
PROBABILlTY 
AND 

MATHEMATICAL STATISTICS 

mE EXISTENCE 
OF THE EFFECTIVE DIFFUSIVITY TENSOR 

FOR DIFFUSIONS WITH INCOMFRESSIBLE MIXING DRIFTS 

T. KO MQRO WSKI* (WARSZAWA, LUBW) ANU P. WIDELSKI** (LUBLIN) 

Abstract. In the present article we consider a model of motion of 
a passive tracer particle under a random, non-steady (time dependent), 
incompressible velocity flow in a medium with positive molecular dif- 
fusivity. We show the existence of the effective diffusivity tensor for the 
flow provided that its relaxation time is sufficiently small. In contrast 
to the previous papers [23], [6], [20] we do not assume the existence 
of the stationary and integrable stream matrix for the flow. 
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1. INTRODUCTION 

In this paper we consider a model of a particle diffusion in a random 
environment. This model can be described by the It6 stochastic differential 
equation with a random drift 

where u = (u,, . . ., ud): R x Rd x i2 -+ Rd is a d-dimensional random vector field 
given over a certain probability space Fl : = (Q, P), and w ( . I  is a d-dimen- 
sional standard Brownian motion defined over another probability space 
F2 : = ( E ,  d, Q). Let E and M denote the expectation operators corresponding 
to probabilities P and Q, respectively. We consider the process x ( - )  over the 
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product probability space 

The random field u ( 4 ,  a), sometimes called the EuIerian uelocity, describes 
a medium that is rapidly varying yet has certain statistical symmetries, e.g. as in 
the case of a turbulent flow, see [12]. One such symmetry that is usually 
assumed (cf. [12]) is the stationarity of the random field. More precisely, we 
suppose that 

(S) (Stationarity) u (., .) is time-space strictly stationary, i.e. f 6  any positive 
integer N, points (t, x,), . . ., (t,, x,), (h ,  y) E R x Rd, the laws of (u (ti, x,), . . ., 
u (tN, xN)) and (u (t + h, xl + y ) ,  . . ., u (tN + h ,  xN+ Y)) are identical. 

Also, a simple change of coordinates corresponding to the passage with 
the description of motion to the frame co-moving with velocity equal to the 
mean velocity of the drift allows us to assume without any lass of generality the 
following. 

(C) (Centering) The field a( . ,  .) is centered, i.e. Ers(0, 0) = 0. 

Motivated by the problem of transport in a turbulent flow of incompres- 
sible fluid we suppose further that the drift satisfies 

(I) (Incompressibility) For any W E  SZ we have 

A convenient tool in studying the long-time large-scale behavior of a pas- 
sive tracer is the so-called Lagrangian process u(t, x (t)), t > 0. This process 
describes the drift of the medium from the vintage point of a particle whose 
motion is governed by (1.1). It is well known (see [24] and [26]) that u (t, x (t)), 
t 2 0, it stationary over the probability space F1@r2. Also, when rc > 0, one 
can show (see e.g. Proposition 1 in [6] ,  p. 758) that the Lagrangian process is 
ergodic. By the individual ergodic theorem, applicable when the first absolute 
moment of u(0, 0) exists, we have 

x(t) 1 * lim -= lim - I r ( s ,  x(s))ds=Eu(O, O)=0 
t + + m  t t++mtO 

both P@Q-a.s. and in the ,!?-sense. One can inquire therefore whether the 
motion of the particle is diffusive, i.e. whether the mean square displacement is 
proportional to time. Our principal task is to show that this is indeed the case 
under the hypotheses that the Eulerian velocity is sufficiently strongly mixing 
and satisfies certain regularity condition. 

In order to be able to precisely formulate the regularity assumption we 
introduce first the notation on certain standard norms on the functional spaces. 
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Let f :  18 x IZd + Rd. We define 

For a given R > 0 we let BR : = [X E Rd: 1x1 < Rj and B, be the closure of 3,. 
When f:  [0, x BR + Rd, we let 1 1  f l l$ .R  be the norm restricted to [0, Tj x & . 
Our assumption dealing with regularity of the drift can be stated as follows. 

(R) The field u ( -, -; w )  is locally Holder in time variable and of C1-class in 
the spatial variable for P-a.s. o, Moreover, we suppose that - 

U ,  := esssup IluC., .; o)llo < + m. 
msP 

To formulate the mixing assumption we let f?#i, with - co < a < b < + m, 
be the c-algebra generated by u ( t ,  x ) ,  a < t < b ,  x € R d .  

