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Abstracb. A measurable set A is invariant with respect to a not 
necessarily symmetric sub-Markovian operator T on LP(X, m) if 
TIA < lA, and strongly invariant if TIA = 1,. We show that these 
definitions accommodate many of the usual definitions of invariance, 
e.g., those used in Dirichlet form theory, ergodic theory or for stochas- 
tic processes. In finite measure spaces or iI T* is sub-Markovian and 
recurrent, the notions of invariance and strong invariance coincide. 
We also show that for certain analytic semigroups of sub'-Markovian 
operators, (strongly) invariant sets are already determincd by a single 
operator, TI. 
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The notions of invariant sets and invariant functions appear in several 
places, for example in ergodic theory and dynamical systems, in the theory of 
stochastic processes, in connection with Dirichlet forms and also in the context 
of positivity-preserving semigroups. Each of these theories uses its own lan- 
guage, approach and definition of invariance and, at first glance, they appear to 
be quite different: In ergodic theory, a measurable set A is invariant if for 
a group of invertible measurable transformations {8,},n we have, modulo null 
sets, 

see, e.g., Jacobs [lo] or Da Prato and Zabczyk [I] for a precise definition. For 
someone working in the field of Markov processes, a set A is inuariant if almost 
surely 

where u (x) = Ex (u (x,)) is the Markovian transition semigroup associated 
with the process { X t } t b o ;  see Revuz and Yor [14], pp. 404-405, where one can 
also find a thorough discussion of how (1) and (2) relate if 4,  t > 0, is the 
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canonical shift on path space. In the theory of symmetric Dirichlet forms, a set 
A is called invariant if almost surely 

(3) T(1,u) = I A  T u  VUELZ, vt > 0, 

holds (cf. Fukushima et al. [S], p. 46, or Oshima [12], p. 23), while in connec- 
tion with a semigroup (7;)*> of (not necessarily symmetric) positivity-preserv- 
ing operators on an @-space, the set A is invariant if (modulo null sets) 

(4) ( x : u ( x ) # O ) c A * ( x : T , u ( x ) # O ) c A  Vu~LP,b ' t>0 ,  

see Davies [2], p. 174. 
The aim of this note is to show that the above definitions (2H4) are 

essentially the same if we see them in a greater context. Since (4) does not 
require symmetry of the semigroup { T , ) , 3 0 ,  our approach is useful for non- 
symmetric Dirichlet spaces where, to our knowledge, invariant sets have not 
been considered in detail. We will also show that we can restrict ourselves to 
a time-discrete setting: at least for some analytic semigroups (TJt o,  the no- 
tion of invariance can be reduced to invariance with respect to. one single 
operator, say, TI. 

PRELIMINARIES, DEFINITIONS AND FWST PROPERTIES 

Throughout this paper X will be a Hausdorff space with some a-algebra 
d and a a-finite Radon measure rn such that supp rn = X. By E : = @ ( X ,  m), 
I < p < CQ, we denote the spaces of (equivalence classes of) integrable func- 
tions, by C = C (X) [Cb = C ,  (X)] the space of Pounded] continuous func- 
tions. We will understand (inlequalities between E-functions always modulo A 

null sets. A "+" as sub- or superscript of a function space denotes its (almost 
everywhere) positive elements. We write a A b or a v b for the minimum or 
maximum of a, ~ E R ,  and a' = a  v 0. 

A linear operator T: E -+ LP, 1 < p < co, is called positivity preserving if 
Tu 2 0 for all u 2 0, and sub-Markovian if it is a contraction and if we have 
0 d Tu < 1 whenever 0 < u < 1. 

Since a sub-Markovian operator T: LP + @ preserves positivity, it is bounded 
in I?, cf. [9] for a short proof of this fact; moreover, Tcan be extended onto Lm 
and, by a simple interpolation argument, onto all spaces L: r E lp, co). Since we will 
use the extension argument quite frequently, let us briefly sketch its proof: for 
u~ LT we can fmd an increasing sequence u, E LP, with u = supENec,. Then 

Tu : = sup Tes, 
 EN 

is well-defined, since for any other sequence v, E LP, with u = sup,, urn we find 
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By monotone convergence, this limit is also valid in I?. Hence, 

Tw,, = sup T(u, A u,,) < sup Tu, 
MEN meN 

and also 
sup Tun G SUP Tv,. 

r n ~ N  

Interchanging the roles of u, and v, shows equality, and the extension to not 
necessarily positive u follows by linearity. Notice that for all U E  L" the sub- 
Markov property implies 

i.e., T is an Lm-contraction. Hence, we have proved 

LEMMA 1. Every sub-Markovian operator T :  E + I? extends for every 
p 6 r < cm to a sub-Mmkovian operator T: I: -F E which is DanieII-continuous 
(in the sense that (5)  holds in E-sense) and a contraction on Lm. 

Note that a positivity-preserving operator T can be defined for every 
u ~ u , , , L q  if we allow TuECO, m]. 

The adjoint T*: E 4 E, q = p/@- I), of a sub-Markovian operator T is 
clearly positivity preserving, but it does, in general, not inherit the sub-Markov 
property. For completeness we include the proof of the following foIklore result. 

