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LAW OF THE ITERATED LOGARITHM 
FOR SUBSEQUENCES OF PARTIAL SUMS 

WHICH ARE IN THE DOMAIN OF PARTIAL ATTRACTION 
OF A SEMISTABLE LAW 

GOOTY D I V A N  J I * (Annrs Amm) 

Abstract. Let (X,, n 2 1) be a sequence of independent identical- 
ly distributed random variables with a common distribution function 
F and let S,, = xy=,Xj,  n 2 1. When F belongs to the domain of 
partial attraction of a semistable law with index a, 0 < ti < 2, Chover's 
form of the law of the iterated logarithm has been obtained for sub- 
sequences of (SJ, along with some boundary crossing problems. 
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1. INTRODUCTION 

Let ( X , ,  n 2- l] be a sequence of independent identically distributed 
(i.i.d.) random variables (r.v.'s) with common distribution function (d.f.) F. Set 
Sn = z = , X j y  n 2 1. Let (nky k > 1) be a strictly increasing subsequence of 
positive integers such that nk+,/nk + r (r 2 I) as k + ao. Kruglov (1972) has 
established that if there exist sequences (ak) and (bk) of real constants, bk + rn as 
k + oo, such that 

at all continuity points x of Gay then G, is necessarily a semistable d.f. with 
characteristic exponent a, 0 < or < 2. Here F is said to belong to the domain of 
partial attraction of u semistable distribution G,  and the same is written as 
F E D P ( E ) ,  0 0 < < 2 .  
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We assume that ak = 0 in (1). When ol < 1, ak can always be chosen to be 
zero. When a > 1, a, becomes nkEX1. Here one can make a, = 0 by shifting 
E X ,  to zero. Consequently, the condition a, = 0 is no condition at all when 
a # 1, 0 < a < 2. However, when a = 1, this assumption restricts only to sym- 
metric d.f.'s F E DP (1). 

When EX: < co, Gut (1986) established the classical law of iterated loga- 
rithm (EIL) for geometrically fast increasing subsequences of (53. In fact, he 
showed that 

S"k f as. if Lim sup (nk+ ,/n,) < ao , 
Lim sup J- = { k-r cm 

k+ ank loglog n k  E* a.s. if Lim inf (nk , ,/n,) > 1, 
k-'m 

where E* = inf {E > 0: xr=l ( lc~gn, ) -~*~~ < co). T o ~ ~ h g  (1987) extended the same 
to random subsequences. Observe that? when n, = 2"*.'k, then E* = 0, and we have 

That is, for such cases the norming sequence J2nk log log nk will not be precise 
enough to give an almost sure bound for (Sn,J. In general, whenever 
nk+,/nk 4 GO as k + a, Schwabe and Gut (1996) have pointed out that 
,,/- is no longer the proper normalizing sequence and it has to be 
replaced by ,/-. 

When n, = n, Chover (1966) observed that in the case of stable r.v.'s LIL 
involving Lim sup cannot be obtained under linear normalization and that it is 
possible under power normalization only. In fact, when Xn's are i.i.d. symmetric 
stable r.v.'s, Chover (1966) established the LIL for (SJ by normalizing in the 
power. This means that 

Later Vasudeva (1984) proved the same for F E  DA (a), 0 < CI < 2, and Divanji 
and Vasudeva (1989) extended the same to the case of F €DP(a) ,  0 < a < 2. 

Observations made by Gut (1986) and Schwabe and Gut (1996) motivated 
us to examine whether Chover's form of LIL for (S:,), when FEDP(M) ,  
0 < a <  2, can be obtained. We answer in the affirmatwe. 

In the sequel, we use the following known facts. This can be referred to 
Divanji and Vasudeva (1989). 

LEMMA 1. Let F E  DP (a), 0 < a < 2. Then there exists a slowly varying 
function L and a function 0 bounded in between two constants b,, bz, 
0 < bl < bz < co, such that 

~ " ( 1 - F ( x ) + F ( - X I )  
Lim = 1. 
x+m L (4 0 (4 
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LEMMA 2. Let F €DP(a) ,  0 < a < 2, and let B, be the smallest root of the 
equation n(l - F  (x) +F(-x)) = 1. Then B, = n1la 1 (n) q (n), where I is ahnetion 
slowly varying at co and q is bounded in between two positive consbants. 

