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of the distribution of interarrival times is heavier than that of the 
service times, and it has a more complicated non-exponential shape in 
the opposite case; if the service times have heavy-tailed distribution 
in the domain of attraction of a one-sided a-stable distribution, then 
the limit distribution is Mittag-Leffler's. In the case of a symmetric 
a-stable process X, the Laplace transform of the distribution of the 
supremum M is also given. Taking into account the known relation- 
ship between the heavy-traffic-regime distribution of queue length and 
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1. INTRODUCTION 

The paper provides a characterization of the limit distributions of 
an appropriately normalized stationary waiting times for G/G/1 queues ope- 
rating in the heavy traffic regime under the assumption that the service times 
and/or the interarrival times have heavy-tailed distributions. It relies on the 
fact that this distribution is equal to the distribution of the supremum 
M = supocri (X (t)-Dt), where X is a U v y  process, see Szczotka and Woy- 
czynski (2003). The latter turns out to be exponential if the tail of the dis- 
tribution of interarrival times is heavier than that of service times, and it has 
a more complicated non-exponential shape in the opposite case; if service times 
have a heavy-tailed distribution in the domain of attraction of a one-sided 
E-stable distribution, then that limit distribution is Mittag-Leffler's. In the case 
of a symmetric a-stable process X, the Laplace transform of the distribution of 
the supremum M is also given. Taking into account the known relationship 
between the heavy-traffic-regime distribution of queue length and its waiting 
time, asymptotic results for the former are also provided. The paper permits 
existence of statistical dependence between the sequence of service times and 
the sequence of interarrival times, as well as between random variables within 
each of these two sequences. Several examples are provided. 

To formulate the problem more precisely let us consider a queueing system 
of G/G/1 type generated by a stationary input sequence {(v,, u,), k = 1, 2, . . .} of 
pairs of nonnegative random variables v, and u,, where vk is interpreted as the 
service time of the k-th customer and u, as the interarrival time between the 
k-th and (k + 1)-st customers. Let {(vk,  uk), k = . . . , - 1, 0, 1, . . . , ) denote 
a two-sided stationary extension of the input sequence {(v,, u,), k = 1, 2, . . .). 
Although the two sequences are different, there is no danger in using the same 
notation for both and labelling both of them input sequences. 

We shall assume that 
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and put 
k 

tk = v - ~ - u - ~  and Sk = S j ,  k 3 1 ,  SO = 0. 
j =  1 

We shall also require that S, + -a, as., as k + co. The quantity 

is called the stationary waiting time for a G/G/1 system generated by the in- 
put sequence ((q, uk), k > 1) and it is also the limit, in a weak sense, of the 
sequence w,, k 2 1,  of waiting times wk of the k-th customer. 

Our goal is to study the system in the limit 

which, in queueing theory jargon, is known as the heavy trufic regime. Our 
notation will thus explicitly reflect the dependence of various quantities on n: 

( ~ k .  ~ k )  = (vn,k, ~ n , k ) ,  S k  = Sn,k, 5 = 5 (a) = { t , k ,  3 a = on. 

The basic and well-known fact is that if an TO and if t ( n )  are ergodic, then 
w n a  cn as an t 0. Formally, our primary goal is to find conditions on the input 
sequences ( ( n )  which guarantee existence of normalizing constants c,, c, 1 co, 
and a non-degenerate random variable M such that 

where 5 stands for the convergence in distribution. A characterization of 
possible limit distributions appearing above is a secondary goal. 

Our principal tool is the Heauy TraSJic Invariance Principle (see Szczotka 
and Woyczynski (2003)), which can be formulated as follows: 

HEAVY TRAFFIC INVARIANCE PRINCIPLE. Let 

1 L"fl Ian1 Lntl lanl n 
(1) Xn ( t )  = - C (Snj-an), Pn  ( t )  = , and = -, 

Cn j = l  Cn en 

where t >, 0,  n >, 1, and constants c, + co as n + co. If: 
(A) there exists a stochastically continuous process X with stationary in- 

crements such that X, 3 X in the Skorokhod topology in D [0 ,  co) and 
X(t)--ct+-co a.s. as t+co,  for ail c > 0 ,  

(B )  there exists /3, 0 < /3 < co, such that f i n  + 8, and 
(C) the following sequence is tight: 

then, as n + co, 

wn/cn 5 sup (X (9 -8t) M 
O < t < m  
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Application of the above principle to queues is more fruitful if it is com- 
bined with the following observation which is based on the idea of decom- 
position of processes X,: Let jn j /?, 

and assume that the sequences of random variables 

(l/c,)w$):= sup (X;)(t)-pi#l(t)), n B 1 ,  i = l , 2 , p l + p , = 1 ,  
O < t < m  

are tight. Then 

A stronger version of this observation will be formulated later on as the Decom- 
position Theorem. 

If X is the standard Wiener process, then M has an exponential distribution 
with parameter A = 2p (see Karlin and Taylor (19751, p. 361). This asymptotics of 
the stationary waiting times is encountered in situations when service times and 
interarrival times form weakly dependent (say, satisfying some mixing condi- 
tions) sequences and their distributions have light tails, that is 

Indeed, for GI/GI/I queues, Kingman (1961) has shown that if Eu,,, -+ 11-I and 
Var (v,,,) + Var (u,,,) -, a2, 0 < a < CO, as a, f 0, then 

lim P (ujc ,  2 x) = exp ( - 21x/02), 
n 

where c, = (1 -en)-' o, and p, = EV,,,/EU,,~ is the traffic intensity. Kingman's 
approach was based on an analysis of the limit of the characteristic functions 
for o,/c,. An analogous result for queueing systems with dependencies between 
random variables in the input sequences and light tails was obtained by Szczot- 
ka (1990), (1999), where functional limit theorems have been utilized. 

In this paper we apply the Heavy Traffic Invariance Principle in the situa- 
tion when X is a LCvy process without Gaussian component, which corre- 
sponds to the case of heavy-tailed distributions of service times and/or interar- 
rival times in a G/G/l queueing system. Recall that the distribution of a ran- 
dom variable [ is said to have a heavy tail if there exists ol < 2 such that 

lim x Z P ( [  > x ) = y  > O .  
x+m 

The special case of heavy-tailed GI/GI/l queues, where the input sequences 
had independent terms, was considered by Boxma and Cohen (1999), who 
investigated the limits of the Laplace-Stieltjes transforms of wn/c,. They also 
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assumed that the tails of the distributions of service and interarrival times 
satisfy some regularity conditions (ibidem (2.6-7)). Roughly speaking, these as- 
sumptions imply that the input distributions belong to the domains of attrac- 
tion of stable distributions with different exponents a for service times and 
interarrival times. They showed that if the distributions of service times have 
heavier tails than those of interarrival times and if they belong to the domain of 
attraction of a stable distribution with parameter a, 1 < a < 2, then the limiting 
distribution of on/cn is a Mittag-Lefler distribution (also called sometimes 
a Kovalenko distribution). In this situation the normalizing constants c, depend 
only on the distribution of service times. On the other hand, they proved that if 
the distributions of interarrival times have heavier tails than the service times 
and if they belong to the domain of attraction of a stable distribution, then the 
limiting distribution of w,/c, is exponential; here the normalizing constants 
c, depend on the distribution of interarrival times. Similar results are given in 
Whitt (2002). 

