LAW OF THE ITERATED LOGARITHM
 FOR SUBSEQUENCES OF PARTIAL SUMS WHICH ARE IN THE DOMAIN OF PARTIAL ATTRACTION OF A SEMISTABLE LAW

BY

GOOTY DIVANJI* (Addis Ababa)

Abstract

Let ($X_{n}, n \geqslant 1$) be a sequence of independent identically distributed random variables with a common distribution function F and let $S_{n}=\sum_{j=1}^{n} X_{j}, n \geqslant 1$. When F belongs to the domain of partial attraction of a semistable law with index $\alpha, 0<\alpha<2$, Chover's form of the law of the iterated logarithm has been obtained for subsequences of $\left(S_{n}\right)$, along with some boundary crossing problems.

2000 MSC Subject Classification: 60F15.
Key words and phrases: Law of iterated logarithm; subsequences; domain of partial attraction; semistable law.

1. INTRODUCTION

Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent identically distributed (i.i.d.) random variables (r.v.'s) with common distribution function (d.f.) F. Set $S_{n}=\sum_{j=1}^{n} X_{j}, n \geqslant 1$. Let ($n_{k}, k \geqslant 1$) be a strictly increasing subsequence of positive integers such that $n_{k+1} / n_{k} \rightarrow r(r \geqslant 1)$ as $k \rightarrow \infty$. Kruglov (1972) has established that if there exist sequences $\left(a_{k}\right)$ and $\left(b_{k}\right)$ of real constants, $b_{k} \rightarrow \infty$ as $k \rightarrow \infty$, such that

$$
\begin{equation*}
\operatorname{Lim}_{k \rightarrow \infty} P\left(\frac{S_{n_{k}}}{b_{k}}-a_{k} \leqslant x\right)=G_{\alpha}(x) \tag{1}
\end{equation*}
$$

at all continuity points x of G_{α}, then G_{α} is necessarily a semistable d.f. with characteristic exponent $\alpha, 0<\alpha \leqslant 2$. Here F is said to belong to the domain of partial attraction of a semistable distribution G_{α} and the same is written as $F \in D P(\alpha), 0<\alpha \leqslant 2$.

[^0]We assume that $a_{k}=0$ in (1). When $\alpha<1, a_{k}$ can always be chosen to be zero. When $\alpha>1, a_{k}$ becomes $n_{k} E X_{1}$. Here one can make $a_{k}=0$ by shifting $E X_{1}$ to zero. Consequently, the condition $a_{k}=0$ is no condition at all when $\alpha \neq 1,0<\alpha<2$. However, when $\alpha=1$, this assumption restricts only to symmetric d.f.'s $F \in D P(1)$.

When $E X_{n}^{2}<\infty$, Gut (1986) established the classical law of iterated logarithm (LIL) for geometrically fast increasing subsequences of $\left(S_{n}\right)$. In fact, he showed that

$$
\underset{k \rightarrow \infty}{\operatorname{Limsup}} \frac{S_{n_{k}}}{\sqrt{2 n_{k} \log \log n_{k}}}= \begin{cases}1 \text { a.s. } & \text { if } \operatorname{Limsup}_{k \rightarrow \infty}\left(n_{k+1} / n_{k}\right)<\infty, \\ \varepsilon^{*} \text { a.s. } & \text { if } \underset{k \rightarrow \infty}{\operatorname{Liminf}}\left(n_{k+1} / n_{k}\right)>1,\end{cases}
$$

where $\varepsilon^{*}=\inf \left\{\varepsilon>0: \sum_{k=1}^{\infty}\left(\log n_{k}\right)^{-\varepsilon^{2} / 2}<\infty\right\}$. Torrång (1987) extended the same to random subsequences. Observe that, when $n_{k}=2^{2 \cdot \cdot k}$, then $\varepsilon^{*}=0$, and we have

$$
\operatorname{Limsup}_{k \rightarrow \infty} \frac{S_{n_{k}}}{\sqrt{2 n_{k} \log \log n_{k}}}=0 \text { a.s. }
$$

That is, for such cases the norming sequence $\sqrt{2 n_{k} \log \log n_{k}}$ will not be precise enough to give an almost sure bound for $\left(S_{n_{k}}\right)$. In general, whenever $n_{k+1} / n_{k} \rightarrow \infty$ as $k \rightarrow \infty$, Schwabe and Gut (1996) have pointed out that $\sqrt{2 n_{k} \log \log n_{k}}$ is no longer the proper normalizing sequence and it has to be replaced by $\sqrt{2 n_{k} \log k}$.

When $n_{k}=n$, Chover (1966) observed that in the case of stable r.v.'s LIL involving Lim sup cannot be obtained under linear normalization and that it is possible under power normalization only. In fact, when X_{n} 's are i.i.d. symmetric stable r.v.'s, Chover (1966) established the LIL for $\left(S_{n}\right)$ by normalizing in the power. This means that

$$
\underset{n \rightarrow \infty}{\operatorname{Limsup}}\left|S_{n} / n^{1 / \alpha}\right|^{1 /(\log \log n)}=e^{1 / \alpha} \text { a.s. }
$$

Later Vasudeva (1984) proved the same for $F \in D A(\alpha), 0<\alpha<2$, and Divanji and Vasudeva (1989) extended the same to the case of $F \in D P(\alpha), 0<\alpha<2$.