DEFINITION 1.1. For any h 2 0 we introduce Rosenblatt's a-mixing coef- 
ficient 

( h )  := sup(IP[A]P[B]-P[AnB]I: AE@'_ , ,  BE%:+?, ~ E R ) .  

Define a (possibly empty) set 

(1.3) r := [y > 0: there exists M > 0 such that 

a (h) < 2Me-hiy for all h 2 01. 

y ,  (u )  := infr shall be called the relaxation time of the field. We adopt the 
convention that the infimum of an empty set equals + co. 

For any two vectors a = (a l ,  ..., a,), b = (b l ,  ..., b,)€Rd we define 

With the notation and hypotheses introduced in the foregoing we are ready to 
state the main resuIt of this article. 

THEOREM 1.2. Suppose that the fzeld u ( - ,  - )  satisfies the assumptions (S) ,  
(C), ( I )  and (R). Then there exists a constant yo (U,, d )  E (0,  + ao] depending 
only on U, and dimension d such that the effective diffusinity matrix 

D : =  lim EM Cx (t) 63 x (tll 

exists, provided that the relaxation time of the$eld y ,  ( r r )  belongs to the interval 
[0, yo), In addition, the effective difisivity matrix is non-trivial and satisfies 
D 2 2uI. 

The diffusive behavior of a particle has been demonstrated in the case of 
incompressible environments via the homogenization technique in a number of 
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papers, see [25], [22], [lo] in the steady (time independent) and [23], 161, [20] 
in the non-steady (time dependent) case. It was shown there that a sufficient 
condition for the existence of the limit in (1.4) is the existence of a stationary 
anti-symmetric matrix valued field 

R(t,  x) = [Hi,j(t, ~ ) ] i , ~ = l ,  ..., d ,  (t, X)ER X Ed,  

that has the second absolute moment and satisfies 

~ ( t ,  X) = V = . H ( t ,  X) 
- 

or, equivalently, 
- 

u i ( r , x ) =  C d , , ( t , x )  for all i={ l ,  ..., d ) .  
j= 1 

H ( a ,  .) is called the stream matrix of the velocity flow. 
While the existence of the stream matrix is essentially necessary for the 

diffusive behavior of a tracer particle in the case of steady fields (see [2]),  it is 
far from being necessary for time dependent fields (see e.g. [?I-[9]). Unfor- 
tunately, it is not clear how to incorporate the mixing in time property into the 
framework of the homogenization theory. Recently, some progress has been 
made thanks to the use of the Lasota-York fixed point theorem for Frobe- 
nius-Perron operators (see [I81 and [19]). The diffusive behavior of the par- 
ticle has been established under the assumption that the field a ( . ,  - )  
is rn-dependent in the temporal variable, i.e. it is of finite dependence range 
in time. The results of [I81 and [19] do not require the incompressibility of 
the field, it is not clear yet how to extend the technique presented there to the 
case of mixing fields. We add also that the need for some kind of a mixing 
assumption about the field is illustrated by the results of [21] where the super- 
diffusive behavior of the particle is proved (i.e. EM lx(t)I2 - for t 9 1, with 
y > 0) in the case of a diffusion with an incompressible random drift, which 
displays sufficiently strong correlations at long temporal and large spatial 
scales. 

At th_is point we would like to discuss in brief the main ideas involved in 
the proof of Theorem 1.2. First, let us attempt to expose the main difficulty of 
the problem. As shown at the beginning of Section 5 below, see in particular 
calculation (5.1)-(5.3), the question of the existence of limit (1.4) can be reduced 
to proving a sufficient decorrelation rate of the Lagrangian process, cf. con- 
dition (5.5). The principal difficulty one has to overcome when dealing with this 
issue can be summarized as follows. Notwithstanding any strong mixing prop- 
erties of the Ederian field a ( . ,  - )  at any given time T > 0 the trajectory x(t), 
t 2 0, of (1.1) carries all the information about the random field contained in 
the time interval [0, TI. Hence it is not immediately clear whether the velocity 
along the trajectory process u (t, x (t)), t 2 0, should decorrelate at all. Most of 
the results in the direction of proving such a property obtained so far have been 
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of perturbative nature and usually assumed the slow variation of the Eulerian 
velocity in the spatial variable, see e.g. [15]-[17]. We stress that our case is 
non-perturbative and the previously developed methods are not applicable. 