LEMMA 2. Let T: E -+ E be a linear operator for some 1 < p < oo. Then 
the following assertions are equivalent: 

(a) The adjoint T* : L? + L?, q = p/(p - l), is sub-Markovian. 
(b) T is positivity-preserving and extends to a contraction T: i2 -+ L1. 
In particular, T and T* are sub-Markouian if and only if both operators 

extend to positivity-preserving contraction operators on all spaces L, 1 d r < a. 
Proof. We will prove the lemma in four steps. Throughout the proof 

(A,)nEnr denotes a sequence of sets A, E d such that A, X and m (A,) < oo . 
Step 1. Assume that T: E -F E is positivity preserving. For V E  L4, we set 

B,, : = A, n {T* v < 0). Clearly, 1," E LP, and we find 

j T * u d m = [ T * u . l E n d m = ~ v . T 1 , , d m > O .  
A , n { P v <  0)  X X 

This is only possible if m (A, n {T* u < 0)) = 0 for all n E N, so T* is positivity 
preserving. A similar argument shows that T is positivity preserving if and only 
if T* is. 

Step 2. Assume that statement (b) holds. We choose D E E  such that 
0 < v < 1 m-a.e. and set C, : = A, n {T* u > 1). Then 

~ * v d m  = T * V . I ~ , , ~ ~ ? I  = jv .Tlc,dm 
Ann{T*v > 1) X X .  

G l b l l m  l ITl~ , l l~ i  I I ~ c ~ I I L ~  = ~ ( A n n  IT* v > 1)). 

4 - PAMS 24.1 
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This is only possible if rn((T* v > 1)) = 0, which means, in view of step 1, that 
T* is sub-Markovian. This shows (b) * (a). 

Step  3. Assume now that (a) holds. By step 1, T is positivity preserving. 
Therefore we find for u e@nL1 

By monotone convergence we can go to the limit n + co and get IITulILl G llullLl 
for all u E E nL1. Therefore, T extends to an fi-contraction, i.e., (b) follows 
from (a). 

S tep  4. If both Tand T* are sub-Markovian, the above argument together 
with Lemma 1 show that both operators are 2- as well as Lw-contractions. 
A standard interpolation argument now shows that T and T* extend to con- 
tractions on each of the spaces E ,  1 < r < co. The converse is obvious. 

Our definition of invariance is based on (41, while (3) is a stricter condition 
which we will call strong invariance. 

DEFINITION 3. Let T: LP + E be a positivity-preserving operator. A set 
A E  d is called (T-)invariant if 

The set A is strongly (T-)invariant if 

We write i (T) and si ( T )  for the families of invariant and strongly invariant sets. 

The sets i(T) and Eii(T) do not depend on p 2 1. This follows easily from 
the next lemma which is itself a simple consequence of the boundedness of 
positivity-preserving linear maps (see [9] for a short proof) and an elementary 
approximation argument. 

LEMMA 4. In (6) and (7), the set E can be replaced b y  any norm-dense subset 
D of LP+, e.g., L: n Ly . 

Let us collect some elementary properties of T- and T*-invariant sets. 

PROPERTIES 5.  Let T E 4 E be a positivity-preserving operator with ad- 
joint T*. 

(a) si (T)  c i (T). 
(b) N, Nc E si (T) for all rn-null sets N .  
(c) i(T) is stable under countable unions and intersections. 
(d) A E i (7') if and only if' A" E i (T*).  
(e) si(T) = i ( T ) n i ( T * )  = i(T)ni(v=si(T*), where i(T)':= {Ac: A ~ i ( 7 ' ) ) .  
(0 si(T) is a G-algebra. 
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( g )  The assertions i (T) = si (T), i(T) = i (T*) and i (T*) = si (T*) are equi- 
valent. 

I n  particular, for symmetric operators the notions of invariance and strong 
invariance coincide. 

Pr o of. Throughout the proof u, v denote arbitrary elements of L: n L . 
(a) This is a direct consequence of the definition of (strong) invariance. 
(b) For a null set N we have IIT(lNu)llLp < clllNullLp = 4 which shows 

that T (I, u) = 0 = 1, Tu almost everywhere; hence N E si (T). The proof that 
NC E ~i (T) is similar. 

(c) Let A,, 3, E i (T), where n E M and A : = UkEN Ak, B : = kEN B k  By the 
Daniell continuity of T (Lemma 1) we get 

Passing on both sides to the minimum with T(lA u) yields 

and A = UkEN Ak ~i (T) follows. 
Without loss of generality we can assume that the sets Bk decrease to B. 

Since T (I, u) < T (lBk u) = I,, T (I,, u), we can use the Daniell property (Lem- 
ma 1) to conclude 

(d) Let B ~i (T). Then 

This implies for A E i (T) that (v, I,, T(1,~))~z = (1, T* (I,, v), ea),~ = 0; there- 
fore, 1, T*(lAcv) = 0 and AC€i(T*) (use (8) for T* and with B = A?. The 
converse direction is similar. 