Observations made by Gut (1986) and Schwabe and Gut (1996) motivated us to examine whether Chover's form of LIL for ($S_{n_{k}}$), when $F \in D P(\alpha)$, $0<\alpha<2$, can be obtained. We answer in the affirmative.

In the sequel, we use the following known facts. This can be referred to Divanji and Vasudeva (1989).

Lemma 1. Let $F \in D P(\alpha), 0<\alpha<2$. Then there exists a slowly varying function L and a function θ bounded in between two constants b_{1}, b_{2}, $0<b_{1} \leqslant b_{2}<\infty$, such that

$$
\operatorname{Lim}_{x \rightarrow \infty} \frac{x^{\alpha}(1-F(x)+F(-x))}{L(x) \theta(x)}=1
$$

Lemma 2. Let $F \in D P(\alpha), 0<\alpha<2$, and let B_{n} be the smallest root of the equation $n(1-F(x)+F(-x))=1$. Then $B_{n}=n^{1 / \alpha} l(n) \eta(n)$, where l is a function slowly varying at ∞ and η is bounded in between two positive constants.

Lemma 3. Let L be any slowly varying function and let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of real constants tending to ∞ as $n \rightarrow \infty$. Then, for any $\delta>0$,

$$
\operatorname{Lim}_{n \rightarrow \infty} y_{n}^{\delta} \frac{L\left(x_{n} y_{n}\right)}{L\left(x_{n}\right)}=\infty \quad \text { and } \quad \operatorname{Lim}_{n \rightarrow \infty} y_{n}^{-\delta} \frac{L\left(x_{n} y_{n}\right)}{L\left(x_{n}\right)}=0
$$

The lemma follows from Karamata's representation of a slowly varying function (see Seneta (1976)).

In the next section we present our main results, and in the last section we discuss some boundary crossing problems. In the sequel, i.o., a.s. and s.v. mean "infinitely often", "almost surely" and "slowly varying", respectively. C, ε, k and n, with or without a superscript or subscript, denote positive constants with k and n confined to be integers.

2. MAIN RESULTS

Theorem 1. Let $F \in D P(\alpha), 0<\alpha<2$. Let $\left(n_{k}\right)$ be an integer subsequence such that

$$
\begin{equation*}
\underset{k \rightarrow \infty}{\operatorname{Liminf}}\left(n_{k+1} / n_{k}\right)>1 \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\underset{k \rightarrow \infty}{\operatorname{Limsup}}\left(S_{n_{k}} / B_{n_{k}}\right)^{1 / \log \log n_{k}}=e^{\varepsilon^{*} / \alpha} \text { a.s. } \tag{3}
\end{equation*}
$$

where $\varepsilon^{*}=\inf \left\{\varepsilon_{1}>0: \sum_{k=1}^{\infty}\left(\log n_{k}\right)^{-\varepsilon_{1}}<\infty\right\}$.
Proof. To prove the assertion, it suffices to show that, for any $\varepsilon_{1} \in\left(0, \varepsilon^{*}\right)$,

$$
\begin{equation*}
P\left(S_{n_{k}} \geqslant B_{n_{k}}\left(\log n_{k}\right)^{\left(\varepsilon^{*}+\varepsilon_{1}\right) / \alpha} \text { i.o. }\right)=0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(S_{n_{k}} \geqslant B_{n_{k}}\left(\log n_{k}\right)^{\left(\varepsilon^{*}-\varepsilon_{1}\right) / \alpha} \text { i.o. }\right)=1 . \tag{5}
\end{equation*}
$$

To prove (4), let

$$
A_{k}=\left\{S_{n_{k}} \geqslant B_{n_{k}}\left(\log n_{k}\right)^{\left(e^{*}+\varepsilon_{1}\right) / a}\right\} \quad \text { and } \quad x_{n_{k}}=B_{n_{k}}\left(\log n_{k}\right)^{\left(e^{*}-\varepsilon_{1}\right) / \alpha} .
$$

By the theorem in Heyde (1967), one can find a C_{2} and a k_{1} such that, for all $k \geqslant k_{1}$,

$$
P\left(A_{k}\right) \leqslant C_{2} n_{k} P\left(X \geqslant x_{n_{k}}\right)
$$

Using Lemma 1 , one can find a $k_{2}\left(\geqslant k_{1}\right)$ such that for all $k \geqslant k_{2}$

$$
P\left(A_{k}\right) \leqslant C_{2} n_{k} x_{n_{k}}^{-\alpha} L\left(x_{n_{k}}\right) \theta\left(x_{n_{k}}\right)=C_{2} n_{k} \frac{L\left(B_{n_{k}}\right) \theta\left(B_{n_{k}}\right)}{B_{n_{k}}^{\alpha}\left(\log n_{k}\right)^{\varepsilon^{*}+\varepsilon}} \frac{L\left(x_{n_{k}}\right)}{L\left(B_{n_{k}}\right)} \frac{\theta\left(x_{n_{k}}\right)}{\theta\left(B_{n_{k}}\right)} .
$$

Applying Lemma 3 with $\delta=\varepsilon / 2$ and using the boundedness of θ, one can find a $k_{3}\left(\geqslant k_{2}\right)$ such that, for all $k\left(\geqslant k_{3}\right), P\left(A_{k}\right) \leqslant C_{3}\left(\log n_{k}\right)^{-\left(\varepsilon^{*}+\varepsilon / 2\right)}$ for some $C_{3}>0$. Consequently, $\sum_{k=k_{3}}^{\infty} P\left(A_{k}\right)<\infty$ and (4) follows from the Borel-Cantelli lemma.