In the present paper we treat the problem using quite a different approach 
from the papers mentioned in the foregoing. The centrepiece of our method is 
the splitting construction contained in Section 3 that is an adaptation of the 
corresponding method applied to the integer lattice model of random walks in 
random environments (see [4]). Before proceeding with the explanation of the 
method we note that the assumptions on the mixing coefficient made in [4] are 
quite restrictive. In fact, the uniform condition, which is used there, is not 
particularly well suited to work with multidimensional random fields (cf, e.g. 
[3]). In particular, because of some properties of that type of mixing the defini- 
tion of the respective coefficient given in [4] is quite special. It is not even 
precisely clear how the corresponding condition would look like in the case 
treated in this paper. Rosenblatt's mixing coefficient (see Definition 1.1) on the 
other hand is more natural for the problem considered here. Replacement of 
the uniform by a-mixing condition we achieve here is due to the assumption on 
the incompressibility of the drift. 

Coming back to the description of the method we show via a rather 
standard calculation done at the beginning of Section 5 that the proof of 
Theorem 1.2 reduces to demonstrating that the Lagrangian velocity process 
u(t, x(t)), t 3 0, decorrelates sufficiently fast in time. To avoid getting too 
technical at this stage we try to elucidate this issue on the example of the 
random sequence u(n, x(n)), n 2 0. For each realization w of the medium we 
denote by P" the law of the random sequence (x (n)), > o  on the space c (Rd) of all 
Rd-valued sequences ([,),,, . The main idea behind the splitting construction is 
to construct a (random) probability measure Q" on a product c (Rd) x C, where 
E is some appropriately defined space, see Section 2.3. This measure shouId 
have the following two properties. 

(PI) The law of the projection onto the first coordinate coincides with PW, 
see Theorem 3.2. 

(P2) For any positive integers n, N one can find a certain event A E  ,Z SO 

that the law, inder  om, of the random vector (tn, . . ., f,,+.) conditioned on A, 
considered as a random measure in w, is %-,,n-measurable. In addition, 
WH Q" [A] should also be 8- ,,,-measurable and bounded away from 0 by qN 
for a certain positive q > 0 (in fact, in our paper Q" [A] = 1 / 2 9  

The construction of Q" is done in (3.1H3.7). The relevant event A is 
determined by the stopping time (5.6). Coming back to the problem of es- 
timating the rate of decay of EM[ui(n, x(n))uj(O, [I)] note that by virtue of 
(Pl) this quantity equals 
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where Edd is the expectation with respect to QO. Using property (P2) we can 
apply the mixing property of the drift to estimate the first term on the right- 
-hand side of (1.5), see Lemma 4.4 of Section 4. On the other hand, the second 
term is at most equal to (1 - qN)  U: . This argument can be repeated at least 
[n/M times yielding an appropriate decay estimate, see Section 5 on the details 
of the calculation. 

2. PRELIMINARIES 
- 

2.1. Homogeneous random drifts. Let D = CdiV(R x Rd; Rd) be the space of 
all continuous d-dimensional vector fields w ( t ,  x), (t, x) E R x Rd, that are of 
C1-class in x and satisfy Vx-w (t, x) = 0. The space 52 is equipped with the 
standard Frkhet topology. We denote by B (62) the a-algebra of Borel subsets 
of Ll and by T,,, o ( -, . ) = o (t  + ., x + -1, (t, x) )E R x Rd, the group of space-time 
shifts. We suppose that P is a Borel, space-time homogeneous, centered, proba- 
bility measure and E [ , I  denotes the corresponding expectation. Homogeneity 
means that P'I;,, = P for all (t, x) E R x Rd. Centering is understood as Ei = 0, 
where the random vector i'i (o) : = o (0,O). For the sake of abbreviation we 
write E : = LP (TI), p E [I, + CO], where TI : = (a, (a), P). In what follows we 
restrict our attention to the Eulerian velocity field defined by 

(2.1) ( t ,  x; w )  := li:(?;,,(w)). 

It is easily checked that u ( - ,  - )  satisfies conditions (S), (C), (I) of the previous 
section. We suppose further that P is a measure such that (R) is also fulfilled. 
Note that with u ( - ,  .) as in (2.1) we do not lose any generality since any 
random field a(- ,  a )  that satisfies (S), (C), (I), (R) can be made fit into this 
framework. This can be achieved by considering as P the law of the random 
field on Q. 