LEMMA 3. Let L be any slowly varying function and let (x,) and (y,) be 
sequences of real constants tending to m as n -, a. Then, for any 6 > 0, 

L (x~Y") Lim y: - - (xn ~ n )  
- 0. - m  and Lirn~~-~-- 

n+ rn L (x,) n+co L(x,) 

The lemma follows from Karamata's representation of a slowly varying 
function (see Seneta (1976)). 

In the next section we present our main results, and in the last section we 
discuss some boundary crossing problems. In the sequel, i.o., as. and S.V. mean 
"infinitely often", "almost surely" and "slowly varying", respectively. C ,  E, k 
and n, with or without a superscript or subscript, denote positive constants 
with k and n corhned to be integers, 

2. MAIN RESkTLTS 

THEOREM 1. Let P€DP(u), 0 < u < 2. Let (n,) be an integer subsequence 
suck that 

(2) 

Then 

Lim inf (nk + l/nk) > 1. 
k-r  m 

(3) Lim sup (S,k/Bn,)lI'Og'Ognk = ee*ja a.~., 
k- m 

where E* = inf {cl > 0: zkm=l (10gn~)~~l  < co). 

Proof. To prove the assertion, it suffices to show that, for any E ,  ~ ( 0 ,  E*) ,  

and 

(5)  P (Snk 2 Bn, (log nk)(e'-el)ia i.0.) = 1. 

To prove (4), let 

Ah = (Snk 2 Bnk (log nk)(e*+el)ia) and x,, = B,, flog nk)(E*-el)ia. 

By the theorem in Heyde (1967), one can find a C, and a k, such that, for all 
k 2 kl, 
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Using Lemma 1, one can find a kz  (2 k l )  such that for all k 3 k2 

P (Akl G C2 nk x,iP L I x . ~ )  8 ( ~ " ~ 1  = C2 nk 
L (Bn,) 0 (Bn,) -- L (xnJ 6 (xn,) 
B:, flog n,)"'€ L ( 3 n J  0 (BnJ' 

Applying Lemma 3 with 8 = ~ / 2  and using the boundedness of 0, one can find 
a k3 ( 2  k2)  such that, for all k (3  k,), P (Ak)  6 C 3  (log nk)-(E*+ei21 for some 
C3 > 0. Consequently, xkm';O=,P(Ak) < m and (4) follows from the Borel-Can- 
teHi lemma. 

To establish (5) we first assume that E* > 0. The case of e* = 0 will be 
considered later. Use the relation S,, = Sn, - S , , - ,  + Sn,-, , k 3 1, and define, 
for large k, 

where f l >  I and 6 > 0. In order to establish (5) it is enough to show that, for 
&f ( 0 ,  &*I, 
(7) P (SnN - s,,- 3 2Bbk (log n,)(e"'-ey" i.0,) = 1 

and 

(8)  P (snm, -, 2 Bnmk (log n,,)'" -'"" i. 0.) = 0 .  

Define 

z,=B,(logn)("-"1" and D k = S n m k - S  >znmk, k B I .  

d - Note that Snmk-Snmk- l- Sfimk-nmk_, k > 1. Hence, by the theorem in Heyde 
(1967), one can find a k4 such that, for all k (2 k4), 

Since Lim in&,, (nk+ ,Ink) > 1 implies that there exists A < 1 such that 
n,-,/n,, < A <  1 for all k B  k4, 

P (Dk)  2 C 5  nmk P ( X  2 2znm3 for some C ,  > 0 .  

Now, following the steps similar to those used to get an upper bound of 
P(Ak) ,  one can find a k5 such that, for all k (2 k5) ,  

P (Dk) 3 C 6  (log nk)-(e*-elz) for some C 6  > 0. 