To establish (5) we first assume that $\varepsilon^{*}>0$. The case of $\varepsilon^{*}=0$ will be considered later. Use the relation $S_{n_{k}}=S_{n_{k}}-S_{n_{k-1}}+S_{n_{k-1}}, k \geqslant 1$, and define, for large k,

$$
\begin{equation*}
m_{k}=\min \left\{j: n_{j} \geqslant \beta^{(k-1)^{\delta}}\right\} \tag{6}
\end{equation*}
$$

where $\beta>1$ and $\delta>0$. In order to establish (5) it is enough to show that, for $\varepsilon \in\left(0, \varepsilon^{*}\right)$,

$$
\begin{equation*}
P\left(S_{n_{m_{k}}}-S_{n_{m_{k-1}}} \geqslant 2 B_{n_{m_{k}}}\left(\log n_{m_{k}}\left(\varepsilon^{\left(*^{*}-\varepsilon\right) / \alpha} \text { i.o. }\right)=1\right.\right. \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(S_{n_{m_{k-1}-1}} \geqslant B_{n_{m k}}\left(\log n_{m_{k}}\right)^{\left(\varepsilon^{*}-\varepsilon\right) / \alpha} \text { i.o. }\right)=0 . \tag{8}
\end{equation*}
$$

Define

$$
z_{n}=B_{n}(\log n)^{\left(\varepsilon^{*}-\varepsilon\right) / \alpha} \quad \text { and } \quad D_{k}=S_{n_{m_{k}}}-S_{n_{m_{k}-1}} \geqslant z_{n_{m_{k}}}, k \geqslant 1 .
$$

Note that $S_{n_{m_{k}}}-S_{n_{m k-1}} \stackrel{d}{=} S_{n_{m_{k}}-n_{m_{k}-1}}, k \geqslant 1$. Hence, by the theorem in Heyde (1967), one can find a k_{4} such that, for all k ($\geqslant k_{4}$),

$$
P\left(D_{k}\right) \geqslant C_{5}\left(n_{m_{k}}-n_{m_{k-1}}\right) P\left(X \geqslant 2 z_{n_{m_{k}}}\right)=C_{5} n_{m_{k}}\left(1-n_{m_{k-1}} / n_{m_{k}}\right) P\left(X \geqslant 2 z_{n_{m k}}\right) .
$$

Since $\operatorname{Liminf}_{k \rightarrow \infty}\left(n_{k+1} / n_{k}\right)>1$ implies that there exists $\lambda<1$ such that $n_{m_{k}-1} / n_{m_{k}}<\lambda<1$ for all $k \geqslant k_{4}$,

$$
P\left(D_{k}\right) \geqslant C_{5} n_{m_{k}} P\left(X \geqslant 2 z_{n_{m_{k}}}\right) \quad \text { for some } C_{5}>0 .
$$

Now, following the steps similar to those used to get an upper bound of $P\left(A_{k}\right)$, one can find a k_{5} such that, for all $k\left(\geqslant k_{5}\right)$,

$$
P\left(D_{k}\right) \geqslant C_{6}\left(\log n_{k}\right)^{-\left(\varepsilon^{*}-\varepsilon / 2\right)} \quad \text { for some } C_{6}>0 .
$$

Hence $\sum_{k=k_{s}}^{\infty} P\left(D_{k}\right)=\infty$. In view of the fact that D_{k} 's are mutually independent, applying the Borel-Cantelli lemma we establish (7). Observe that

$$
P\left(S_{n_{m_{k}-1}} \geqslant B_{n_{m_{k}}}\left(\log n_{m_{k}}\right)^{\left(\varepsilon^{*}-\varepsilon\right) / \alpha}\right)=\left(S_{n_{m_{k-1}}} \geqslant B_{n_{m_{k-1}}} \frac{B_{n_{m_{k}}}}{B_{n_{m_{k-1}}}}\left(\log n_{m_{k}}\right)^{\left(\varepsilon^{*}-\varepsilon\right) / \alpha}\right) .
$$

Again, by Heyde (1967), one can find a k_{6} such that, for all $k \geqslant k_{6}$,

$$
P\left(S_{n_{m_{k-1}-1}} \geqslant B_{n_{m_{k}}}\left(\log n_{m_{k}}\right)^{\left(\varepsilon \varepsilon^{*}-\varepsilon\right) / \alpha}\right) \leqslant C_{2} n_{m_{k-1}} P\left(X_{1} \geqslant B_{n_{m_{k}}}\left(\log n_{m_{k}}\right)^{\left(\varepsilon^{*}-\varepsilon\right) / \alpha}\right) .
$$

Again following the steps similar to those used to get an upper bound of $P\left(A_{k}\right)$, one can find a k_{7} such that, for all $k\left(\geqslant k_{7}\right)$,

$$
P\left(S_{n_{m k-1}} \geqslant B_{n_{m k}}\left(\log n_{m_{k}}\right)^{\left(\varepsilon^{*}-\varepsilon\right) / \alpha}\right) \leqslant C_{7} \frac{n_{m_{k-1}}}{n_{m_{k}}} \frac{1}{\left(\log n_{m_{k}} \varepsilon^{\varepsilon^{*}-3 \varepsilon / 2}\right.} .
$$