EXAMPLE 2.1. Below we present an example of a field that satisfies the 
assumptions of Theorem 1.2. Assume that H is a certain Hilbert space and 
W ( - ) is _an H-valued, colored Wiener process (see [ 5 ] ,  p. 53) with the covari- 
ance operator QE 9: (II). As we recall 9: (H) is the class of all non-negative, 
self-adjoint, trace class operators. We let the process be given by the moving 
average 

where f: [0, + a) + R is Holder continuous and f E L2 (0, + CO). Let 

The spectral density of c, ( - ) equals Pa (x) = (24-I 1f(x)l2 (Qa, u ) ~ ,  where 
f ( . )  is the Fourier transform of f ( a ) ,  extended to the negative half-axis by 
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setting f (x) = 0 ,  x < 0. It is well known from the theory of linear forecasting 
(see [14], pp. 160-161) that in this case 

Assume that there exists g, an entire function of fitute order (i.e. 
maxlZl =* [g (z)l < Mexp (rQ) for some M, Q > O), such that Ig (x)l-' = I)(x)l, 
XER, whose all zeros z, satisfy lImzjl 2 l / C .  In addition we suppose that 

Then, according to Theorem V1.6.6 of [14], for each a€ H, IlallH = 1 and E > 0 
the a-mixing coefficient of the process { . ( -I  satisfies 

(2-3) ol(h)d M2eLhiy  for all h > 0 ,  

where y E (0,  C +  E). The choice of M 2  can be made independent of a. Note that 
when e j ,  j~ N, is the orthonormal system consisting of the eigenvectors of the 
covariance operator Q, the processes lei ( .  ), j~ N, are independent. Hence we 
conclude that also the a-mixing coefficient of { ( - )  satisfies (2.3). 

Suppose that C;,,,(Rd; Rd) denotes the space of all differentiable diver- 
genceIess, vector fields f such that 11 f 1 1  = sup, If (x)l+ supx]Vf (x)l < + co . It is 
equipped with the Banach space norm 1 ) .  \I1. Let U :  H -, Cimdi, be a Lipschitz 
continuous mapping that is bounded, i.e. there exists M 3  > 0 such that 
IIU(h)lll < M 3  for all ~ E H .  In consequence, the random field 

has a positive relaxation time y, (u) d C. Hence we also have 

lim y, = 0. BI 

C-0  f 

2.2. Random path measures. Let a > 0 and 

be equipped-with the standard FrCchet metric corresponding to the topology 
of uniform convergence on compact intervals. For any t 2 0 we denote by 
17(t): 3E -+ Rd the canonical projection 17 ( t)  ( 7 ~ )  : = R (t),  ~ E E  3E. We let 
&a,b : = 0 (17 (s): a < s < b). To simplify the notation we write A!z : = &,,, and 
A : = In addition, we let 9, and 9 denote the spaces of all Bore1 proba- 
bility measures on 3, and X, respectively. 

Let Q & E ~ ! ~  be the path measures that are the laws of the solution to ( 1 . 1 )  
for a fixed realization of o E i2 and subject to the initial condition x ( t)  = x. We 
denote by F& : = (3, kt,, , Q&) and by M& the respective mathematical ex- 
pectation. In the particular case when t = 0, x = 0 we shall suppress the sub- 
scripts t and x. 
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2.3. Infinite product spaces. Denote b y  e (Rd)  the Frkchet space of 411 
Rd-valued sequences X := ( x , ) , ~ ~ .  Let a be its Bore1 a-algebra. Denote by 
S: c(@ + c{Rd) the shift map S ( ( X , ) , , ~ ~ )  := ( x ~ + ~ ) , ~ ~ .  For any n 2 0, k 2 1 we let 
~ n , k :  c(R4) + (Rd? be given by ~ n , ,  tX) = (xn , . . - 9  ~n + k - 11 let gn,k := P;; I@, 
Bn,& := S - " ( q ,  

Denote by .Z:= (0, the space of all (0, 1)-valued sequences 
< = (Cnln ; equipped with the standard cylindrical a-algebra V. In a complete 
analogy to what we have done in the case of c(m we introduce 
&,k: x+(O, 1jk,  q n , k ( t )  =(cn-ti7 --., tn+k), 4n:= 40,". also z+z  be the 

- 1 shift map S ((4'An, I) : = (It, + lh a I) and gn,, : = qn,, (%I, q,,, : = S-" (0 - 
Suppose that Roy,  is the Bernoulli measure on ( 0 ,  1)  with parameter 

p ~ ( 0 ,  I), i.e. Ro,,[{l)] = 4, Ro,,[{O}] = 1-Q. Let R, := @,R,,, be the in- 
finite product of Bernoulli measures defined on (E, %'). 