(e) If A E si (T), then 

i.e., A' A si (T), and because of (a) and (d) we find for i (T)' : = {Ac:  A A Ei (7')) that 

si (3") c i (T) ni (T)" = i (T) n i (T*). 

If A E i (T) n i  (T*), we infer from (8) that 1, T(1,c u) = I,, T (1, u) = 0, and so 



i.e., A E ~i (T) and i (T) n t (T*) c si (T). The symmetry of the above argument in 
T and T* also proves si(T) = si(T*). 

(f) That X€si(T)  is clear, the rest follows immediately from (bHe). 
(g) It is enough to show that i (T) = ei (T) and i(T) = i (T*) are equivalent. 

As we have seen in (e), si (T) = i f  T) n t (T*), and "e" follows. Conversely, if 
t (T) = 5i (T), part (d) shows A E i (T) G AC E i (T) o A E i (T*) and we are done. 

CHARACTERIZATION AND FURTHER PROPERTIES 

From now on we will only consider sub-Markovian operators T This 
allows us to switch between the spaces LP and La. If T* is sub-Markovian, 
too, we may even work in the full scale E, 1 < I: < a; see Lemmas 1 and 2. 

THEOREM 6. For a sub-Markovian operator T: Lp ,P Lp the following usser- 
tions are equivalent: 

(a) A€i(T),  i.e., T(IAu)= lAT( IAu)  ~ U E L : ~ L ~ .  
(b) IA TIA = TIA. 
(c) IA TIAnK = TIAnK VK with m ( K )  < co. 
(d) 7'1, < 1 ~ .  
(e) TIA < l A T l .  

P r  o of. (e) 3 (d). This is clear since T 1 G 1. 
(d) * (c). Note that TI, < 1, implies I,, TIA = 0, and so 1,. TIAnK < 

< dAc TIA = 0. Therefore, TIAnK = 1, TIAnK, and (c) follows. 
(c) * (b). Since m is a-finite, we find a sequence of sets K ,  E sB such that 

m(Kn) < a,  SUP,,^ lK, = lA and 

(b) * (a). Since u E L: n Ly is bounded, the sub-Markov property of T shows 

which implies that I,, T(lA u) = 0 and T (1,~)  = IA T(lA u). 
(a) * (e). Choose a sequence X ,  E L: n LT with sup,,, X, = 1. Clearly, 

T (IA x,,) = 1, T(lA ;~n) G lA T1 and the Daniell continuity of T (cf. Lemma 1) 
implies that 

A similar characterization is valid for strongly invariant sets si(T). 

THEOREM 7. For a sub-Markovian operator T: L? -+ L? the following asser- 
tions are equivalent: 

(a) A E si (T), i.e., T (1, u) = IA Tu VU E L$ n Ly . 
(b) TIA = lA TI. 
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If T is conservative, that is T1 = 1, then (b) is equivalent to 
(b') TIA l A .  

Proof.  (b) *(a). Obviously, T I A  = lA T l  gives TIA = lA T l  < lA. AS- 
sume that L t n L Y s u  < 1, and so LY31-u < 1. Then 

(9) T(IAu) < Tnin(TIA, Tu) 6 &(IA, Tu) B I A  Tu, 

(10) ~ ( 1 ~ ( 1 - u ) ) < m i n ( T 1 ~ , T ( l - u ) ) < m i n ( 8 ~ , T ( 1 - ~ ) ) ~ 1 ~ T ( 1 - u ) ,  

and addition of (9) and (10) shows 

By assumption, T I A  = IA T1, which shows that we have equality throughout 
(11); this is only possible if both (9) and (10) are equalities, and so 
T(IA U) = f A  Tu for all u E L: n Ly with u < 1. The general case follows from 
a simple scaling argument. 

(a) (b). Choose a sequence X ,  E L$ n LT with sup,,, ;c, = 1. By assump- 
tion, T ( 1 , ~ ~ )  = lA FA,, , and the Daniel1 property of T (see Lemma 1) gives 

The equivalence of (b) and (b') is obvious. 

COROLLARY 8. Let T: LP + LP be a sub-Markovian operator. We have 
Tu < uT1 for all a(i(T))-measurable functions u. If u is si(T)-measurable, we 
have even Tu = uT1. 

P ro  of. Define 3 : = {u E LP : TU < uT1). AS we have seen in Theorem 6,  
lA E 3 for all A E i (T). If (u,),, c 3' is an increasing sequence such that 
SUPllEN un = U, we see 

Tu = T(supu,) = sup Tun < supunT1 = uTl,  
,EN  EN  EN 

is., ~€3' and a typical monotone class argument (see, e.g., Ethier and Kurtz 
[4], Appendix 4, Theorem 4.3, p. 497) shows that all a(i(T))-measurable func- 
tions are in 3;. The same argument applies to si(T)-measurable functions. H 

FINlTE MEASURE SPACES 

If (X, d ,  m) is a finite measure space, the notions of invariance and strong 
invariance coincide. We start with a simple, but useful, observation. 