The composition of this paper is as follows : Section 2 formulates our main 
results on limit distributions of stationary waiting times in heavy traffic for G/G/l 
queues with heavy-tailed distributions of service and/or interarrival times. 
These results seem to be novel in the queueing theory context but we view them 
as an illustration of the Heavy Traffic Invariance Principle applied to heavy- 
tailed G/G/1 queues in heavy traffic in presence of some dependence struc- 
tures. Initially, the dependence structure of the input sequences is that of a mar- 
tingale difference sequence but then, using the Decomposition Theorem, we are 
able to relax this restriction to what we call hag-martingale dependence struc- 
ture: only one of the two input sequences is required to form a martingale 
difference sequence. These results also illustrate the general phonomenon of the 
limit distribution depending only on the input component with heavier dis- 
tribution tail. A number of coroIlaries to our two main theorems are also 
included. They illustrate the possibility of getting the limiting distribution of 
w,/cn for G/G/1 queues with the following dependence structures: 

GI/GI/l queues. 

e Queues for which the r.v.'s vnPk- unSk, - co < k < CO, are i.i.d., but ran- 
dom variables v,,, and unqk need not be independent. Moreover, the distribu- 
tions of u, ,~,  as well as of u,,~, may depend on k. 

c Queues for which the sequences ((v,,, - Ev,,,) - (u,,~ - Eun,,), k 2 1) form 
martingale difference sequences for each n 3 I. 

Queues for which only one of the two input sequences forms a martin- 
gale difference sequence. 

In Section 3 we begin to gather tools needed in the proofs of the two main 
theorems and start with a result on convergence of processes to a Ltvy process. 
This is a well-explored territory but we found that a well-known result from 
Durrett and Resnik (1978), Theorem 4.1 (see also Jakubowski (1986)), needs 
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some adaptation to be directly applicable for our purposes. We go through 
a similar process in Section 4, where we adapt known results from Szczotka 
and Woyczyriski on sufficient conditions for tightness of the sequence {w Jc,). 
Finally, proofs of Theorems I and 2, relatively short after all the preparations 
of Sections 3 and 4, are provided in Section 5. 

2. LIMIT DISTRIBUTIONS OF STATIONARY WAITING TIMES 
IN HEAVY TRAFFIC 

The next two subsections present the main results of the paper; the proofs 
I are postponed until the last section. We begin in Subsection 2.1 by considering 

queueing systems with Lbvy input sequences having martingale dependence 
structure and follow it by the Decomposition Theorem which permits, in Sub- 
section 2.2, an extension of results of Subsection 2.1 to the case where only one 

. + of the input sequences has a martingale structure. 
>A' 
P" In what follows X stands for a Levy process without Gaussian component 

and with sample paths in the space D 10, a). Its characteristic function can be 
written in the form 

I E exp (iux (0) = exp (t$,,v (a)),  
I where 

(6) tj,,, (u) = iub (r)  + (eiu" - 1 )  v (dx) + (eiuX - 1 - iux) v (ax); 
1x1 3 r  O<lxl<r 

the drijit b ( r )  is a real number, the spectral measure v is a positive measure on 
(- a, a) which integrates function rnin ( 1 ,  x2) ,  and r is a positive number such 
that points -r  and r are continuity points of the spectral measure v. If spectral 
measure v is concentrated on the positive half-line ( 0 ,  m), then we will call 
process X spectrally positive or, loosely, a process with positive jumps. When 
v is concentrated on the negative half-line (-coy 0),  process X will be called 
spectrally negative (process with negative jumps). Let us define 

b ( r ,  v ) : =  - j xv(dx)  
1x1 3 r 

if it is finite. Then 

(7) $b,v (u) = iu (b (r) - b (r , v)) + j (eiux - 1 - iux) v (dx) .  
OClx l<m 

For an a-stable spectral measure v defined by the formulas 

I Y(-co, x) = y ,  I x I - ~  for x < 0 and v ( x ,  m) = y21xI-' for x > 0, 

we have 
01 

b ( r ,  v) = - 
a-1 r 1 - a ( ~ 2 - ~ 1 ) .  
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Similarly, fox a spectrally negative a-stable v 

for a spectrally positive a-stable v 

and, fox a symmetric a-stable v ,  b(r ,  v) = 0. 

2.1. Inpart sequences with martingale dependence structure. The following 
two conditions will play a role in formulation of our main theorems: 

CONDITION C [ T ,  6). Let z 2 2 be an integer and 6 ,0.  We say that a se- 
quence (c,) satisfies the condition C(z, 6) if, for some n,, 

THE ( 6 ,  (c,))-BOUNDEDNESS CONDITION. Let 6 > 0 and {c,} be a sequence of 
positive numbers. An array {qnJr, k 2 1 ,  n 2 1 )  of random variables is said to 
satisfy the (6,  {en})-boundedness condition if 

Here, x+ := max(0, x). 

THEOREM 1. Consider a sequence of G/G/1 queues with input sequences 
( v , , ~ ,  u,.,), and sequences (Q,) and (c,) such that, for each n 3 1, (cn,k-an, k 2 1 )  
is a martingale dl_fference sequence satisfying the following conditions : 

(A) Processes X ,  3 X ,  where Xn are defined in ( 1 )  and X is a LCuy process 
without Gaussian component such that X( t ) -c t  -+ - KJ a s .  as t + K J ,  for all 
c > 0, and with characteristic function exp [$,,, (u)] in (6), where 

(B) As n + K J ,  sequence /?, = 141 n/c, + /?, where 0 < fl  < a and b, < P .  
(C)  Sequence (c,) satisfies the condition C(T, 6) .  
(D) Sequence {5,,,- a,, k 3 1 ,  n 2 1) satisfies the (6 ,  {cn))-boundedness 

condition. 
Then 

O,JC, 5 sup ( X  (0 - fit) M 
O S t < m  
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Thus, with the notation 

we have the following corollary to the above Theorem 1, and to Theorems 4 
and 8 in Szczotka and Woyczynski (2003). 

COROLLARY I. I f  the conditions of Theorem 1 are satisfied, then the foE- 
lowing statements hold true: 

(i) I f  X is spectrally negative with spectral measure v and characteristic 
function of the form (d), where b(r) = b,, and i fp+ b (r ,  v)-6, > 0, then M has an 
exponential distribution with parameter A which is the positive root of the equation 
$ (A) = 0, where 

In particular, i f  v(-  co, x) = y1 1x1-", for x < 0, then 

(ii) I f  X is spectrally positive with exponent i,bb,,(u), where b(r) = b,, and 
a-stable, spectrraliy positive measure v ( x ,  oo) = y 2  x-', for x > 0, with 1 < a < 2, 
y2 > 0, then M/8 has the Mittag-Lefler distribution with Laplace-StieEtjes transform 

1 I/("-1) 
(11) E exp (- sM/0) = - where 0 = (B) . 

1 +sa-l' 

(iii) If X has a symmetric a-stable measure v, i.e. v (- a, -x) = v fx, a) = 

= yx-" for x > 0 ,  1 < a <  2, y > 0, then M has the Laplace-Stieltjes transform 
of the form 

where 

The  case of i ndependen t  increments.  It is a useful exercise to 
reinterpret the above results in the special case of input sequences with in- 
dependent and identically distributed terms. Note that, for each k, random 
variables v,,, and u,,, may be dependent. 

In formulation of the following corollary we will make use of the following 
definition: A sequence of distribution functions F,, n 2 1, is said to be attracted by 
a LCvy distribution with spectral measure v on R if the following conditions hold: 

(12) nF , (y ) -+v( -ao ,  y) and n( l -F , (x ) )+v(x ,  m) 
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for all y < 0 and x > 0, which are continuity points of v; 

(14) 

and 

lim sup n ( ~ , ( - x ) + 1  -F,(x)) = 0; 
x 4 m  n 

limn 1 xdFn(x)=b,,  ]b , l<m;  
lxl<r 

limlimsupn J x2dF,(x] = 0 .  
6+0 n - i o  Ixl-=d 

COROLLARY 2. Let, for each n 2 1, {<n,k-a, ,  k 2 1) be a sequence of in- 
dependent and identically distributed random variable~ such that the sequence of 
distribution functions F,, n 2 1, defined as 

is attracted by a Ldvy distribution with spectral measure v. Furthermore, let 
f in -+ #?, 0 < f l  < m, and the distributions of 5,,, -a, be majorized by the dis- 
tribution of 9, in the convex ordering sense, i.e. 