By (6) we infer that $n_{m_{k}} \geqslant \beta^{(k-1)^{\delta}}$ implies $n_{n_{k+1}} \geqslant \beta^{k^{\delta}} \geqslant n_{m_{k}}$, and since $\operatorname{Liminf}_{k \rightarrow \infty}\left(n_{k+1} / n_{k}\right)>1$, there exists $\lambda>1$ such that $n_{k+1} \geqslant \lambda n_{k}$. Therefore,

$$
n_{m_{k+1}} \geqslant \beta^{k^{\delta}} \geqslant n_{m_{k}} \geqslant \lambda n_{m_{k-1}} \Rightarrow \lambda n_{m_{k-1}} \leqslant \beta^{k^{\delta}} \Rightarrow n_{m_{k-1}} \leqslant \lambda^{-1} \beta^{k^{\delta}}=\lambda_{1} \beta^{k^{\delta}},
$$

where $\lambda_{1}=\lambda^{-1}$. Hence

$$
\frac{n_{m_{k-1}}}{n_{m_{k}}} \leqslant \frac{\lambda_{1} \beta^{k^{\delta}}}{\beta^{(k-1)^{\delta}}} \cong \frac{\lambda_{1}}{\beta^{\delta^{\delta}}}
$$

and

$$
\sum_{k=k_{5}}^{\infty} \frac{n_{m_{k-1}}}{n_{m_{k}}} \frac{1}{\left(\log n_{m_{k}}\right)^{\varepsilon^{*}-3 \varepsilon / 2}} \leqslant \lambda_{1} \sum_{k=k_{5}}^{\infty} \frac{1}{\beta^{k^{\delta_{1}}}\left(\log n_{m_{k}}\right)^{e^{*-3}-3 / 2}}<\infty .
$$

Therefore $P\left(S_{n_{m_{k-1}}} \geqslant B_{n_{m_{k}}}\left(\log n_{m_{k}}\right)^{\left(\varepsilon^{*}-\varepsilon\right) / \alpha}\right.$ i.o.) $=0$, which implies (5), follows from (7) and (8). Thus the proof of the theorem is completed.

Theorem 2. Let $F \in D P(\alpha), 0<\alpha<2$. Let $\left(n_{k}\right)$ be an integer subsequence such that

$$
\begin{equation*}
\operatorname{Limsup}_{k \rightarrow \infty}\left(n_{k+1} / n_{k}\right)<\infty . \tag{9}
\end{equation*}
$$

Then

$$
\operatorname{Limsup}_{k \rightarrow \infty}\left(S_{n_{k}} / B_{n_{k}}\right)^{1 / 1 \log \log n_{k}}=e^{1 / \alpha} \text { a.s. }
$$

Proof. Proceeding as in Theorem 1, it is enough to show that, for any $\varepsilon_{1} \in(0,1)$,

$$
\begin{equation*}
P\left(S_{n_{k}} \geqslant B_{n_{k}}\left(\log n_{k}\right)^{\left(1+\varepsilon_{1}\right) / \alpha} \text { i.o. }\right)=0 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(S_{n_{k}} \geqslant B_{n_{k}}\left(\log n_{k}\right)^{\left(1-\varepsilon_{1}\right) / \alpha} \text { i.o. }\right)=1 . \tag{11}
\end{equation*}
$$

One can notice that (10) is a consequence of the theorem of Divanji and Vasudeva (1989), i.e.,

$$
\operatorname{Limsup}_{k \rightarrow \infty}\left(S_{n_{k}} / B_{n_{k}}\right)^{1 / \log \log n_{k}} \leqslant \operatorname{Limsup}_{n \rightarrow \infty}\left(S_{n} / B_{n}\right)^{1 / \log \log n}=e^{1 / \alpha} \text { a.s. }
$$

From (9) we see that the sequences are at most geometrically increasing, which implies that there exists $\theta>1$ such that

$$
\begin{equation*}
n_{k+1} \leqslant \theta n_{k} \tag{12}
\end{equation*}
$$

Now define

$$
\begin{equation*}
v_{j}=\min \left\{k: n_{k}>M^{j}\right\}, \quad j=1,2, \ldots, \tag{13}
\end{equation*}
$$

where M is chosen such that $\theta / M<1$. Proceeding as in Gut (1986) one can show that $M^{j}<n_{\nu_{j}}<\theta M^{j}$ and $1 / \theta M \leqslant n_{v_{j-1}} / n_{\nu_{j}} \leqslant \theta / M<1$. Consequently, $\left(n_{\nu_{j}}\right)$ satisfies the condition $\operatorname{Lim} \sup _{j \rightarrow \infty}\left(n_{\nu_{j-1}} / n_{\nu_{j}}\right)<1$ of Theorem 1 and also the relation $\sum_{j=1}^{\infty}\left(\log n_{v_{j}}\right)^{-\varepsilon_{1}}<\infty$ holds for all $\varepsilon_{1}>1$ (i.e. $\varepsilon^{*}=1$). Now (11) follows from Theorem 1. Hence the proof of the theorem is completed.