LEMMA 9. Assume that both Tand T* are sub-Markovian operators. More- 
over, let T* be conservative, i.e., T* l = l. Then the following assertions are 
equivalent for all U E  L:: 

(a) Tu = u. 
(b) Tu < u. 
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P r o of, The direction "(a) * (b)" is trivial. To see "(b) 3 (a)" we note that 
for all N E N 

which is only possible if u = Tu almost everywhere. rn 

THEOREM 10. Let ( X ,  d, m) be a finite measure space, and assume that 
both T and T* are sub-Markovian operators and T* is conservatiue. Then T is 
also conservative and i ( T )  = i(T*) = si (T) = si (T*), i.e., the notions of invari- 
ance and strong invariance coincide. 

In particular, lj'both T and T* ure sub-Markovinn, either both of them or 
none of them is conservatiue. 

Proof.  Since m is finite, we have 1 EL:  and Lemma 9 is valid for u = 1. 
Thus, T1 < 1 implies TI = 1, which means that T is conservative. Using the 
characterization of (strong) invariance obtained in Theorem 6 (d), resp. The- 
orem 7 (b'), we can apply Lemma 9 again to get i(T) c f;i(T), which gives 
i (T) = si (T). The assertion now follows from Property 5 (g). ta 

POTENTIALS AND RECURRENCE 

The proof of Theorem 10 uses two key ingredients: 1 EL? and zy=l T* 1 = oo. 
We will now see how we can generalize Theorem 10 to general a-finite measure 
spaces (X, d, m). 

DEFINITION 11. Let T be a positivity-preserving operator on some space E. 
For all u ~ L : n L y  

n 

Gnu :=  Tku and Gu:=supG,u 
A= 0  EN 

are well-defined functions with values in [0,  a]. The operator G is called 
potential operator associated with T. 

The next theorem is a standard result from (discrete) ergodic theory. For 
its proof we refer to Revuz [13], Theorem 4.2.3, p. 124. 

THEOREM 12 (Hopf decomposition). Let T be a positivity-preserving oper- 
ator. For every es E L: n Ly the sets 

C = ( x :  Gu(x)=O)u{x: Gu(x)=co} and  D = ( x :  O<Gu(x)<oo} 

are unique (modulo null sets) and independent of u $ u > 0. 

In view of Theorem 12 the following definition makes sense. 

DEFINITION 13. A positivity-preserving operator T is called recurrent if 
D = 0 (modulo null sets) and transient if C = 0 (modulo null sets). 
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R e m a r k  14. (A] T is recurrent i f  and only if Gf = co for some (or all) 
f€L',, f >o.  

This is an immediate consequence of HopPs decomposition theorem since 
D n  C = 0 and G f  ( x )  2 f (x)  > 0 -  Gf ( x )  = oo. Thus, (Gf = 0) = 0 when- 
ever f > 0. 

(B) T is transient if  and only i f  there is some f E L: n Ly , s a t i s f y i n g  f > 0 
and G j  < co. 

TK-~EDREM 15. A positivity-preserving operator Tis transient $and only if there 
exists a sequence (An}nEN c d such that I,, EL', supndv IAn = 1 and GIA, < M. 

f r o  of. If T is transient, we can find some f E L: n Ly  , f > 0, such that 
Gf < a,, Then An : = {x: f > l/n) is an increasing sequence of measurable sets 
such that for all r a ~ N  

m ( A , ) = r n { f  > l/n) < n {  f d m <  m and GIA,< G ( n f )  = nGf < m. 

For the converse direction we have to find some h E L: n Ly with h > 0 
and Gh < m. Set 

g n  := GIAn g n , j  := gn A j ,  hn,j := g n , j -  T i n 3 .  

Obviously, I[hnJl, < 2j and 

Ghnq = lim (Gm g n , j  - G,  Tgn, j )  = gn, j - lim Tm g n , j  = gn.j. 
m-+m m+ m 

The last equality follows from GI,, < co and 
10 

O <  lim T m g n S j <  lim TmGIA,= lim T k l A n = O .  
' m + a  m' m ~ + C O  k = m  

Since A, exhausts X, we find for each fixed X E X  some A, with X E  A,. Pick 
j > g ,  ( x )  and observe that 

Therefore, 

which even shows that Gh EL". H 

For sub-Markovian operators T the following result is, without proof, 
mentioned in Oshima [12], (1.5.8/9), p. 27. 
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COROLLARY 16. A positivity-preseruing operator is transient if and only if 
there is some  EL: n LT with h > 0 and llGhllrn < a. 

In particular, T is transient if and only if T* is transient. 

P r o  of. The first part of the corollary follows immediately from the proof 
of Theorem 15. For the second part, it is enough to show that transience of 
T implies transience of T*. Pick h as in the first part. Then we find for the 
potential operator G* associated with T* 

Since h > 0, we conclude that G* u < c~ and that T* is transient. 

Remark  17. (A) In ergodic theory, recurrence is usually called conser- 
vativeness, cf. Revuz [13]. We will not adopt this convention. 

(B) Transience and recurrence are only dichotomous if i (T) is trivial, i.e., 
contains only null sets and their complements. This property is often called 
irreducibili~y (in the theory of Dirichlet forms, see [ 5 ]  and [12], for semigroups, 
see [2]). 