Emax(0, -a , -x )  < Emax(0, &-x) fur all X E R ,  

and let 

where 9,, Q 2 ,  . . . are i.i.d. random variables with E9,  = 0. Then 

1 
-w, 3 sup (X(t)- f i t ) .  
En O < t < m  

The normalizing constants c,, n 2 1, are such that the processes X,(t) 
= ( l / ~ ~ ) c ' ~  (<n,j-an), n 2 1, converge to a Lkvy process X .  If X is a stable 
LCvy process with stable spectral measure v ,  v (- oo, - x )  = y ,  x-", and 
v ( x ,  a) = y 2  x-a for x > 0,  1 < ct < 2, then c, = nlia h(n), where h(n) slowly 
varies at infinity. Those constants can be evaluated from the conditions (12) 
and (13), i.e., from the limit conditions 

nP(v , , , -~~ ,~-a ,<  -xc,)+ylx-" and nP(v, , l -u~, l -a ,~xc, )+y2x-",  

which hold for all x > 0, and from the condition lanl n/cn + P ,  0 < P < co. 
It is clear that in the considered case constants c, depend on the dis- 

tributions of u , ,  (interarrival times) if v is stable and spectrally negative ( y  , > 0, 
y 2  = O), and on the distributions of v,,, (service times) if v is stable and spectral- 
ly  positive ( y l  = 0,  y, > 0). 
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2.2. Input sequences with half-martingale dependence stmcture. In this sub- 
section we formulate results that extend Theorem 1 to the case when only one 
of the two input sequences has a martingale structure; we say then that the 
whole queueing system has the half-martingale dependence structure. Again, the 
proofs are postponed until the last section of the paper. 

2.2.1. Dependence of the distribution of h4 on the tails of the distributions oJ 
service times and interarrival times. Here we examine situations when the dis- 
tribution of M depends either on the tail of the distribution of service times or on 
the tail of the distribution of interarrival times. The emerging picture is explained 
in the following Decomposition Theorem, a weaker version thereof was formu- 
lated as Lemma 4 in Szczotka and Woyczy6ski (2003). The statement of the the- 
orem is preceded by an adjustment of the notation introduced first in Section 1. 

Let 

where ij,, = EunIl ,  a,, = EU,,~,  n 2 1, and c ,,,, c,,, are constants tending to in- 
finity. Then a, = &-fin. For other notation, see (1). 

THEOREM 2 (DECOMPOSITION THEOREM). Suppose that, for each n 2 1, the 
input sequence { (v , , ,~ ,  u , , ~ ) ,  -a < k < CO} is such that 8, + P, 0 < /? < m, with 
C, = p a x  (cn,l, c,,z), n 2 1, and that the arrays 

(1) - {~l,,k-(~,,-k-G,), k 2 1 ,  n 2 1 )  and {ylL:i= -(un,-,-26,), k 2 1 ,  n 3 1 )  

are such that the sequences 

.- sup (G(tl-pfin(t))) and p m p ) : =  sup (U,(O-~B.(~)) 
O $ t < m  Cn-2 0 4 r < m  

are tight for some p, 0 < p < 1, and the sequences (supo It/, (t)l, n 2 1) and 
{ s u ~ ~ ~ ~ ~ ~ l U , ( t ) l ,  n 2 I] are tight for all c > 0. Then: 

(i) If V,  % T.: where V is a non-degenerate, spectrally positive Ltvy process 
and C,,,/C,,~ + 0, then 

w,/c, 3 sup (V ( t )  - Dt) . 
OCt<oo 

(ii) If U, 5 U, where U is a non-degenerate, spectrally negative Guy pro- 
cess and C ~ , ~ / C , , ~  + 0, then' 

m,/cn 3 sup (U (t) - Pt). 
O S t < m  

R e m a r k  1. Obviously, the sequence  SUP^^^ bc lK (t)], n 2 1) is tight if 
J$A V or if { ( V , , - ~ - U , ) ,  k 2 1, n 3 1) is a martingale difference array and 
satisfies the (6, (c,))-boundedness condition. A similar statement holds true for 
the sequence (sup, st,c lU, (t)l, n > 1). 
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At this point we are in a position to describe classes of queues to which the 
Decomposition Theorem is applicable. For convenience, the following termi- 
nology will be utilized: A queue generated by a stationary input sequence 
( (uk ,  uk), - co < k < m) is said to be of independent-martingale type (IM-type) 
if the sequence of interarrival times (u,, - co < k < m) is a sequence of i.i,d. 
random variables and the sequence of service times {vk, - co < k < m) is such 
that {vk - E v l ,  - co < k < co) forms a martingale difference sequence. Similar- 
ly, a queue is said to be of martingale-independent type (MI-type) if the sequence 
of interarrival times {u,, - cc < k < co) is such that {u, - Eu,, - c~ < k < cm) 
forms a martingale difference sequence and the sequence of service times 
(v,, - co < k < co) is a sequence of i.i.d. random variables. A queue is of 
independent-independent type (11-type) if it is both of IM-type and MI-type. Of 
course, the II-type queueing system need not be GI/Gi/1 because we do not 
assume that the sequences of service times and interarrival times are indepen- 
dent. Also, a queue is said to be of martingale-martingaie type (MM-type) if 
(uk-Eu,, - rx, < k < ca} and {vk-EuI ,  - a3 < k < a) form martingale dif- 
ference sequences. Finally, a queue is said to be of half-martingale type (HM- 
type or MH-type) if only one of the two input sequences forms a martingale 
difference sequence. 

Interarrival times with tails heauier than those of service times. In the case of 
queues of II-, IM- and MH-type, for which interarrival times have heavier tails 
than service times, which corresponds to X being spectrally negative, we have 
the following results : 

COROLLARY 3 (The spectrally negative case for queues of II-type and IM- 
type). Let, for each n 2 1, ( ( v ~ , ~ ,  u , ,~ ) ,  - cc < k < co) be an input sequence 
either (a) of a queue of 11-type or (b) a queue of IM-type, and let c, = nila h (n), 
1 < a < 2, where h(n) slowly varies at inJinity and f i n  + b, 0 < fl < co. Suppose 
that the following conditions hold: 

(i) sup,E lv,,, - & I E  < co for some E ,  1 < a < E < 2, in case (a) and 
sup, Var (v,,,) < co in case (b). 

(ii) The array (y;fJ : = - (h, - k  - &,), k 2 1 ,  n B 1 )  sati$is the (6, (c,))-bound- 
edness condition for some 6 ,  1 < 6 < a. 