Remark. The results by Schwabe and Gut (1996) for $\varepsilon^{*}=0$ motivated us to examine whether Chover's form of LIL for $\left(S_{n_{k}}\right)$ can be obtained for these rapidly increasing subsequences. Interestingly, we answer the question in the following theorem. Note that $n_{k+1} / n_{k} \rightarrow \infty$ as $k \rightarrow \infty$ comes under the class of at least geometrically increasing subsequences.

Theorem 3. Let $F \in D P(\alpha), 0<\alpha<2$. Let $\left(n_{k}\right)$ be an integer subsequence such that

$$
\begin{equation*}
\operatorname{Lim}_{k \rightarrow \infty}\left(n_{k+1} / n_{k}\right)=\infty \tag{14}
\end{equation*}
$$

Then

$$
\operatorname{Limsup}_{k \rightarrow \infty}\left(S_{n_{k}} / B_{n_{k}}\right)^{1 / \log k}=e^{1 / \alpha} \text { a.s. }
$$

Proof. To prove the assertion it suffices to show that there exists ε, $0<\varepsilon<1$, such that

$$
\begin{equation*}
P\left(S_{n_{k}} \geqslant B_{n_{k}} k^{(1+\varepsilon) / \alpha} \text { i.o. }\right)=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(S_{n_{k}} \geqslant B_{n_{k}} k^{(1-\varepsilon) / \alpha} \text { i.o. }\right)=1 . \tag{16}
\end{equation*}
$$

To prove (15), let $E_{k}=\left\{S_{n_{k}} \geqslant B_{n_{k}} k^{(1+\varepsilon) / \alpha}\right\}$ and $y_{k}=B_{n_{k}} k^{(1+\varepsilon) / \alpha}$. By the theorem in Heyde (1967), one can find a C_{8} and a k_{8} such that, for all $k \geqslant k_{8}$,

$$
P\left(E_{k}\right) \leqslant C_{8} n_{k} P\left(X \geqslant y_{k}\right) .
$$

Using Lemma 1 , one can find a $k_{9}\left(\geqslant k_{8}\right)$ such that, for all $k \geqslant k_{9}$,

$$
P\left(E_{k}\right) \leqslant C_{8} n_{k} y_{k}^{-\alpha} L\left(y_{k}\right) \theta\left(y_{k}\right)=C_{8} n_{k} \frac{L\left(B_{n_{k}}\right) \theta\left(B_{n_{k}}\right)}{B_{n_{k}}^{\alpha} k^{1+\varepsilon}} \frac{L\left(y_{k}\right)}{L\left(B_{n_{k}}\right)} \frac{\theta\left(y_{k}\right)}{\theta\left(B_{n_{k}}\right)} .
$$

Applying Lemma 3 with $\delta=\varepsilon / 2$ and using the boundedness of θ, one can find a $k_{10}\left(\geqslant k_{9}\right)$ such that, for all $k\left(\geqslant k_{10}\right), P\left(E_{k}\right) \leqslant C_{9} k^{-(1+\varepsilon / 2)}$ for some $C_{9}>0$. Consequently, $\sum_{k=k_{10}}^{\infty} P\left(E_{k}\right)<\infty$ and (15) follows from the Borel-Cantelli lemma.

To prove (16) define for large k

$$
\begin{equation*}
m_{k}=\min \left\{j: n_{j} \geqslant \beta^{(k-1)^{\delta}}\right\} \tag{17}
\end{equation*}
$$

where $\beta>1$ and $\delta>0$, and use the relation $S_{n_{k}}=S_{n_{k}}-S_{n_{k-1}}+S_{n_{k-1}}, k \geqslant 1$. We are going to show that, for any $\varepsilon \in(0,1)$,

$$
\begin{equation*}
P\left(S_{n_{m k}}-S_{n_{m k-1}} \geqslant 2 B_{n_{m k}} k^{(1-\varepsilon) / \alpha} \text { i.o. }\right)=1 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(S_{n_{m_{k-1}}} \geqslant B_{n_{m k}} k^{(1-\varepsilon) / \alpha} \text { i.o. }\right)=0 \tag{19}
\end{equation*}
$$

Note that $S_{n_{m k}}-S_{n_{m k-1}} \stackrel{d}{=} S_{n_{m_{k}}-n_{m k-1}}, k \geqslant 1$. Define $z_{k}=B_{n_{m k}} k^{(1-\varepsilon) / \alpha}$ and $T_{k}=$ $\left(S_{n_{m k}-n_{m k-1}}\right) \geqslant 2 z_{k}, k \geqslant 1$. Hence, by the theorem in Heyde (1967), one can find a k_{11} such that, for all $k\left(\geqslant k_{11}\right)$,

$$
\begin{array}{r}
P\left(S_{n_{m_{k}}}-S_{n_{m_{k-1}}} \geqslant 2 B_{n_{m_{k}}} k^{(1-\varepsilon) / \alpha}\right)=P\left(T_{k}\right) \geqslant C_{10}\left(n_{m_{k}}-n_{m_{k-1}}\right) P\left(X \geqslant 2 z_{n_{m_{k}}}\right) \\
=C_{10} n_{m_{k}}\left(1-n_{m_{k-1}} / n_{m_{k}}\right) P\left(X \geqslant 2 z_{n_{m_{k}}}\right) \quad \text { for some } C_{10}>0 .
\end{array}
$$