In this case i (T) = si (T) = i (T*) = si IT *) and T is recurrent if and only 
if T* is recurrent. Note that Theorem 20 will show that T is automatically 
conservative in the sense T 1 = 1 ; this means that our notion of conserva- 
tiveness follows from conservativeness in the sense of ergodic theory, see (A), 
if we are irreducible. In finite measure spaces the two notions coincide, see 
Corollary 23. If both T and T* are sub-Markovian and T recurrent, rn is 
an invariant measure (see Appendix) and irreducibility is the same as ergo- 
dicity. 

For completeness we mention the following lemma which can be proved 
with the arguments in Fukushima et al. [ 5 ] ,  Lemma 1.6.2, pp. 4748;  see Jacob 
[8], Lemma 3.5.24, pp. 354-355 for a complete proof. 

LEMMA 18. Let T be a sub-Markouian operator. Then for euery U E  L: 

(Gu<m),{Gu=O)€i(T*) and (Gu=co},{Gu>O)~i(T).  

To prove the analogue of Theorem 10 we need an auxiliary result. 

LEMMA 19. Assume that both T and T* are sub-Markovian operators. 
Moreover, let T* be recurrent. Then the foiiowing assertions are equivalent for all 
u€Lrn:  

(a) Tu = u. 
(b) Tu Q u. 

The equivalence still holds for positive measurable, but possibly unbounded, func- 
tions. 



On invmiant sets 57 

P r o  o f. The direction "(a) + (b)" is obvious in any case. For "(b) * (a)" we 
choose a function f c L: n L: such that z:=, ( T * ) ~  f = m . For all N E N  we find 

N 

O G ( C  ( ~ * ) ~ f ,  u - T u ) ~ ~  = (f,-U-TNtl 
k = O  

U)L~ Ilf l l ~ i  IIuIIL~ -1- Ilf l l ~ i  I I T N + l ~ l l ~ ~  

G 2 llf lII.1 IluIlL-' 

which is only possible if u = Tu.  
For unbounded u 2 0 we find 

and the first part of the lemma applied to u A k c l m  shows 

Letting k tend to infinity, we see u 6 Tu, and the assertion follows. rn 

THFDREM 20. Assume that both Tand T* m e  sub-Markovian operators and 
that T* is recurrent. Then i ( T )  = si(T) = si(T*) = i (T*).  Moreover, T i s  con- 
servative. 

P r o  of. The conservativeness of T follows directly from Lemma 19 with 
u = 1. Let A E i (T) ,  which means that TIA < I,, cf. Theorem 6 (d). Since 
1 , ~ L y ,  another application of Lemma 19 shows T I ,  = PA, and from Theo- 
rem 7 (b') we conclude that A E  si (T) .  All other assertions follow from the list of 
Properties 5. 

COROLLARY 21. Assume that both T and T* are sub-Markovian operators 
and that T* is recurrent. For u E Lm u L! such that u - E Lm (or u E Lm) we have 
Tu = u if and only if u is measurable with respect to i ( T )  (= si (T)). 

Proof.  Theorem 20 shows that T is conservative; therefore, the direction 
"e" follows already from Corollary 8. 

Assume now that u-  E Lm (if u f  E La, consider - u instead of u) and Tu = u. 
Since Ta = a for constants a E R, we have 

and, b y  Lemma 19, T ( u ~ a ) = u ~ a .  Notice that u + a = u v a + u A a  and 
lul = za v 0-u A 0; thus T(u') = u' as well as T lul = lul. Without loss of gen- 
erality we can, therefore, always assume u 2 0. 

If u E LT u LP+ , we can use a variant of Jensen's inequality (see, e.g., Jacob 
[7], Theorem 4.6.24, pp. 376377) to get for all  EN 

As n + co, the Daniel1 property of T (Lemma 1) gives < TI{, ,  ,,, and so 
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This means that {u < 1) E i ( T )  and, by Theorem 20, also ( u  < I)  E si(T). Con- 
sidering a- ' u ,  a >  0, instead of ea shows {u < a} = {a- ' u < 1 )  ~i ( T ) .  E 

COROLLARY 22. Assume that T and TT* are sub-Murkovian operators and 
that T* is recurrent. Then 

( =  5 = { x :  (T*)k f (x )=  a):  EL:] = i ( T * ) = s i ( T * ) .  
k = O  

Proof.  That i(T) = s i (T)  = i (T*) = si(T*) was already shown in Theo- 
rem 20. 

For A E ~i (T*) we have (T*Ik (IA U )  = 1 A (T* jk u for some (hence, all) strictly 
positive u E L: . Thus, 

m m 

C (T*Ik (IA tl) = IA C (T*)k u = I A .  m 
A =  0 k=O 

(where we use the convention 0 a c~ = O), and so 

00 

A = { C (T*)k ( lA  U) = a), where l , u ~  L: . 
k=O 

Conversely, Lemma 18 shows that ( ~ ~ o ( T * ) k j '  = m ) ~ i ( T * )  for any 
f € L $ .  Ed 

A combination of Theorem 20 and Theorem 10 finally yields 

COROLLARY 23. Let ( X ,  d, m) be afinite measure space and assume that 
both T and T* are sub-Markovian operators. Then the notions 

Tconservative, T* conservative, T recurrent, T* recurrent 

coincide. 