(iiif The sequence of distribution functions F,,, n B 1, defined as 

is attracted by a stable distribution with spectrally negative measure v ,  v (- co , x) = 

= 7 ,  Ixl-=, x < 0. 
Then wdc, 5 M, where M has an exponential distribution with parameter 

;1 = (fl/(oly p)) li(l - =) . 
Another example of the spectrally negative case in which the assertion of 

the Decomposition Theorem holds true is that of a queue of MH-type with 



78 W. Szczotka and W. A. Woyczyriski 

u k  - ii,, k 3 1) assumed to be a martingale difference sequence with a spe- 
cial structure of dependence which we call chain-dependence, while no martin- 
gale structure is imposed on (v,, -, - G, k > 1). The concept of a chain-depen- 
dent sequence of random variables has been encountered in the queueing con- 
text before and is defined as follows: 

Let {J,, k 3 0) be a stationary, irreducible Markov chain (periodic or not) 
with a finite state space S = (1, 2, . . ., m}, the transition matrix P = { p i , j ,  i, ~ E S )  
and stationary distributions n = (n,, n2, . . ., n,). A sequence (ck, k 3 1) of 
random variables is called chain-dependent with respect to {J , ,  k 2 0), with 
distribution functions GI,  G,, .. ., G ,  if, for each i and j, 

(17) PIJk = j ,  Ck :k x 1 Jk-l = i, i@,-J 

= PV, =j, l k < x  I Jk-l = i ) = ~ ~ , ~ a G ~ ( x ) ,  

where the a-fields .g, = a(J,, J , ,  ..., J , ,  c,, c,, ..., 1,). 
Observe that if {ik, k 2 1) is a chain-dependent sequence, then Ilk, k 2 1) 

is stationary, and {i,-El,, g,, k 2 1) is a martingale difference sequence, 
m m 

where Elk = zi = zi di, di = J-, xdGi (x); see Section 4 for details. In the above 
situation we will simply say that irk, k 2 1)  is chain-dependent with respect to 
{J,,  k 2 0), with stationary distribution n: = (IT,, x2, . . . , K,) and distribution 
functions G I ,  G, ,  . . ., G,; the irreducibility of {J,, k 2 0) wil l  be always as- 
sumed though. 

In what follows we consider a sequence of chain-dependent sequences. 
Namely, for each n 2 1, {l,,,, k 2 1) is chain-dependent with respect to 
{Jn+,, k 2 0), with stationary distribution n,, = (n ,,,, n,,,, . . ., n,,,), and distri- 
bution functions G,,,, G ,,,, . . ., G ,,,, and we set 

n 

n,,i(n) = C 1(JnSj = i), TI 3 1, 1 < i < m. 
j= 1 

We also need the concept of convex ordering between random variables 
q1 and q2 and their distribution functions F 1  and F 2 .  Namely, we shall write 
q1 Gcq2, and F 1  GcF, if, for all x, 

Finally, we shall say that a random variable q  has a Pareto distribution with 
parameters (a, y) if its cumulative distribution function 

for x < ylia, 
F (x) = 

1 -yx-" for x 2 yl/". Io 
Of course, Ey = ya/(a - 1). 

COROLLARY 4 (The spectrally negative case for queues of MH-type). Let, 
for each n 2 1, {(v,,,, u,,,), - 00 < k < ao) be an input sequence of a queue of 
MH-type such that the following conditions hold: 
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(i) For each n 2 1 the sequences ( v , , - ~ ,  k 2 1) are either such as in cases 
(a) or (b) in Corollary 3, or they are $-mixing with the same mixing function 

4 = {&, k 2 1 ) ,  for aN n, such that zkm=, ,/& < m and Ev::' < m for some 
E > 0. 

.(ii)  For each n 2 1, {u , , -~ ,  k 2 1 )  is chain-dependent with respect to 
{JnPk,  k 2 0) .with stationary distribution n,  = ( x , , ~ ,  n,,*, . . ., x,,,) and distribu- 

w 

tion functions en,, , Gn,,, . . . , G ,,,, where G,,,; ( x )  = P (u,,-, < x I Jn,k-  = i). 
Furthermore, assume that the following conditions hold: 
(iii) fin 4 8, 0 < j? < CO, where c, = nllah(n), 1 < o? < 2, h(n)  slowly varies 

at infinity, and a, = E V , > ~  - E U , , ~ ,  where EunPl = Cyrl nn,i S X ~ G , , ~  (x). 
(iv) n-' 3 ni. 
(v) The sequeaces {GnVi, n 2 11, 1 < i < m, of dismibution functions defzned as 

are attracted to stable, spectrally negative probability distributions with spectral 
measures vi,  respectively, where vi (- co , X) = Y ~ , ~  1x1-', x < 0, 

(vi) em,i <, ci for all n 2 1 and 1 < i < rn, where ei are Pareto distribution 
junctions with parameters (a,  y,,;), respectively. 

Then w,$cn 3 M, where M has an exponential distribution with parameter 
lit1 -a) rn 

= P I  ) where YI = Cj=  xi YI,~. 

Service times with tails heavier than those of interarrival times. In the case o f  
queues o f  11-, MI-  and HM-type, for which service times have heavier tails than 
interarrival times, which corresponds t o  X being spectrally positive, we have 
the following results : 

COROLLARY 5 (The spectrally positive case for queues o f  11-type and MI-  
type). Let, for each n 2 1, { ( u , , ~ ,  u,,,~)? - m < k < ao) be an input sequence of 
a queue of either (a) of 11-type or (b) of MI-type, and let c, = nll" h (n), 1 < r < 2, ' 

where h(n)  slowly varies at infinity and fin j f l ,  0 < f l  < m. Suppose that the 
following conditions hold: 

(i) sup,E lu,,, < m for some E ,  1 < E < r < 2, in case (a) and 
sup, Var (u , ,~)  < co in case (b). 

(ii) The away {q$ := (v,,-,-&), k 2 1, n 2 1) satisjies the (6,  (en))-bound- 
edness condition for some 6, 1 < 6 < a. 

(iii) The sequence of distribution functions F,, n 2 1, dejined as 

is attracted by the stable, spectrally positive probability distribution with spectral 
measure v ,  v ( x ,  ao) = y 2 x - " ,  x > 0. 

Then wJc, 3 M, where M/0 has a Mittag-LefJler distribution with parame- 
ter 0, and 8 = (uy, p/P)li('-"). 
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COROLLARY 6 (The spectrally positive case for queues o f  HM-type). Let, 
for each n 2- 1, { (v , ,~ ,  u,,~),  -a < k < a) be an input sequence of a queue o f  
HM-type such that the following conditions hold: 

(i) For each n 2 1, the sequences (u , , -~ ,  k 3 I}  are either such as in cases 
(a )  or (b) in Corollary 5,  or they are #mixing with the same mixing function 

4 = (dr, k B l), for aN n, such that C,"_, 6 < my and Eu::' < m for some 
E 3 0. 

(ii) For each n 2 1, { v , , - ~ ,  k 2 1) is chain-dependent with respect to 
{JnVk,  k 2 0), with stationary distribution n, = (nnS1, nnm2, . . ., TC,,,) and distribu- 

* - - w 

tion functions Gn,l, Gn,z, ..., G ,,,, where GnSi(x) = P(v , , - ,  < x l  J,,,-, = i). 
Furthermore, assume that the following conditions hold: 
(iii) fin -+ fl, 0 < B < CO, where c, = nil" h(n), 1 < cl < 2, and h (n) slowly 

varies at infinity. 
B (iv) n-I xnSi (n) + ni. 

(v) The sequences (Gngi, n 2 I ) ,  1 < i < rn, of distribution functions de- 
jined as 

are attracted to stable, spectrally positive probability distributions with spectral 
measures vi, respectively, where vi ( x ,  a) = yZ,i xPa,  x > 0. 

(vi) <, ei for all n > 1 and 1 < i < my where ei, 1 < i d m, are Pareto 
distribution functions with parameters (ol, yzSi) ,  respectively. 

Then wJcn 5 M, where M/O has a Mittag-Lefler distribution with parame- 
nl ter 0, O = ( m y 2  p/P)'I(' -a) ,  and y ,  = xi = ni y z , ~ .  