Since (14) is at least geometrically fast, there exists $\lambda<1$ such that

$$
\begin{equation*}
n_{m_{k-1}} / n_{m_{k}}<\lambda<1 \quad \text { for all } k \geqslant k_{11} \tag{20}
\end{equation*}
$$

and, consequently, $P\left(T_{k}\right) \geqslant C_{10} n_{m_{k}} P\left(X \geqslant 2 z_{n_{m k}}\right)$.
Now, following the steps similar to those used to get an upper bound of $P\left(A_{k}\right)$, one can find a k_{12} such that, for all $k\left(\geqslant k_{12}\right), P\left(T_{k}\right) \geqslant C_{11} k^{-(1-\varepsilon / 2)}$ for some $C_{11}>0$. Hence $\sum_{k=k_{12}}^{\infty} P\left(T_{k}\right)=\infty$. In view of the fact that T_{k} 's are mutually independent, applying the Borel-Cantelli lemma we establish (18). Observe that

$$
P\left(S_{n_{m_{k-1}}} \geqslant B_{n_{m_{k}}} k^{(1-\varepsilon) / \alpha}\right)=P\left(S_{n_{m k-1}} \geqslant B_{n_{m_{k-1}}} \frac{B_{n_{m_{k}}}}{B_{n_{m_{k-1}}}} k^{(1-\varepsilon) / \alpha}\right) .
$$

Using Lemma 2 and (20), we get $B_{n_{m_{k}}} / B_{n_{m k-1}} \approx C_{13}$ for some $C_{13}>0$. Again by Heyde (1967), one can find some $C_{14}>0$ and k_{13} such that, for all $k \geqslant k_{13}$,

$$
P\left(S_{n_{m k-1}} \geqslant B_{n_{m k}} k^{(1-\varepsilon) / \alpha}\right) \leqslant C_{14} n_{m_{k-1}} P\left(X_{1} \geqslant B_{n_{m_{k}}} k^{(1-\varepsilon) / \alpha}\right) .
$$

Again following the steps similar to those used to get (8), we can find a k_{14} such that, for all $k\left(\geqslant k_{14}\right)$,

$$
P\left(S_{n_{m_{k-1}}} \geqslant B_{n_{m_{k}}} k^{(1-\varepsilon) / \alpha}\right) \leqslant C_{14} \sum_{k=k_{14}}^{\infty} \frac{1}{\beta^{k^{\delta_{1}}} k^{1-3 \varepsilon / 2}}<\infty .
$$

By (6) we infer that $n_{m_{k}} \geqslant \beta^{(k-1)^{\delta}}$ implies $n_{m_{k}+1} \geqslant \beta^{k^{\delta}} \geqslant n_{m_{k}}$, and since $\operatorname{Lim}_{k \rightarrow \infty}\left(n_{k+1} / n_{k}\right)<1$, there exists $\lambda>1$ such that $n_{k+1} \geqslant \lambda n_{k}$. Therefore,

$$
n_{m_{k+1}} \geqslant \beta^{k^{\delta}} \geqslant n_{m_{k}} \geqslant \lambda n_{m_{k-1}} \Rightarrow \lambda n_{m_{k-1}} \leqslant \beta^{k^{\delta}} \Rightarrow n_{m_{k-1}} \leqslant \lambda^{-1} \beta^{k^{\delta}}=\lambda_{1} \beta^{k^{\delta}},
$$

where $\lambda_{1}=\lambda^{-1}$. Hence

$$
\frac{n_{m_{k-1}}}{n_{m_{k}}} \leqslant \frac{\lambda_{1} \beta^{k^{\delta}}}{\beta^{(k-1)^{\delta}}} \cong \frac{\lambda_{1}}{\beta^{k^{\delta_{1}}}} \quad \text { and } \quad \sum_{k=k_{5}}^{\infty} \frac{n_{m_{k}-1}}{n_{m_{k}}} \frac{1}{k^{\varepsilon^{*}-3 z / 2}} \leqslant \lambda_{1} \sum_{k=k_{5}}^{\infty} \frac{1}{\beta^{k^{\delta}} k^{k^{*+}-3 \varepsilon / 2}}<\infty .
$$

Hence

$$
P\left(S_{n_{m_{k-1}}} \geqslant B_{n_{m_{k}}} k^{\left(\varepsilon^{*}-\varepsilon\right) / \alpha} \text { i.o. }\right)=0,
$$

and consequently (16) follows from (18) and (19). The proof of the theorem is completed.

3. BOUNDARY CROSSING PROBLEMS

Here we study some boundary crossing random variables related to Theorems 1 and 2. Define, for any $\varepsilon>0$,

$$
Y_{n_{k}}(\varepsilon)= \begin{cases}1 & \text { if } S_{n_{k}} \geqslant B_{n_{k}}\left(\log n_{k}\right)^{(\theta-\varepsilon) / \alpha}, \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\theta= \begin{cases}\varepsilon^{*} & \text { if }\left(n_{k}\right) \text { is at least geometrically fast } \\ 1 & \text { if }\left(n_{k}\right) \text { is at most geometrically fast }\end{cases}
$$

and

$$
\varepsilon^{*}=\inf \left\{\varepsilon_{1}>0: \sum_{k=1}^{\infty}\left(\log n_{k}\right)^{-\varepsilon_{1}}<\infty\right\} .
$$

Let, for any $\varepsilon>0, N_{m_{k}}(\varepsilon)$ be a partial sum sequence of $Y_{n_{k}}(\varepsilon)$, i.e.,

$$
N_{m_{k}}(\varepsilon)=\sum_{k=1}^{m_{k}} Y_{n_{k}}(\varepsilon) .
$$

Observe that, by (10), $N_{\infty}(\varepsilon)$ is a proper random variable. We study this problem as corollaries to Theorems 1,2 and 3 . Here we show that all the moments in $0<\lambda \leqslant 1$ are finite for $N_{\infty}(\varepsilon)$. This proper random variable $N_{\infty}(\varepsilon)$ was studied by various authors; see e.g. Slivka (1969) and Slivka and Savero (1970).