.& -.. 2.4 Reformulation of the main result. For any a 2 0 define a measure 
P a ,  on (52 x 3,, &t(fi)@A,,,) as the semiproduct 

Pa,, ( A  x B) : = 1 Q;,, (B)  P (dm) for all A E 9 (a), B E A,,, , 
A 

and a stochastic process 

over (a x X, a(Q)@A, , , ,  P,,,). Denote b y  E,,, the expectation operator with 
respect to Pa,,. We shall omit writing subscripts when a = 0, x = 0. Let 
9: = (Q x X ,  9a(O)@A,  P) .  

The following proposition is a straightforward conclusion of Theorem 3 
in [26], p. 501. 

PROPOSITION 2.2. For each t > a B 0 and X E R ~  we have 

(2.5) E,,, v (t)  = 0. 

In light of the discussion carried out in Section 2.1 our main result can be 
concluded from the following result, see Section 5 for its proof. 

THEOREM 2.3. Suppose that a, giuen by (2.1), satisfies the asstsrnptions (S ) ,  
(C), ( I )  and (R). Then there exists a constant yo  (U,,  d )  ~ ( 0 ,  + co] depending 
only on U ,  and the dimension d such that the limits 

Di,j : = lim E [xi ( t)  7~ j (t)l for all i , j =  1 ,  ..., d 
t T + m  t 

exist, provided that the relaxation time. y ,  (u) E [0,  yo). In addition, the matrix 
D = [Di,j] satisfies D 2 2rcI. 
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3. THE SPLITTING CONSTRUCTION 

The following construction is modelled on [29], p. 68. We start with 
recalling the classical Aronson-Nash-Moser inequalities for fundamental solu- 
tions of parabolic equations, see [I], Theorem 7, p. 661. They state that there 
exists a positive deterministic constant C , ,  depending only on U, and the 
dimension d such that for all 0 < t - s  < 1 and x, y E Rd we have 

for B-a.s. w, Here pW(s, x; -, a )  is the transition of probability density of the 
diffusion satisfying the stochastic differential equation (1.1) with the initial con- 
dition x (s)  = x. Let t > 0. We denote by Q, the Gaussian measure on R~ with 
density 

Let P ( s ,  x; t ,  -) be the transition probability corresponding to the density 
pm(s, x; t, .). In consequence of (3.1) we conclude that there exists a constant 
Cz€(O,  1/21 depending only on U, and d such that 

(3.3) Pw (s, x, t, A) 2 C2 Qt-,[A-xl 

for all A E 43 (Rd) ,  0 < t -s  < 1, P-a.s. 

For each n 2 0, x E R ~ ,  co E SZ the measures ~$2, i E (0, I), are defined on 9 ( R d )  
by the following formulas: 

-0,m A 1 
(3.4) Q . ,  t I : = l-~, (Pm(n, x, n+1,  A)-C,Q,[A--XI), AEB(R~) ,  

We omit writing subscripts when n = 0, n = 4). 

For each n 2 0, k 2 1, w E 8, q E ( 0 ,  lIk and x E Rd we construct measures 
on f#m,A as follows. Suppose that k = 1 and Acg(Itd).  We let 

Assume that &:;$', has already been defined on B,,k for a certain k 2 1 
and q€{O, ljk. We show how to extend the definition to B,, ,+,  and 
q : = (qI) ,  C I  C R +  1 E ( 0 ,  Let BE a ((RdIk) and C E B (Rd). Suppose that 

9 - PAMS 232 
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We let 

Using a standard procedure we conclude that the above-given definition ex- 
tends, in a unique way, to a probability measure on an,,, , . Applying Kol- 
mogorov's theorem on consistent families of measures we construct a unique 
measure &;: on gnSm for any (q ,  w ) ~  ,Z x 61 that agrees with each O;K"~, when 
restricted to k 2 1. The respective expectations are denotea by ILI:::, and 
?&;f:;,". Let also @" := QR$. The following proposition is a straightforward 
generalization of (3.7). 