3. LIMIT DISTRIBUTIONS OF STATIONARY QUEUE LENGTH 

Let 1, denote the stationary queue length in the n-th queue generated b y  
the input sequence {(v , ,~ ,  unSk), - < k < a). The results for stationary wait- 
ing times on formulated in Section 2 immediately give analogous results for the 
stationary queue length 1, in view o f  the following result which i s  due to  
Szczotka (1  990), Theorem 2: 

THEOREM 3. Suppose that there exists a sequence {c,), c, m, c$n + 0, such 
that, for each t 2 0 and n -+ oo, 

and 

(19) 

1 LhfJ 1 Lcmtl 
P - - C v , , - ~ + u ~  and - C u,,-jAiTt, 

Cn j = 1  Cn j = l  
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Then 

and, consequently, 
(l/cn) ln 3 E M .  

Notice that the convergence in conditions (18) takes place if processes 

converge to processes and 0, respectively, with p(0) = o(0) = 0 as. (which 
is usually assumed), and v,, + V, ii, + rt. 

Indeed, in view of the equalities 

the assumptions 3 c,/n -i 0, and i& -t 6, and the Continuous Mapping 
Theorem for the topology of weak convergence (see Theorem 5.1 in Billingsley 
(1968)) imply the first convergence in (18). The second convergence in (18) can 
be verified in a similar fashion. 

4. PROOF PRELIMINARIES 

This section gathers facts needed in the proofs of results stated in Sec- 
tion 2. Although these facts are essentially known, we need to adapt them for our 
use in Section 5. The first subsection deals with the issue of convergence of 
a sequence of processes to a Lbvy process while the second subsection collects 
results about tightness. 

4.1. Convergence to a Levy process. A Lbvy process can be viewed as the 
limiting process, n + coy of the interpolated sums processes X ( t )  = ~:::5.,&, 
t 2 0, n 2 1, where {in,,, k 2 1, n 2 1) is an array of random variables. We 
begin in Proposition 1 by rewriting a result due to Durrett and Resnik (1978), 
Theorem 4.1, in the case when k 2 1, n 2 1) is a martingale difference 
array. It gives sufficient conditions for the convergence x X, when X is 
a Lbvy process with spectral measure v. As a corollary we formulate the clas- 
sical Prokhorov's result for the convergence x 3 X, when, for each n 2 1, 
I[,,,, k > 1) is a sequence of i.i.d. random variables. Finally, we rewrite Durrett 
and Resnik's result in the case where, for each n 2 1, random variables 
{in,,, k > 1) form a chain-dependent sequence. 

The  mar t inga le  case. An array {in,,, k > 1,n 2 1) is called a martingale 
diflerence mray if, for each n 2 1, the random variables [n,k, k 2 1, are defined on 

6 - PAMS 24.1 
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a common probability space (a,, Fn, P,) on which there is an increasing se- 
quence {F,,,k, k B 1) of a-fields contained in the u-field Fn, and 5,,k is Fn,,-mea- 
surable, k 3 1, while the conditional expectation E (c,,, 1 Fn,,- ,) = 0. In the 
described situation we also say that {(in,,, g,,,), k 3 1, n 2 1) is a martingale 
difference array. 

Denote by 1 ( A )  the indicator function of event A and let 

PROWSITION 1. Let {[n,k, k 2 1 ,  n 2 1) be a martingale difference array 
satisfying the following conditions: 

(a) For all t 2 0 and all x > 0, y < 0, which are the continuity points of the 
spectral measure v, as n -r rn , 

[ntl [ntl 

C B(5nej > x  I & , j - l ) A f V ( ~ ,  a), C Picnej < Y I & , j - ~ ) ~ t v ( - ~ ,  J'), 
j= 1 j =  1 

(b) For all E > 0 

max P(jCnSjl > E 1 FnTj-l) $0. 
I <  j b n  

(c) For all E > 0 
" 

lim lim sup P ( E ((tsj)' I FnJ- > E )  = 0. 
d-rO n-sr j = l  

Then Zn % X  in D [ O ,  co) with .I, Skorokhod topology, where X is a LCvy 
process with characteristic function E exp (iuX (t)) = exp (it$,,, (u)) with exponent 
$b,Y (u) of the form (6)  with b (r) = 0, and spectral measure v given in condition (a). 

Furthermore: 
(d) If  br is a number such that, for n + oo, 

(23) sup tb,,, ( t)  - tb,l 3 0 as n -, ao for all c > 0 ,  
O b r b c  

then Y, = 2, + b,,, 5 X in D [0, oo) with JI Skorokhod topology, where X is 
u Ltvy process with characteristic exponent $ b , y ( ~ )  and b(r) = b,. 

Now let us consider condition (d) of Proposition 1 and the form of the 
limit b, in the case when the spectral measure is continuous with 
l ; v (x ,  m ) d x  < co and i I L v ( - c o ,  x)dx  < co. For this purpose let us put 

and assume that F,,, (x 1 2F,,,j- ,) are regular conditional distribution functions. 
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PROPOSITION 2. L ~ L  {cn,k, k 3 1, n 2 1) be a martingale diference array 
satisfying conditions (a) and (b) of Proposition 1 and let a spectral measure v be 
continuous at all paints with SF v ( r  , m) dx < co and 1: v (- co, x) d r  i co. 
Then condition (d) of Proposition 1 holds and 

P r o  o f. Since functions ~f:'~(l- Fn,j(x I 1)) of variable x > 0 are mo- 
notonic and the limiting function tv (x, m) of variable x > 0 is continuous, we 
have - 

Lntl 

SUP I C (1 - Fngj (x  I Fn,j-l))-tv (x, co)lA 0 for any c > 0. 
r Q x < c  j = 1  

Since, for any E > 0, there exists xo > r such that, for x > x0, V ( X ,  co) < E ,  the 
i above uniform convergence holds on the interval [r, co), i.e. 

In a similar way we show that 

Lntl 

(25) y < - r  sup I j=l C I;,,j(yI %,j-1)-tv(-rn, Y)I 3 0 .  

Now, since E (rnPj I PnPj- ,) = 0, we get 

Hence, using the definition of bn,,(t) from (21), we get 
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Therefore, using the convergences (24) and (25), we get, for n + a, the 
following convergence: 

Integrating by parts the right-hand side of the above equality we get the form 
of b, asserted in the proposition. Since the point convergence of monotonic 
functions to a continuous function implies the uniform convergence on com- 
pact sets, we get the statement of the proposition for all four factors in the 
formula for b,,,(tj. This concludes the proof of the proposition. 

T h e  i.i.d. case. In the case when random variables in k 3 1, n 3 1) 
are row-wise i.i.d. we have the foIIowing corollary to Proposition 1, a result due 
to Prokhorov (1956): 

COROLLARY 7. Let, for each n B 1, (5n,k ,  k 2 1 )  be a sequence of i,i.d. random 
variables with El,,,  = 0 and distribution finctions Fn,  n 3 1, such that the se- 
quence ( F , )  is a t ~ a c t e d  to a U u y  distribution with spectral measure v. Then 
Z,  3 X ,  in D [0, co) with J1 Skorokhod topology, where X is a LLvy process with 
b (rj = 0 in the exponent p,, (u) in (6). 

d 
Furthermore, if En,, = nEl,,l 1 1 < r) -+ 6, , and b,,, ( t )  = ( Lntj /n) 5 ,,,, 

then ',= Z,+ b,,, 5 X, in D [0, c ~ )  with J1 Skorokhod topology, where X is 
a LCvy process with exponent $b,v (u) and b (r)  = b,. 

The  cha in  - d e  p e n d en t case. Another special case of martingale dif- 
ference arrays {k,k, k 2 1, n 2 I), for which we obtain sufficient conditions for 
processes I.', to converge to a LCvy process, are chain-dependent sequences 
introduced in Section 2. Our model here is Example 4.1 from Durrett and 
Resnik (1978) which we adapt to the case of a series of chain-dependent se- 
quences. 