SEMIGROUPS AND RESOLVENTS 

From now on we will only consider strongly continuous one-parameter 
semigroups of sub-Markovian operators (TIt2 on some space I?, 1 < p < m. 
Denote by (a, I)(%)) the infinitesimal generator. The resolvent (Rm)n>o is 
given by 

m 

R A u  = 5 e-nt T,udt, A > 0. 
0 

Recall that AR,, A > 0, are again sub-Markovian operators satisfying the resol- 
vent equation 
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DEFINITION 24. A set A E  d is (strongly) invariant with respect to (TJtao if 
A is (strongly) invariant with respect to every K ,  t > 0. A set A E d is (strongly) 
invariant with respect to {Rn}n, if A is (strongly) invariant with respect to every 
operator IRA, A. > 0. We write i (T,  t > 0), si(T;, t > 01, resp., i (R,,  L > O), 
si(R,, A > 0). 

LEMMA 25. We have 

i (T , t>O)=i (R , ,R>O)  and si(?;, t>O)=si(RA,jL>O). 

Proof.  For A ~i (?;, t > 0) we have II; 1, < 1, (cf. Theorem 6), and so 
m m 

,IRA 1, = A 1 e - l t  T, 1, d t  < A 1 ep" 1, d t  = I,, 
0 0 

which means that A E  t(R,, A > 0). 
Suppose now that A E i (RA, A > 0). The Yosida approximation of T, is 

given by 

see, e.g., Davies [2], p. 49. Since A is invariant with respect to ,IRA, 

and A E i ( K )  follows from the E-convergence limn+, (1, u) = T (1, u) of the 
Yosida approximation. 

A similar argument shows that si(?;, t > 0)  = si(R,, L > 0). 

The following characterization of strong invariance via the infinitesimal 
generator has its counterpart in the description of strong invariance in terms of 
a Dirichlet form which can be found in Oshima [12], Theorem 1.5.1, pp. 23-24, 
or Fukushima et al. [5 ] ,  Theorem 1.6.1, p. 47. 

THEOREM 26. We have A E 5i (?;, t > 0) i f  and only $for all u E D  (8) the 
function IAu  E D (a) and 1, %u = %(l,u). 

P r o  of. If A E 5i ( T ,  t > 0), we have by definition 1; (I, u) = 1, ?; u for all 
t > 0 and all u ED (a). Therefore, 

strongly. This shows that l , u ~ D ( % )  as well as a( l ,u )  = 1, PIu. 
Conversely, assume that 1,D (a) c D ('@ and PI (1, u) = lA%u. Then we 

have for all jl > 0 
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Since A- !!I is injective, we conclude that 1, R, u = R, (1, u) for all 1 > 0. This 
proves that A E si(RA, 1 > 0) and, by Lemma 25, A E 5 i  (T ,  t > 0). ra 

We will now show that (strong) invariance with respect to one operator in 
the scales {7;),,, or (R,),,, is enough to establish (strong) invariance with 
respect to the semigroup, resp. resolvent. This is straightforward for {R,),, , .  

THEOREM 27. We have i(RA) = i(R1) and si(RA) = si(Rl) for all A >  0. 

Proof .  It is well-known (cf. Hille and Phillips [6], p. 184) that the resol- 
vent z w R ,  is a holomorphic function for all z in any one component of the 
resolvent set e (A) and that for all z ,  w E Q (A)  with ] z  - wl - IIR;.ll < 1 the formula 

holds. Assume that A € i ( R J .  By induction we find 

so that A E  i (R,) for a11 w E Q (A)  satisfying lz - wl llRzll < 1. For all other w (in 
the same component of g (A)) we can find a finite chain of open balls such that 
in each of them we have a local expansion of the type (12). Repeating the above 
argument we get i {R,) c i (R,). Since z and w play symmetric roles, we conclude 
that i(R,) = i(R,) whenever z, w are in the same component of @(A). 

Since (0, m)c @(A)  is necessarily in a single component, the assertion 
follows. The proof for strongly invariant sets is similar. ta 

For the semigroup (T,),,, the situation is more complicated since we do 
not have a good substitute for the resolvent equation. The basic idea of the 
following proof is a relation of the type T, = T i ,  i.e., where we recover the 
semigroup {T), ,  as (fractional) powers of T I .  A major difficulty is the defini- 
tion of a unique fractional power of a rather general operator. 

