + 0. By  Karamata's representation theorem 
([6], Theorem 1.3.1), since ll(x) is also a slowly varying function, it can be 
expressed as 

1l(x)=q(x)exp jTdt 3 C"" I 
where q (x) + q > 0 and e (x) + 0 as x 4 a. Set l3  (x) = sup,,, l 2  (t), where 

Since the continuous function 1, (x) vanishes as x -, m, 2, (x) is well defined and 
i3(x)J0 as x + oo. 

Define en = I3 ( d l 2 )  for n 2 1 and e,  = el. Then e, > 0 for n 2 1 and enJO 
as n + co. Define h, = e; 'I2 -e;?i2 + n-' for n 2 1. Thus h, > 0 and it foliows 
that 

and 

Hence we can conclude that 

x h n = c o  and C e , , h , < o o .  
n= l n=  1 

Since Z2.(x) is slowly varying, we have ([8], p. 277) 

which implies en 2 Crz-lJ6 for all large n. Note that e,-l/e, 2 1. We want to 
prove that 

as n -, oo. By definition, en- = sup,,(,- 1 ,~ /2  I ,  (t). If the supremum is achieved 
in [la1/', a ) ,  then en- ,/en = 1 .  Otherwise, en- = SUPiEl(n- 1)*/*,n1/2) l 2  (t) and 
en 2 I2 (dl2), and thus as n + a 
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en- 1 12 (t)  1 -  sup - 
I t 2  en t ~ l ( n -  1 )1 /Z ,n l l z )  12 (n 1 

proving (3.3). Therefore - 

This allows us to conclude that n - 2  < h, = ~ ( n - ~ " ~ ~ ) ,  which together with 
(3.2) yields (2.2). 

Our remaining task is to show (2.3). Notice that 

From [4] it follows that p (x) is a slowly varying function. Thus from [g], p. 277, 
we have j i  (x) > x-'t3 for all large x. Since c ,  - dn p(c,)/h,, for large n we have 

which implies that 

c Jn1I2 + co. 

Hence, for large n, E 3  (c,) < I 3  (n1I2) = en. Moreover, we have 

which combined with (3.2) gives (2.3). This completes the proof of Theorem 2.2. ra 
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