Note that the definition of chain-dependent sequence implies that 
P ( l ,  < x I J k - l  = i) = Gi(x)  and 

i = 3  

Hence 

and 
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The above reasoning yields the statements of Section 2 to the effect that 
the sequence (Ck - a, k 2 1 )  is stationary and {(c, - a ,  gk), k 3 1) is a martin- 
gale difference sequence. 

Let, for each n 2 1, {J,,,, k 2 O ]  be a stationary, irreducible Markov chain 
(periodic or not) with a finite state space S = (1, 2, . . ., m), the transition proba- 
bility matrix PIn) = {p?], i ,  j E S } ,  stationary distribution 7 ~ ,  = (x,,~, x , ,~ ,  . . . , nn,J 
and let { C n r k ,  k 2 1) be a chain-dependent sequence with respect to {J,,, ,  k 2 O), 
and with distributions functions Gn, I ,  Gm,2, ..., Gn,m. Furthermore, let 
gn,k (Jn,~, Jn.l 7 J n , 2 ,  - .  -9 Jn,k, cn,l 5 c n , 2 ~  .. - 3  h,k) denote u-fie1ds7 and 
a, = Then, for each n 3 1, the sequence {[n,k-an, k 2 I) i s  stationary 
and {(en., - a,, L~Y,,~), k B 1 ,  n 2 I} is a martingale array. 

Define 

Notice that 

Hence using the form of b,,"(t), defined in (21), we get 

COROLLARY 8. Let Markov chains {J,,,, k B I), n B 1, be such that 

and assume that each of the sequences {Gn,i, n 2 I), 1 $ i $ rn, of the distribution 
functions is attracted to a L6vy distribution with spectral measure vi, respectively, 
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i.e. conditions (12H15) hold with (Fn) = {Gn, i )  for 1 6 i d m and with b, = br) 
in (141, i,e. 

(27) n 1 ~ d G , , ~ ( x ) + b $ ' ) a s n + c o ,  i = 1 , 2 ,  ..., m. 
1x1 

Then tho processes Z,,(t)  = ~ y : [ . , ~ -  b , . ( t ) ,  t 3 0, n 3 1 ,  converge in D [O, m) 
with Jl Skorokhod topology to a Lkvy process X with exponent $b ,v  (u), where 

m 
btr)  = 0 ,  and v = Ci=l  n i v i ,  while Y, = Z, + b,, converge to a LCvy process 
X with exponent ~ ,,,, where b ( r )  = b, = z:=, nibf l .  

P r o  of. To prove the corollary we will verify the conditions of Proposi- 
tion 1. Notice that 

Therefore, for x > 0, we have 

= z n (1 - GnSi (x)):)'n.,, ( [ n ~  4 ni tvi ( x ,  m )  
i =  l n  i =  1 

for all t 2 0 and all continuity points x > 0 of all spectral measures v i .  
In a similar way we show that, for all t 2 0 and all continuity points y < 0 

of all v i ,  

Therefore condition (a) of Proposition 1 is satisfied. 
Now notice that 

... 

max P(lL,jl > ~ l B , , j - l )  = max C P(ITn,jl > E I J n , j - l  = i ) l ( J n , j - l  = i )  
l s j d n  l d j < n i = l  

< max C (1 - G,,i (E )+  Gn,i ( - E ) )  1  ( J n j -  1 = i )  
l d j d n i , l  

This implies that condition (b) of Proposition 1 is satisfied. 
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To check condition (c) recall that c,, are defined in (22). Reasoning as in 
Durrett and Resnik (1978) we have the following relations: 

Therefore 

which shows that condition (c) of Proposition 1 is fulfilled. Therefore, applying 
the first assertion of Proposition 1 we get the first assertion of the corollary. 

To check condition (d) of Proposition 1 notice that n- ' nn,i ([at]) 3 nit  
and the limiting function is a continuous function of variable t. This and the 
rnonotanicity of the sample functions of ~ , , ~ ( t )  imply that 

Now, using the form of b,,(t) and the relation b, = zye,ni b!?, we get the 
inequality 

which, in view of the above convergence and assumption (27), gives condition 
(d) of Proposition 1. This, in turn, gives the second assertion of the corollary. m 

If the spectral measures v i  in Corollary 8 are stable, with the same ex- 
ponent a, i.e. 

vi (- a, -x) = y i , l  and vi (x, a) = yi , ,  x-" for all x > 0, 

then the spectral measure v  = z:=, vi is stable with exponent a, while 
m m 

7 1  = C i = l ~ i , l  and ~2 = C i = l ~ i , 2 -  

4.2. Tightness conditions. In Proposition 3 we rewrite Theorem 3 from 
Szczotka and Woyczyiski (2003), which gives sufficient conditions for the tight- 
ness of the sequence 

with Xn( t )  = ( I / C , , ) ~ ~ ~ ~ . , ~ ,  t 2 0, where the sequence {qn,k} is row-wise station- 
ary and Ey,,, = 0. Then we rewrite this proposition in two special cases: when 
( v ~ , ~ ,  k 2 1, n 2 1) is a row-wise i.i.d. random array, and when it is a martin- 
gale difference array. 
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PROPOSITION 3. Let the array {v,,,~, k 2 2 ,  n 2 1 )  be row-wise stationary 
with = 0, and la,ln/c, 8, 0 < r(3 < co. If 

where z 2 2 and no are integers such that (an[ n/c, 2 a/2 for n 3 no and 
rc = (l/2z)/3, then the sequence ((l/e,)w,) is tight. 

PROPOSITION 4. Condition (28) is satigied if, fur some integers s 3 2 and 
no as in Proposition 3,  one of the following three conditions is satisBed: 

(i) For each n 2 1, {I] , ,~,  k 2 1 )  is a sequence of i.i.d. random variables such 
k 

that d := infn,,,infkal P ( z j = l q n , j  > 0) > 0, and 

(ii) The array (q,,,, k 2 1, n 2 1 )  is a martingale digerenee array such that, 
for some 6, 1 < 6 < 2, the following condition holds: 

(iii) (q,,,, k 2 1, n 2 1) is a martingale dgerence array satisfying the 
(6, {c,))-boundedness condition with (c,) satisfying the C ( z ,  6)-condition. 

P r o  of. Applying Lemma 1.1.6, p. 9, in Iosifescu and ~heodorescu (1969), 
with x = 0, to the sequence ( v , ,~ ,  k 2 1 )  of i.i.d. random variables we get 

which, by (29), implies (28). 
The assertion in case (iif follows immediately from Doob's inequality. 
The assertion in case (iii) foIIows from the inequality 

This concludes the proof. m 

The following remark gives examples of sequences {c,)  satisfying the con- 
dition C (z, 6). 

Remark  2. The sequence (c, = nlia h (n)}, with 1 < a < 2 and a function 
(h(n))  slowly varying at infinity, satisfies the condition C(z, 6). In particular, 
the sequences (c,  = nlia} and (c, = nlia log n)  satisfy the condition C (7 ,  5). 
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Indeed, choose a positive .s such that 1 + E < z("')IU and an integer n, such 
that h (nr)/h (n) < 1 + E for n 3 n,. Then 

h(nzk) h(nzk-I T) h (nzkP2~)  -- - (nr) g (1 + elk for n 2 n, . 
h(n) h(ntk-I) h(nzk-') "' h(n) 

Hence 

which, in view of the inequality 1 + E  < T("-')~", implies that the sequence 
{c, = nlta h (n)] satisfies the condition C ( T ,  6). 

PROPOSITION 5 (Sufficient conditions for the (6, {en))-boundedness condi- 
tion). 