Before we consider the general case, let us outline the argument for sym- 
metric (hence, self-adjoint) semigroups on I?. Using spectral calculus we can 
rigorously prove T, = Ti, t > 0 (see [15], no. 141, pp. 39G392): if El (dl), resp. 
&(dl), denote the spectral families of TI, resp. T, one can see that 

On the other hand, the spectra1 measure of any open interval (a, b) can be 
calculated as resolvent integral 

(13) E,({a, b)) = limlimi 1 (R(r-ci; Q - R ( z + c i ;  TJ)dr, 
alo E L O  271i,+& 

where R(z; z) is the resolvent operator for T at z, and the limits exist in the 
strong operator topology. Since T, is a strongly continuous semigroup of sym- 
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metric operators, D (T,) c W+ , which means that Q (x) is connected. With the 
argument in the proof of Theorem 27 we conclude that for n > 11T11, n E N, 

For n > 11 1;II, however, R (n,  T )  = (n - T,)- l has an explicit representation as 
a Neumann series, 

which, in turn, implies that i (R (2, T,)) = i(7;) for all z E Q (A). 
Since the limits in (13) are in the strong operator topology, we see that for 

A s i ( Q  and U E L ?  

holds. The converse assertion, that (14) implies ?; (IA U) = IA I; (IA u), that is, 
A ~ i ( q ,  is clear from the spectral theorem. We have thus proved 

LEMMA 28. Let {TItao be a strongly continuous semigroup of symmetric 
sub-Markovian operators on I?. Then A € i ( T )  if and only if (14) holdsfor the 
spectral family {E, {dA)] , , ,  and all open intervals (a ,  b) c R. 

Since we can express El (d.4) and & ( d l )  as image measures of each other 
(see [3], Chapter XII.2, Theorem 9, pp. 120&1202) - for& (x) : = xs, x > 0, we 
have 

- we see that (14) holds for the family (E ,  ( d l ) ] , ,  , if and only if it holds for 
El (dR). This and Lemma 28 finally prove 

THE~REM 29. Let {T)t30 be a strongly continuous semigroup of symmetric 
sub-Markovian operators on I?. Then i(T,) = i (T l ) .  

As already mentioned, it is in general not clear how to define a (unique) 
fractional power of T I .  Since TI comes from a semigroup, the mere existence of 
fractional powers is clear; it is the re-embedding into the scale {T),,, which is 
the problem: why should coincide with ?;? For exponentially bounded, 
analytic semigroups in the half-space Rez > 0 we can overcome this difficulty. 
The key ingredient is the following result of Hille (see [6], Theorem 17.6.1, 
p. 489), which is a consequence of a deep result on Newton interpolation series 
due to Norlund [Ill ,  VIII.6.122, pp. 236237. 

THEOREM 30 (Hale). Let {T,: Rez > 0) be an analytic strongly continuous 
sub-Markovian semigroup on E such that IITZJILP+LP < eKIZI for some JC 2 0 and 
all Re z > 0. Then 
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The assumptions imposed on {T,:  Rez > 0 )  in Theorem 30 are non- 
trivial. Typically, the opening angle of the region of analyticity is smaller than 
n and the exponential boundedness condition means that the spectrum of the 
infinitesimal generator is in a horizontal strip of finite width. 

Due to a result of Stein [17j, III.$l, Theorem 1, p. 67, we know that 
symmetric strongly continuous sub-Markovian semigroups on E are analytic 
for Rez > 0 and satisfy IITzllLI+L1 < 1 ; hence the conditions of Theorem 30 are 
met for such semigroups. 

COROLLARY 31. Let ( I ; } t so  be a strongly continuous semigroup of sub-Mar- 
kovian operators on E which is, in some L4, q E [p, CO), analytic on the half-space 
Re z > 0 and satisfies fthere IITJILq+Lq G eKIZl, h: 2 0. Then i(T,, t > 0) = i (TI) 
and si(T, t > 0) = ei(Tl). 

This holds always for symmetric strongly continuous e-sub-~arkovian 
sernigroups. 

Proof .  If A€i(T1) and u ~ L : n L 7 ,  we find 

and, by induction, (Ti - 1 j j  (I A u) = 1, (TI - l) j  (I, er) for all j E N o .  We conclude 
from (15) that 

i.e., i (Ti) c nZ,,.i (TI; hence i (TI) = i (T,  t > 0). The proof for strongly inva- 
riant sets is smlar.  

Re mark  32. (A) The representation formula (1 5) allows us to get uniform 
(in the parameter z) exceptional sets for expressions of the type "T,u = . . . 
almost everywhere". 

(B) Assume that {T),a, is a symmetric and recurrent I?-sub-Markovian 
semigroup. If u is a positive measurable function which is supermedian with 
respect to TI, i.e., TI u < u, then u is already excessiue for {T,),,, - that is 
 SUP^,^ Tt u = u - and even {TI;),, ,-invariant. 

This follows easily from a combination of Lemma 19 showing first 
TI u = u, (15) and Corollary 31 which gives T,u = u, t > 0, and (A) which allows 
us to choose a uniform exceptional set for all t > 0. 

We remark that, if Ti (hence, by Corollary 31, all ?;) is irreducible, this 
entails that all supermedian functions u 2 0 are almost surely constant. 

EXAMPLES 

One can often associate a Markov chain or Markov process with a sub- 
Markovian operator, resp. semigroup. In the discrete time setting every sub- 
Markovian operator T yields a Markov chain {X,),,, with transition semi- 
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group {Tt],,N. In continuous time, we get a Markov process (Xt)t30 if, for exam- 
ple, is Feller (i.e., maps continuous functions into continuous functions), cf. 
[4] and [A, or if {?;)t30 is an I?-sub-Markovim semigroup, cf. [5]  and [12]. 