Hence z:=k5 P(D, )  = m. In view of the fact that D i s  are mutually independent, 
applying the Borel-Cantelli Iemma we establish (7). Observe that 
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Again, by Heyde (1967), one can find a k, such that, for all k 2 k, ,  

Again following the steps similar to those used to get an upper bound of 
P(Ak), one can find a k7 such that, for all k (2  k, ) ,  

nmr - 1 1 P (S ,,,-, 3 B,,, (log nmk)(E*-qlia) G C7 - (log 19 - 3t12 - 
nrnk mk 

By (6) we infer that n,, 2 f l ' k - i ) d  implies n,,,, 3 flkd  2 nmk, and since 
Lim in&,, (nk + l/nk) > 1, there exists I > 1 such that nk+ 2 Ink. Therefore, 

where ill = A-l . Hence 

and 

Therefore P (S .,*_, 2 Bnmk (log nmJ'e-')tQ i.0.) = 0, which implies (5), follows 
from (7) and (8). Thus the proof of the theorem is completed. 

THEOREM 2. Let F E D P  (a), 0 < a <  2. Let (nk) be an integer subsequence 
such that 

(9) Lim sup (nk + < rn . 
k+m 

Then 

Lim sup (Snk/BnJ1llOglognk = elia a.s. 
k+ sr 

Proof .  Proceeding as in Theorem 1, it is enough to show that, for any 
E l  E (0, 11, 

(10) P(Snk 2 8,, (lognk)(l i.0.) = 0 

and 

(11) P (Snk 2 Bnk (log nk)(l i.0.) = 1 .  

One can notice that (10) is a consequence of the theorem of Divanji and 
Vasudeva (1989), i.e,, 

15 - PAMS 24.2 



From (9) we see that the sequences are at most geometrically increasing, 
which implies that there exists 0 > 1 such that 

Now define 

where M is chosen such that 8/M < 1. Proceeding as in Gut (1986) one can 
show that Mf < n,, < OM-' and 1/dM < n,,-,/n, < B/M < 1. Consequently, 
(n,,) satisfies the condition Lim supj+, (rip,- ,/n,,) < 1 of Theorem 1 and also the 
relation x;= (log nV,)-" < m holds for dl sl > 1 (i.e. a* = 1). Now (11) follows 
from Theorem 1, Hence the proof of the theorem is completed. 

Remark. The results by Schwabe and Gut (1996) for E* = 0 motivated us 
to examine whether Chover's form of LIL for (S,,) can be obtained for these 
rapidly increasing subsequences. Interestingly, we answer the question in the 
following theorem. Note that nk+,/nk + as k + co comes under the class of 
at least geometrically increasing subsequences. 

THEOREM 3. Let F E D P  (a), 0 < a < 2. Let (nk) be an integer subsequence 
such that 

(14) 

Then 

Lim (nk+ Jnk) = a. 
k +  m 

Lim sup (S,JB,)l/lOgk = el/" a.s. 
k+ m 

Proof. To prove the assertion it sufEces to show that there exists e ,  
0 < E < 1, such that 

and 

(16) 

To prove (1 5), let Ek = (S,, >, B,, k(' +")Ia) and y, = B,, k(' +")l". By the the- 
orem in Heyde (1967), one can find a Cg and a k ,  such that, for a11 k 2 k8, 

Using Lemma 1, one can find a kg (2 kg)  such, that, for all k 2 k,, 
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Applying Lemma 3 with 6 = &/2 and using the boundedness of By one can find 
a k,, (2 kg)  such that, for all k ( 3  klo), P (Ek)  < C9 k-(1+"t21 for some Cg > 0. 
Consequently, E k , o P ( E k )  c m and (15) follows from the Borel-Cantelli lemma, 

To prove (16) d e h e  for large k 

(17) mk = min 0: nj 3 f l k - ' l ' ] ,  

where p > 1 and S > 0, and use the relation S,, = S,, - S, ,_ ,  + S, , - ,  , k 2 1 .  We 
are going to show that, for any E E ( O ,  I), 

(18) p (Sn,,- s n , ,  , 2 2Bnmk k(' i.0.) = 1 

and 

d - Note that Snmk -SnmL-l- Sn,,-nm,-,~ k 3 1 .  Define z, = Bnmk k(l -'Iia and & = 
(S , ,k-nmk-l)  3 2zk, k 2 1. Hence, by the theorem in Heyde (1967), one can find 
a k,, such that, for all k (2 k l l ) ,  