PRo~osnno~ 3.1 (the Markov property of a::). Let n 2 0, k, I 2 1, o E B, 
q EC, x E Wd and rp: (Rd)k+' 4 R be bounded and measurable. Then 

where X = (x,). o. 

For each W E Q  we define a random measure Q:, on 98n,,@%'n,, via the 
relation 

When x = 0 we write Q" : = $, := (c(P) x 2 ,  B@%, Q") and denote by 
Ew the corresponding expectation. 

Define a measure on (51 x c (Rd) x E ,  9 (8)@9@%) by 

P ( A X B X C ) : =  S ~ Q ~ , ~ ( B ) P ( ~ ~ ) R , , ( ~ ~ )  for all A E ~ ( Q ) ,   BE^, CEW. 
A C  

We define & := (P x c(m x Z, B(bZ)@9@%', p) and denote by 8 the corre- 
sponding expectation. 

For any o E B let us define random sequences 5, (n) : = n (n), n 2- 0, over 
Fm and UX) : = x,, n 2 0 over gm. The fundamental property of measures @" 
constructed above is expressed in the following 

THEOREM 3.2. For any w  E B the laws of the stochastic processes (bn)n30 and 
( fJn> ,  under the respective probability measures are identical. 

P r o  of. We need to prove that for any N 2 0 and bounded and measura- 
ble functions yo, . . . , ( P N :  Rd + R we have 
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To that goal we use the induction argument. For N = 0 

(3.10) ~ " c p o ( L ) = S E S c p o ( ~ o ~ & r l ~ " ~ d ~ o ) l ~ c , ( d ~ ~  

= ~2 j q o  (xo) Qlvw (dxo) + ( I  - ~ 2 )  j yo ("0) Q"" ( d ~ o )  

by virtue of the definitions of measures Qo9", Q1'"; see (3.4) and (3.5). Suppose 
therefore that (3.9) holds for a certain N. Using Proposition 3.1 wecan write 

where X = ( x . ) ~ ~ ~ ,  Using the induction hypothesis we can rewrite the right- 
-hand side of (3.11) in the form 

Repeating the calculation done in (3.10) we conclude that 

Substituting from (3.13) into (3.12) and using the Markov property of Q" we 
conclude (3.9) for N + 1. H 

Suppose that 5 = (& E Z, w E 0, x E Rd and an integer N 2 0 are fixed. 
We define the reversed measure QN;1'09" on g((Rd)N+') by induction. When 
N = O  we let 

(3.15) QA:$[A] := Q 1 [ A - x ] ,  A € B ( R d ) .  

Suppose that the measure is constructed for a certain N .  We show how to 
extend its definition to N +  1. Let A E ~ ( ( R ~ ) ~ + ' )  and B,B(Rd).  We set 

I 

(3.16)  IN + z(B,o ^qru + 1(5),0 
QN + l,r [ A  x Bl := J Q ~ V , ~  [A1 Q!:: (dz) 

1 B 
l 

and extend this definition in the us& way to B((Rd)Nf 2). Note that the measure 
A t, Qiri ""'" [A x (RdlN], A E td (Rd), has a smooth density z I+ ~N*"n'" (z, x) 
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with respect to the Lebesgue measure. Comparing the construction of 
Q;mJx+ l ( t ) , ~  with that of Q:,: we conclude easily the following relation: 

for a11 {EX,  WE^, y € R d  and bounded measurable f: Rd 4 R. Here 
x = (-~n)n 2 o - 

- 
4. THE MIXING LEMMA 

Let 

(4.1) G j ( t ,  n,  m,  K ,  x;  o) 
t 

:= J q~ (x-2) {J [I uj(s, ~2 (s ) ;  w ) ~ s ]  Q f + ) t ~ , z  ( d n d )  dz 
R d m 

for any j = 1,  ..., d ,  n, m, K 2 0 integers, in 2 n + K ,  t ~ [ m ,  m+1) and x € R d  
(see (3.2) for the definition of q,). Let also G := ( G I ,  . . ., G,). 

for all y € R d ,  P-a.s. 

Proof.  The left-hand side of (4.2) equals 

The equality in (4.3) is due to the homogeneity of the environment. Changing 
variables z := z + y ,  z ,  := zl +y  we see that the left-hand side of (4.3) equals 

t 

J q K ( ~ + y - z l )  [ J  1 uj ( s ,  2; m)prn(n+K,  Z I Y  s ,  z )dsdz]  dz1 
R d m Rd 

and (4.3) follows. 