Corollary 1. Let $F \in D P(\alpha), 0<\alpha<2$. Let $\left\{n_{k}, k \geqslant 1\right\}$ be an increasing
subsequence of positive integers. Then for $\varepsilon>0$ and for any $\lambda, 0<\lambda \leqslant 1$,

$$
E N_{\infty}^{\lambda}<\infty \quad \text { if } \sum_{k=1}^{\infty} n_{k}^{\lambda-1} P\left(S_{n_{k}}>B_{n_{k}}\left(\log n_{k}\right)^{(\theta+\varepsilon) / \alpha}\right)<\infty .
$$

Proof. First we show that, for $\lambda=1, E N_{\infty}(\varepsilon)<\infty$, and then claim that the existence of lower moments follows from that of the higher moments. Observe that

$$
E N_{\infty}(\varepsilon)=\sum_{k=1}^{\infty} P\left(S_{n_{k}}>B_{n_{k}}\left(\log n_{k}\right)^{\left(\varepsilon^{*}+\varepsilon\right) / \alpha}\right)
$$

Following similar steps of the proof of (3), we can find some constant $C_{1}>0$ and some $k_{1}>0$ such that, for all $k \geqslant k_{1}$,

$$
E N_{\infty}(\varepsilon) \leqslant C_{1} \sum_{k=k_{1}}^{\infty} \frac{1}{\left(\log n_{k}\right)^{-(\theta+\varepsilon / 2)}}<\infty .
$$

To show this we use the definition

$$
\theta= \begin{cases}\varepsilon^{*} & \text { if }\left(n_{k}\right) \text { is at least geometrically fast } \\ 1 & \text { if }\left(n_{k}\right) \text { is at most geometrically fast }\end{cases}
$$

and then the proof of (4) and (10). Consequently, $E N_{\infty}(\varepsilon)<\infty$ for $\lambda=1$, and therefore $E N_{\infty}^{\lambda}<\infty$ for $\lambda<1$. Thus the proof of the corollary is completed.

Corollary 2. Let $F \in D P(\alpha), 0<\alpha<2$. Let $\left\{n_{k}, k \geqslant 1\right\}$ be an increasing subsequence of positive integers. Then for $\varepsilon>0$ and for any $\lambda, 0<\lambda \leqslant 1$,

$$
E N_{\infty}^{\lambda}<\infty \quad \text { if } \sum_{k=1}^{\infty} n_{k}^{\lambda-1} P\left(S_{n_{k}}>B_{n_{k}} k^{(1+\varepsilon) / \alpha}\right)<\infty
$$

Proof. First we show that, for $\lambda=1, E N_{\infty}(\varepsilon)<\infty$, and then claim that the existence of lower moments follows from that of the higher moments. Observe that

$$
E N_{\infty}(\varepsilon)=\sum_{k=1}^{\infty} P\left(S_{n_{k}}>B_{n_{k}} k^{(1+\varepsilon) / \alpha}\right)
$$

Following similar steps of the proof of (15), we can find some constant $C_{1}>0$ and some $k_{1}>0$ such that, for all $k \geqslant k_{1}$,

$$
E N_{\infty}(\varepsilon) \leqslant C_{1} \sum_{k=k_{1}}^{\infty} \frac{1}{k^{1+\varepsilon / 2}}<\infty
$$

Consequently, $E N_{\infty}(\varepsilon)<\infty$ for $\lambda=1$, and therefore $E N_{\infty}^{\lambda}<\infty$ for $\lambda<1$. Thus the proof of the corollary is completed.

Acknowledgements. The author expresses his sincere gratitude to Professor R. Vasudeva, Department of Studies in Statistics, University of Mysore, Mysore, for his constant encouragement in the field of limit theorems. The author thanks the referee for his valuable suggestions and comments on this work.

REFERENCES

[1] J. Chover, A law of the iterated logarithm for stable summands, Proc. Amer. Math. Soc. 17 (1966), pp. 441-443.
[2] G. Divanji and R. Vasudeva, Tail behavior of distributions in the domain of partial attraction on some related iterated logarithm laws, Sankhyā Ser. A 51 (2) (1989), pp. 196-204.
[3] A. Gut, Law of the iterated logarithm for subsequences, Probab. Math. Statist. 7 (1986), pp. 27-58.
[4] C. C. Heyde, On large deviation problems for sums of random variables which are not attracted to the normal law, Ann. Math. Statist. 38 (1967), pp. 1575-1578.
[5] V. M. Kruglov, On the extension of the class of stable distributions, Theory Probab. Appl. 17 (1972), pp. 685-694.
[6] R. Schwabe and A. Gut, On the law of the iterated logarithm for rapidly increasing subsequences, Math. Nachr. 178 (1996), pp. 309-332.
[7] E. Seneta, Regularly Varying Functions, Lecture Notes in Math. No 508, Springer, Berlin 1976.
[8] J. Slivka, On the LIL, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), pp. 2389-2391.
[9] J. Slivka and N. C. Savero, On the strong law of large numbers, Proc. Amer. Math. Soc. 24 (1970), pp. 729-734.
[10] I. Torrång, Law of the iterated logarithm - cluster points of deterministic and random subsequences, Probab. Math. Statist. 8 (1987), pp. 133-141.
[11] R. Vasudeva, Chover's law of iterated logarithm and weak convergence, Acta Math. Hungar. 44 (3-4) (1984), pp. 215-221.