(i) If {cn) satisfies the condition C (r , 6) and, for each n, k, E (c:=, qnnj)6, < 
k 

$ E ("&= then the condition 

(31) 
n + m  

implies (30). 
(iif If a,, 1q2, . . . are i.i.d. random variables with distribution belonging to 

the domain of attraction of the a-stable distribution, then (31) holds with 
C, = nliah(n), where h(n) slowiy varies at infinity, and with any 6 such that 
. 1 < 6 < t x < 2 .  

(iii) If for each n 2 1, {qnt, k 2 1) is a sequence of i.i.d. random variables 
with sup,E Iqn,ll* < cc for some 6, 1 < a < 6 < 2, then {v,,~, k 3 1, n 2 1) satis- 
fies the (6, {c,))-boundedness condition with c, = nl/' h (n), where h (n) slowly 
varies at infinity. 

(v)  If q k  k B 1, n 1) is a martingale difference array with 
Var (qn,k) = d, SUP, an < a3 and c, = n1I2 h (n), where h (n) slowly uaries at inJinity, 
then {q,,k, k 2 1, n B 1) satisfies the (6, {c,))-boundedness condition with 8 = 2. 

P r o  of. The proof of case (i) is obvious. The proof of case (ii) follows from 
Kwapieri and Woyczyliski (1992), p. 36. To prove case (iii) notice that from 
point 30 in Petrov (1975), p. 98, we get the folIowing inequalities: 

This and a < 6 imply the assertion of point (iii). 
The proof of case (iv) is an immediate consequence of the identity 

This completes the proof of the proposition. H 
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To verify condition (i) of Proposition 5 one can take advantage of the 
concept of majorization of the distributions of q,,,, n 2 1, by the distribution 
of 9. We shall demonstrate how this approach works in the context of convex 
ordering <,, introduced in Section 2. Recall that if q and 9 are random variables 
with finite expectations and with distribution functions G and F, respectively, 
then we write q <,9 and G < , F ,  if E(q-x ) ,  < E ( 9 - x ) ,  for all x, where 
( x ) ,  = max (0, x). A convenient suiXcient condition for q <, 9 is the so-called cut 
criterion; random variables q and 9 with finite expectations are said to satisfy the 
cut criterion of Kurlin and Nouiko#(see Stoyan (1983), p. 12) if Eg 6 E9 and if 
there exists an xo < m such that the following inequalities hold: G (x)  < F (x) for 
all x < x,, and Gtx)  2 F ( x )  for all x 2 x,. I f  q and 9 satisfy the cut criterion, 
then q <,9, i.e. G d, F (see Proposition 1.5.1 in Stoyan (1983), p. 13). 

Summarizing the above discussion we get the following results: 

PROPOSITION 6. Let (9,, k 2 1)  and {q,,k, k 3 I), n 2 1, be sequences of 
i.i.d. random variables with expectations zero and qnSl d for all n 2 1. I f  the 
sequence (gk, k 2 1)  satisfies condition (31), then the away ( u ~ , ~ ,  k 3 1, n 2 1) 
satisfies the (6, (c,))-boundedness condition. 

Proof.  The proposition follows immediately from the fact that the con- 
vex ordering <, is closed with respect to the operation of convolution of 
distributions, and from Proposition 5 (i). H 

PROWSITION 7. Let, for each n 2 1, { v ~ , ~ ,  k 2 1) be chain-dependent with 
respect to irreducible stationary Markov chain {J, , , ,  k 2 0) with stationary dis- 
tribution x,  = (7~,,~, x , , ~ ,  . . ., nn,J, and distribution functions G,,l, GnTz,  . . ., Gn,m 
with expectation zero. Furthemore, let Gi, 1 < i < m, be the distribution func- 
tions of the centered (zero-mean) Pareto distributions with parameters ( y i ,  a), 
1 6 i < m, 1 < a < 2, respectively, such that 

G G i  for all n 2 1 ,  l $ i < m .  

Then the array ( v , , ~ ,  k 2 1, n 2 1) satisjies the ( 6 ,  (c,))-boundedness condition 
with c, = nl/" and any 6, 1 < 6 < a. 

Proof.  Let j 2 1, 1 < i < wa) be an array of mutually independent 
random variables such that the distribution function Gi of 9"i,j is a Pareto 
distribution with parameters ( y i ,  u). Since eil ( x )  2 e i 2 ( x )  whenever yil < yi2 
(stochastic ordering &,,- <,&2:j) and since stochastic ordering of distribution 
functions is closed under the~r convolution, we have - - 

Gil * Gi2 * . . . * Gin (x) 3 &' ( x )  for all X ,  

where G" is a Pareto distribution function with parameter ( y ,  a), where 
y = rnaxlQiQ,yi. Hence 

where &, &, . . . are i.i.d. random variables with distribution function G". 
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Now, let 3i,j = giVj - E $ ~ , ~ ,  9j = g j - ~ g j ,  let Gi be the distribution function 
of 9i,j, and G the distribution function of aj .  Then 

Now, notice that 

(33) B (  ~ n , j ) 6 ,  = E((  ~ n , j y +  l ~ n , O  = i ~ ,  ~ n , l  = il, --, J ~ , = - I  = i n - 1 )  
j= 1 i , .  - 1  j =  1 

x P ( J , ~ ~ = ~ ~ ,  J,,l = i l ,  ..., J,,n-l =inVl). 

Since random variables qn,2, .. ., q,,, are conditionally independent, given 
the condition {Jn,o = io, J, , l  = il, . . ., J ,,,- = 1,-  in view of the inequality 
GnSi <, Gi, (32), and (331, we get 

~ ( i  q n , j r +  G ~ ( i  gij-i.jr+p(~n,~ = h, J,,I = il, -.., J n , n - I  = in-11 
j= 1 i , i , . .  i j= l 

Since the Pareto distribution belongs to the domain of attraction of the a-stable 
distribution, we get 

which concludes the proof of the proposition. rn 

The above idea of majorization can be refined to yield the following 

Pnows~no~ 8. Let processes Xn (t) = (llc,,) xFlv,,j, t > 0, n > 1, and nor- 
malizing constants c, be such that X ,  % X and c,,/c, -+ zl/", 1 < CY < 2, for an 
integer constant z > 1. Furthermore, let for any positive x > 1 the following 
conditions be satisfied: 

lirn sup (sup0 6 t 6 1 ( C I I / ~ ~ + ~  X~ (tzk) > < 00, 
k + m  

lim sup P(su~o6t6 l  Xn(t) > xk) < a ,  
k + m  P ( s u ~ ~ < ~ ~ ~ X ( ~ )  > xk) 

and 

lirnsupzk,P( sup X(t) > 7:) < a 
k+m O C t C l  

for some T~ > 1 and zo = zzl > 1, where zl < z-'Ia. Then the array (T,,,~, k 2 1, 
n > 1)  satisfies condition (28). 
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P r o  of. Let no be an integer such that c,/c,, 3 z, for n 2 no. Then 
co/cn+ 2 Z: for n 2 no,  and 

P( sup x n ( t )  > r7 = P (  sup -Xn(tzk) cn > 't - 
O S t < r k  O S t S l  Cnzk C n ~ k  

i C n d B  sup -x,(tsk)>z; . 
O S t G l  cn+ ) 

This and the assumptions of the proposition give the following inequality: 

lim sup T$ P ( SUP X, (t) > zk) < lim sup 
k-'m O d t S r k  k-r  m 

x lim sup P ( s u ~ 0 4 t X f i ( t )  > ~ b ) . ~ ~ ~ ~ ~ ~ t , ~ (  sup X(1) , rg < 
k ' ~  P B ( S U ~ ~ ~ ~ < ~ X ( ~ )  > z;) k + m  O < t < l  

This concludes the proof of the proposition, s 

5. PROOFS 

Proof  of Theorem 1 a n d  Coro l l a ry  1. The conditions of Theo- 
rem 1, Proposition 4 (iii), and Proposition 3 imply tightness of ((l/c,) w,]. This, 
jointly with the convergence X, 3 X, P,, -+ P and the Heavy Traffic Invariance 
Principle, gives the first assertion of the theorem. 