For any y E Rd and A E + l ,  where N 2 0, we define 

PROPOSITION 4.2. Let 4: = (c,),3 E E and N 2 0 be fixed. Then 
-giv+ I ( < J , T o , ~ ~  

(4.4) Q N , ~  [A]  = Q$&+$)'" [ty (A)] for all x ,  y E Rd,  P-a.s. 
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Proof.  We show (4.4) by induction. For N = 0 we need to verify (4.4) 
only when 5, = 0. Lf t1 = 1, (4.4) is trivial due to the spatial homogeneity of the 
Gaussian measure Q1. Note that 

1 
(4.5) Qg; f"@ [A] = - {[pTD.yw(O, Z, 1, x)dz-C2Q1 [ A - x ] )  

1-cz A 

Substituting z : = z + y in the integrand on the utmost right-hand side-of (4.5) we 
conclude that (4.4) holds for N = 0. Suppose now that (4.4) holds for a certain 
N and A E W l ) ,  B E &3 (Rd). Then 

The last equality follows from the (proved) homogeneity property (4.4) for 
N = 0 and the induction hypothesis. Changing variables z : = z + y we con- 
clude (4.4) for N + I. Generalization to an arbitrary set A E 49 ((Rd)N'2) is stan- 
dard. m 

A direct consequence of the above proposition is the following 

COROLLARY 4.3. Under the assumptions of Proposition 4.2 we have 
(4.6) f 4 N +  I ( S ) , T D , ~ W  

N ( z ,  x )  = ~ x + g ( ~ ) r c o ( ~ + y ,  x+y)  for all x ,  y, ZER* 

for P-as. m. 

LEMMA 4.4. Suppose that the field u satisfies the hypotheses of Section 2.1 
and n, my K > 0, t E [m, m+ 1) are as above. Assume also that t = (tn)n21 is such 
that = ... = h+K = 1. Then 

(4.7) ][Jui(O, (1; w ) ~ ~ ( t ,  n, rn, K ,  n,; C O ) P ( ~ C O ) Q " ~ ( ~ X ) I  < ~ 2 ,  a(Q 

for all i, j = 1 ,  ..., d. Here X = ( x , ) , ~ ~ .  

Proof.  By virtue of (3.17) we can rewrite the expression under the ab- 
solute value in (4.7) in the form 

(4.8) [ ui(O, 0; w) Gj ( t ,  n ,  112, K, x,; o)~~""""" (0, x,) dx,] P (dm) 
R d 
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where the first equality holds by Proposition 4.1, and 

The last equality in (4.8) follows from the homogeneity of measure P and the 
change of variables x, : = -x,. 

Note that for any x E IZd the random variable G j ( t ,  n, my K, x; w) is %,",,- 
-measurable while, due to the fact that e n + ,  = . . . = = 1, H ( o )  is Qgmea- 
surable. Both of these expressions have absolute values that are bounded by 
U , .  In addition, 

where the latter equality holds by Proposition 2.2. Applying Theorem 17.2.1 of 
[13], p. 306, to the left-hand side of (4.7) we conclude the assertion of Lem- 
ma 4.4, s 

5. THE PROOF OF THEOREM 2.3 

An application of the It6 formula yields 

where x( - )= (x i ( - ) ,  ..., x,(-)) is the solution of (1.1). Substituting for 
x i ( - ) ,  x j ( . )  and applying the expectation E to both sides of (5.1) we conclude 
that 

+ 1 1 EM [u ( s ,  x (s)) ui (sf,  x  (sf))] dsdsr 
0 0 

t f 

+ 2 ~ 6 ~ , ~ r + & j ~ ~ [ ~ ( s ,  x ( s ) ) w j ( s ) ] d s + f i j E M [ u j ( s ,  x(s))wi(s)] ds. 
0 0 

According to Theorem 3 of [26], p. 501, the joint laws of (u ( s ,  x(s)) ,  w(s))  and 
(u (0 ,  O ) ,  w(s))  are identical. This fact renders the last two integrals on the 
right-hand side of (5.2) equal to zero. The same result also impIies that the 
process u ( t ,  x( t ) ) ,  t  2 0 ,  is stationary with respect to the product measure 
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PBQ,  which in turn implies that the first integral on the right-hand side of (5.2) 
equals 