The advantage of this is the following intuitive understanding of (strict) 
invariance. To keep things simple, let us assume that the state space is X = Rn. 
By construction we know that T, 1, (x) is the probability for the process to start 
at X, = x and to be in A by epoch t ,  i.e., T,  IA ( x )  = Px (X, E A) for every (resp. 
quasi-every, in the I?-setting) x E Rn. Thus the set A is invariant if and only if for 
almost all x and all E > 0 

This means that the process XI cannot enter an invariant set if it is started 
outside of A, Xo = x $  A, but that X, may, if started in A, leave A at any time 
with positive probability. On the other hand, if A is strictly invariant, so is A' 
and the above interpretation shows that a process X, can neither leave nor 
enter a strictly invariant set. 

This allows us to give many examples where invariant sets and strictly 
invariant sets do not coincide. Here is the prototype for such constructions. 

EXAMPLE 33. Let { B , ) , , ,  be a Brownian motion on R and let ( N , ) , , ,  be 
a Poisson process on [O, co) with jumps of size 1 and starting point N o  = 0. 
We denote the corresponding Markovian semigroups by {PI),> ,,, resp. {Sr)tZO. 
Without loss of generality we can assume that B, and N .  are stochastically 
independent. Denote by 

the first entrance time of the Brownian motion into [0, oo) and consider the 
process 

which is the concatenation of a Brownian motion on the left half-axis (0, oo) 
and a Poisson process on the right half-axis [0, a). A simple direct calculation 
(see also the book by Sharpe [16], 611.14, pp. 77-84, for a more general ap- 
proach) shows that {X,),,, is a Markov process with transition semigroup 

In particular, 
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so that T I ( .  -,,,, = lll-m,o, but l;l(-,,O) # l(-4,0). This shows that 
(- co, 0) is invariant but not strongly invariant. 

Similar considerations prove that, modulo null-sets, si(T, t > 0) = (0, W) 
while i (X,  t > 0) = (0, (- m, 0), R } .  

If the semigroup is not analytic, it may happen that the invariant sets 
depend on the parameter t > 0. This implies that Corollary 31 need not hold 
for non-analytic sernigroups. 

EXAMPLE 34. Consider on the half-line LO, co) the semigroup of right- 
translations 

It is obvious that z H T,  u is not analytic. The process corresponding to { 
is a deterministic uniform motion to the right, X, = Xo + t. Consider now the 
interval [a ,  b) c [0, co) and let t 2 b. Then 

hence, T I[,,,, < and we see [a,  b) E i ( T ,  t 3 b). On the other hand, if 
O < s < b ,  

l[a,b)(x) = l[a,b)(x+s) = 1[(o-s)vD,b-s)(~) 

but lC(a-s)vO,b-s) < IId,b) is only possible if a = 0. Therefore [a,  b)$i(?;, 0 < t < b) 
for all 0 < a < b .  

Corollary 31 also fails in genuinely discrete situations. 

EXAMPLE 35. The proof of Corollary 31 can be modified to give si(T2) = 
si(T:). This is, in general, wrong in discrete situations. To see this, let P be 
the transition operator of a simple random walk on Z ,  

and observe that P2 is the transition operator of a two-step random walk. 
Clearly, P is self-adjoint and si (P) = (0, Z )  while si (P2 )  = ( 0 ,  2 2 ,  (2Z)c, 2) ! 

This does not contradict (the modification of) CoroIlary 31 since P has not 
only positive spectral values, while a sub-Markovian semigroup is necessarily 
spectrally positive. Indeed, T, = T;, while 

is strictly negative for, say, f ( j )  = (- l )b l  aj  and (a j )  E 12, aj > 0. This means 
that P can never be embedded in a semigroup - but this was crucial for 
Corollary 3 1. 

The four-step random walk still satisfies 5i(P4) = ( 0 ,  22, (2Z)C, 2) = 5i(P2) 
but in this case we do have P2 = in the sense of Corollary 31. 
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APPENDIX 

We claimed in Remark 17 (B) that rn is an invariant measure, i.e., that 
1 u dm = j Tu dm. This follows from yet another variant of Lemma 19. 

PROPOSITION. k t  (X, d, m) be a crjinite measure space and assume 
that T and T* are sub-Markovian and T recurrent. Then m is an invarian~ 
measure fop. T 

Pro of. Since T* is sub-Markovian, we have j Tu dm = j UT* 1 dm < j u dm 
for all M E  L:n LT, which means that m is sub-invariant. Using the left-action 
notation, mT(A) : = STl, dm, we can rewrite this in the form mT d rn. 

Since T is recurrent, we find some f E Ly n L: ,  f > 0, such that 
a, zk=, Tk f = co both m-a.e. and mT-a.e. (because of mT < m). Therefore we 

have for the positive measure m-mT and all N E  N 

= {m-mTN+ ',S) < <m,f )  = I l f  II~ltrn) < 

This implies m(A) = mT(A)  for all m(A)  > 0, and hence m = mT. rn 
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