The assertion dealing with the form of the distribution of M in the case of 
a spectrally negative X follows from the fact that X (t)-Pt is also a spectrally 
negative Lkvy process and X (t) -fit -+ - co a.s., as t -+ co, because 
P+  b(r ,  v)-b, > 0. This, together with Proposition 5 (b) in Bingham (1975), 
implies that M has an exponential distribution with parameter I, which is the 
largest root of the equation $ ( A )  = 0. As a matter of fact, there are only two 
roots and one of them is zero. Thus A is the positive root of the equation 
$ (A) = 0. 

The form of I in the spectrally negative stable case follows from the special 
form of t) (u) in that case. More precisely, since v ( -  a, x) = y for x < 0, 
we have 
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The last equality follows by Proposition 3 which asserts that, for a stable 
negative spectral case, b, = b(r ,  v). To find the positive root A of the equation 
$(u) = 0 we need to solve the following equation: 

But 

Hence 

which gives assertion (i). 
To prove part (ii) we apply Theorem 4 in Szczotka and Woyczynski (2003), 

where the U v y  process X ( t)  - Pt has characteristic exponent $, (u). In our 
situation X (t) - fit has characteristic exponent $,, -,,, (u). Therefore, using the 
above-mentioned result with b(r) = b,, we get assertion [ii). 

Assertion (iii) follows from Theorem 8 in Szczotka and Woyczyhski (2003). 
This completes the proof of the theorem. ra 

Proof  of t h e  Decomposi t ion  Theorem. Notice the following equa- 
lities : 

= os t cm  sup (("n,lK(t)-(l-p)B.[I) C, 

Hence 

and 

(35) 
1 
- w n 2  sup fo ranyc>O.  
Cn ObtSc  

Let us consider case (i). Then, for sufficiently large n, we have c,, < c,,, so 
that, in view of (34), we get the following inequalities: 
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The tightness of { ( l / c , , , )  w;") and { ( 1 / c n Y 2 )  o:')) yields the tightness of 
{ ( l / c n )  con). Moreover, 

C n , z  1  -- w:~' 4 0, 
Cn Cn,z  

since c,,,/c, + 0 and 

because of the Heavy Traffic Invariance Principle. Hence, for any 0 < p < 1 -- 

and any x > 0, being a continuity point of the distribution of 
supo, , (V  ( t )  - (1 Pt), we have the inequality 

( ~ ( t ) - ( 1 - p ) P t )  > x), 
n+ co 

which, since the left-hand side is independent of p, implies that 

(37) (V ( t )  - / I t )  > x). 
a-t  m 

Now, by (35), we have 

Taking the limit liminf,,,, on both sides of the above inequality, using the 
convergences V, f?, ( t )  -, bt, and ( C , , ~ / C , )  supo I Un ( t ) l 3  0, and then ap- 
plying the Continuous Mapping Theorem (see Theorem 5.1 in [ I ] )  we get the 
following inequalities : 

lim infP - on > x 2 lirn inf P sup ( t )  - #?. ( t )  +% sup Un ( t )  > x  
A- m ( ) n+m (o s tdc (  C ,  O < t < c  ) ) 

2 P ( sup (V ( t)  - Pt) > x ) .  
O d r d c  

Since the left-hand side above does not depend on c, we get 

liminfP -w,> x 2 P( sup ( V ( t ) - P t )  > x ) ,  
n +  m ( ) 0.t.m 

which, together with (37), gives the convergence 

1 
- w , 3  sup ( v ( t ) - p t ) .  
Cn O G t S r n  
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To prove case (ii), where c,,,/c, + 0, notice that the role of and U ,  is 
symmetric so that we can proceed here as in case (i). Thus the proof of the 
theorem is complete. a 

P roo f  of Coro l l a ry  3. Since the array (-(l/c,)(u,,-,-ii,), k 3 1, 
n 2 I), with cn = e , ,~  = pa1/" k(n), satisfies the conditions of Corollary 7 from Sec- 
tion 4.1 (Prokhorov's result) with stable, spectrally negative, spectral measure v, 

9 v = (-a, X) = yl IXI-~, x < 0, we have U,  + U, where U is a spectrally nega- 
tive Lkvy process with spectral measure v. Hence, also {sup, ., <, I Un (t)l, n 2 1) is 
tight for each c > 0. 

By assumption (ii) of Corollary 3 the array (?L?i) satisfies the (6, {c,))- 
boundedness condition with 1 < 8 < a and c, = c,,, , which, in view of Propo- 
sition 4 (ii), implies that {rj$:i] satisfies condition (28) in Proposition 3 and that, 
in turn, implies that { ( l /~ , , , ) o~~) )  is tight. 

On the other hand, applying Proposition 5 (iii) to the sequence {qktL) in 
case (a) of Corollary 3 we infer that it satisfies the (6, {c,))-boundedness con- 
dition with 6 = E ,  1 < a < E < 2, and c, = cnvl = nile h(n), which, in view of 
Proposition 4, implies that {qfA} satisfies condition (28) of Proposition 3 and 
that, in turn, implies that {(l/~,,,)o$~)) is tight in case (a). 

Similarly, applying Proposition 5 (iv) to the sequence {rjifL) in case (b) of 
Corollary 3 we infer that it satisfies the (6, {c,))-boundedness condition with 
6 = 2, e, = c,,, = d l 2 ,  which, by Proposition 4, implies that it satisfies con- 
dition (28) of Proposition 3 and that, in turn, implies that {(l/c,,,) mi1)) is tight 
in case (b). 

Notice that, by Remark 1, the sequence {sup, d e  I K (111, n 2 1) is tight for 
each c > 0, in both cases (a) and (b). 

Now, using the Decomposition Theorem in case (ii), we get the assertion of 
the corollary, which completes the proof. 

P roo f  of C o r  o 11 a r y 4. Since the array {qjl:j) satisfies the conditions of 
Corollary 8 with stable, spectrally negative, spectral measure v ,  v = C;=, xi vi, 
we have Un 5 U, where U is a spectrally negative LCvy process with spectral 
measure v. Hence, also {~up,,~,,[U,(t)l] is tight for each c > 0. 

From Proposition 7 it follows that the array {yfj) satisfies the 
(6,  {en))-boundedness condition with c, = c,,~ = pa1/" and 1 < 6 < ol, which, in 
turn, by Proposition 4 (iii), and then by Proposition 3, gives tightness of 
{(licn,,) ~ $ ~ ) 1 .  

Tightness of the sequence {(l/c,,,) oL1)) in cases (a) and (b) is shown in the 
proof of Corollary 3, where a proof of tightness of { s ~ p ~ , , ~ ,  IT/,(t)l, n 3 I), for 
each c > 0, is also given. Tightness of {(l/c,,,) cr)L1)) in case (c) follows from Re- 
mark 3 in [14], which provides sufEcient conditions for tightness of {(l/e,,,) mi1)) 
under +-mixing conditions. Also tightness of { ~ u p , , , ~ , ~ ~ ( t ) l ,  n 2 11, for each 
c > 0, follows from [14]. 

Using the Decomposition Theorem in case (i) completes the proof of the 
corollary. 
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Proof of Corol la ry  5. Since the role of V,, and U ,  is symmetric, the 
proof of the corollary is similar to the proof of Corollary 3 with u, ,~ and 
v . , ~  interchanged. w 

Pro  of of C o r  o 11 a r y 6. With obvious adjustments, the proof follows 
the lines of the proof of Corollary 4, and is thus omitted. r 
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