Similar manipulations can be performed also with the second integral and we 
conclude that 

where 

EM [xi It) xj  (t)I = - 1 Ki,j  (t) + 2 ~ S i ,  j r  

t t  

t 5 

K i , j ( t )  := 5 (SEM [ui(s', x(sl))uj(O, O ) ]  ds') ds 
0 0 

It is straightforward to check that the matrix K ( t )  : = [ K i g j ( t ) ]  is non-negative 
definite, therefore the fact that D 2 ~ K I  shall follow immediately from the 
existence of the limit, as t  -, + m, of the right-hand side of (5.3). The limit in 
question exists if the integral 

is convergent. The latter is equivalent to showing that for any E > 0 there exists 
an integer N >, 1 such that for all u > 0, n 2 N we have 

The remaining part of the argument is devoted to the proof of (5.5). 
Suppose that 5 = (t ,)n2, E E  and K 2 1 is an integer. We define 

Let t E [0, 1 )  and w E Ci! be fixed. According to Theorem 3.2 the sequence of 
random vectors 

considered over the probability spaces Fm and &,, respectively, have identical 
laws. In consequence, the sequences of random vectors 

u,,, (w,  ~) : = uFn ( x )  and fit,n (w , X) : = 12:" (XI 
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over the probability spaces F and $ respectively, have also identical laws. 
Thus, for each pn 2 K we have 

where 

I : =  I E ~ ~ : L U ~ ( O ,  0 1 ,  3 m-K+1]1 
and 

By condition (1.2) and the definition of z we can write 

The probability appearing on the right-hand side of (5.8) equals the probability 
of the event that the series of K successes in the Bernoulli scheme appears for 
the first time in the m-th experiment. According to (7.1 1) and (7.17) of Ell] this 
probability can be estimated by 

where x is the smallest, with respect to the absolute value, root of the equation 
f (yj = y,  with f (y) = 1 +(1 -C,) CfyK+l. It is known (see [ll], Chapter XIII, 
par. 7) that x E (1, C; I) .  Since f is increasing for y > O? one can easily conclude 
that the sequence x, : = 1, x,, , : = f (x,) is increasing and converges to x. Note 
that x2 = 1 + (1 - C,) Cf < x; hence 

The expression (5.9) can be therefore estimated from above by 

The n-th term of the sum appearing in the definition of J equals 

where the equality holds by Proposition 3.1. We assume that Q > 0 is a certain 
small number to be determined later. Using Lemma 4.4 we can bound the 
right-hand side of (5.11) by 
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for some sufficiently large M independent of n. Hence 

Combining (5.8) and (5.12) we conclude that the utmost left-hand side of (5.7) is 
less than or equal to 

Let 

log (m + 1) 
K : =  

logCC2 -@)-I 

We infer that the utmost left-hand side of (5.7) is less than or equal to 

where 

:= 1 -1 1og(C2) -11~(0 ,1 )  and p2:=[(y*+g)log(C2-Q)- ] . 
log (C, - el- 

Thus the condition (5.5) is fulfilled provided that we can guarantee that pa > l. 
We can choose Q > 0 sufficiently small so that this condition is met if only 
Y* ~ ( 0 ,  yo)  and yo : = l/log CY1. 

6. SOME CONCLUDING REMARKS 

After completing the manuscript of the paper we have learned of 
the article by L. Shen (see [28]) that also adopts the Comets-Zeitouni 
method to prove, among others, the functional central limit theorem for par- 
ticle trajectories given by (1.1) in case of a time independent drift 
u (x, w) = s + @ (x; w), where @: Rd x + R is a certain scalar-valued sta- 
tionary random field that is of finite dependence range and zr is a constant non- 
-zero vector belonging to Rd. Although there is some resembIance between the 
methods used here and in [28], there are also important differences. The con- 
struction in 1281 uses random bridges instead of transition of probability den- 
sities employed here, see (3.4) and (3.5). What is probably even more important, 
[28] deals only with the fields whose range of dependence is finite. In par- 
ticular, this condition implies that the relaxation time y, (u) = 0. One of the 
main purposes we had in mind writing this paper was to extend the results on 
the existence of the effective diffusivity matrix available for random fields with 
a finite dependence range (see [18], [19]) to those that are sufficiently strongly 
mixing but have arbitrary long correlations. 
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