Department of Statistics
Room No 109, Faculty of Science
Addis Ababa University
Post Box No 1176
Addis Ababa, Ethiopia
E-mail: divan@stat.aau.edu.et (or) gootydivan@yahoo.co.in

Received on 20.10.2003;
revised version on 12.12.2004

CONTENTS OF VOLUME 24

M. Ait Ouahra, M. Eddahbi and M. Ouali, Fractional deriva- tives of local times of stable Lévy processes as the limits of the occupation time problem in Besov space 263-279
M. Bieniek and D. Szynal, On the fractional record values 27-46
O. Brandière see P. Doukhan and O. Brandière
K. Burnecki, A. Marciniuk and A. Weron, On annuities under random rates of interest with payments varying in arithmetic and geometric progression 1-15
Chen Pingyan and H.-P. Scheffler, Limiting behavior of weighted sums of heavy-tailed random vectors and applications 281-295
G. Divanji, Law of the iterated logarithm for subsequences of par- tial sums which are in the domain of partial attraction of a semi- stable law 433-442
P. Doukhan and O. Brandière, Dependent noise for stochastic algorithms 381-399
H. H. Ebrahim, Central Limit Theorems for random stain 321-338
M. Eddahbi see M. Ait Ouahra, M. Eddahbi and M. Ouali
F. Fidaleo and F. Mukhamedov, Diagonalizability of non- homogeneous quantum Markov states and associated von Neu- mann algebras 401-418
F. Gamboa and P. Pamphile, Random sums stopped by a rare event: a new approximation 237-252
Y. Isozaki and T. Uemura, A family of symmetric stable-like pro- cesses and its global path properties 145-164
Z. J. Jurek and M. Yor, Selfdecomposable laws associated with hyperbolic functions 181-190
D. Juszczak and A. V. Nagaev, Local large deviation theorem for sums of i.i.d. random vectors when the Cramér condition holds in the whole space 297-320
M. Kałuszka and A. Okoḷewski, Tsallis' entropy bounds for generalized order statistics 253-262
T. Komorowski and G. Krupa, The existence of a steady state for a perturbed symmetric random walk on a random lattice 121-144
G. Krupa, A note on diffusions in compressible environments 191-210
G. Krupa see T. Komorowski and G. Krupa
A. Krystek and H . Yoshida, Generalized t-transformations of
probability measures and deformed convolutions 97-119
X. Lu and Y. Qi, Empirical likelihood for the additive risk model . 419-431
A. Marciniuk see K. Burnecki, A. Marciniuk and A. Weron
P. Matuła, A note on some inequalities for certain classes of positively dependent random variables.
F. Mukhamedov see F. Fidaleo and F. Mukhamedov
A. V. Nagaev see D. Juszczak and A. V. Nagaev
A. Okolewski see M. Kałuszka and A. Okolewski
M. Ouali see M. Ait Ouhara, M. Eddahbi and M. Ouali
Z. Palmowski and T. Rolski, Markov processes conditioned to
never exit a subspace of the state space 339-353
P. Pamphile see F. Gamboa and P. Pamphile
Y. Qi see $\mathrm{X} . \mathrm{Lu}$ and Y . Qi
B. S. Rajput and K. R ama-Murthy, Comparison of tail probabi-
lities of strictly semistable/stable random vectors and their sym-
metrized counterparts with application 367-379
K. Rama-Murthy see B. S. Rajput and K. Rama-Murthy
T. Rolski see Z. Palmowski and T. Rolski
H.-P. Scheffler see Chen Pingyan and H.-P. Scheffler
R. L. Schilling, A note on invariant sets

47-66
Y. Shiozawa, Principal eigenvalues for time changed processes of
one-dimensional α-stable processes 355-366
W. Szczotka and W. A. Woyczyński, Heavy-tailed dependent
queues in heavy traffic 67-96
D. Szynal see M. Bieniek and D. Szynal
T. Uemura see Y. Isozaki and T. Uemura
R. Urban, Note on the factorization of the Haar measure on finite
Coxeter groups 173-180
A. Weron and A. Wyłomańska, On ARMA(1, q) models with
bounded and periodically correlated solutions 165-172
A. Weron see K. Burnecki, A. Marciniuk and A. Weron
W. A. Woyczyński see W. Szczotka and W. A. Woyczyński
A. Wyłomańska see A. Weron and A. Wyłomańska
M. Yor see Z. J. Jurek and M. Yor
H. Yoshida see A. Krystek and H. Yoshida
K. Ziegler, Adaptive kernel estimation of the mode in a non-
parametric random design regression model 213-235

[^0]: * Research supported by the UGC Major Research Project. (UGC letter F.6-5/2002 (SR-I), dated: 26.08.2002.)