Since (14) is at least geometrically fast, there exists 1 < 1 such that 

(20) n m k  1 for all k & k l l ,  

and, consequently, P (T,) 2 C l o  n,, P ( X  2 2zn,;). 
Now, following the steps similar to those used to get an upper bound of 

P(Ak), one can find a klz  such that, for all k ( 2  kI2), P ( G )  2 Cll k-(1-e12)  for 
some C l l  > 0. Hence x:=k12 P(n = m. In view of the fact that c s  are mutu- 
ally independent, applying the Borel-Cantelli lemma we establish (18). Observe 
that 

Using Lemma 2 and (20), we get Bn, JBnmk_, x C13  for some C13  > 0. Again by 
Heyde (1967), one can find some C I 4  > 0 and k13 such that, for all k 2 k13, 

Again following the steps similar to those used to get (€9, we can find 
a k14 such that, for all k ( 2  k14), 

m 1 
P(sn,,,.- I 2 'nm -"") $ ' 1 4  kal kl-3,Z < a. 

k = k u  0 



By (6) we infer that n,, 2 f l ( k - l ) d  implies n,,,,, , 2 pk6 3 n,,, and since 
Lim,,, (nk+ ,/nk) < 1, there exists 11 > 1 such that nk+ 2 Ank. Therefore, 

n  .,,, > f l k a > n m k 2 1 n m k L l - A n m k I  < f i k d * n , ,  < ~ - ' B ~ ~ = J I ~ ' .  
where A ,  = AL1. Hence 

Hence 

and consequently (16) follows from (18) and (19). The proof of the theorem is 
completed. 

3. BOUNDARY CROSSING PROBLEMS 

Here we study some boundary crossing random variables related to Theo- 
rems 1 and 2. Define, for any E > 0, 

1 if S,, 2 B,, (log p.r,)(*-"/", 
Kk (4 = 

0 otherwise, 

where 

E* if (ak)  is at Ieast geometrically fast, 

1 if (nk) is at most geometrically fast, 

and 

Let, for any E > 0 ,  N,,(E) be a partial sum sequence of TT,,(&), i.e., 

Observe that, by ( l o ) ,  N ,  (E)  is a proper random variable. We study this 
problem as corollaries to Theorems 1, 2 and 3. Here we show that all the 
moments in 0 < 1 6 1 are finite for N ,  (E ) .  This proper random variable N ,  (8)  

was studied by various authors; see e.g. Slivka (1969) and SIivka and Savero 
(1970). 

COROLLARY 1. Let F E DP (a), 0 < a < 2. Let (nk, k 2 1) be an increasing 
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subsequence of positive integers. Then for E > 0 and for any 1, 0 < K < 1, 
m 

EN; < co if C ni- l P (Snk > B,, (log nk)@ + """) m . 
k = l  

Proof. First we show that, for I = 1, E N ,  ( E )  < oo, and then claim that 
the existence of lower moments follows from that of the higher moments. 
Observe that 

Following similar steps of the proof of (3), we can find some constant C1 > 0 
and some kl > 0 such that, for all k P k l ,  

To show this we use the definition 

8 = {  
E* if (nA) is at least geometrically fast, 

1 if (n,) is at most geometrically fast, 

and then the proof of (4) and (10). Consequently, E N ,  ( E )  < cc for = 1, and 
therefore EN: < m for I < 1. Thus the proof of the corollary is completed. 

COROLLARY 2. Let F E D P  (a), 0 < a < 2. Let {nk, k 2 1 )  be an increasing 
subsequence of positive integers. Then for E > 0 and for any I ,  0 < A < 1, 

Proof.  First we show that, for R = I, EN,(&) < ao, and then claim that 
the existence of lower moments follows from that of the higher moments. 
Observe that 

m 

E N ,  ( E )  = P(Snk > B,, k(l+E1iu). 
k =  1  

Following similar steps of the proof of (IS), we can find some constant C1 > 0 
and some kl > 0 such that, for all k 2 k l ,  

Consequently, EN, ( E )  < o~ for R = 1, and therefore EN: < oo for I < 1. Thus 
the proof of the corollary is completed. 
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