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1. INTRODUCTION AND MAIN RESULTS 

Let X, XI,  X,, ... be i.i.d. Rd-valued random vectors. We assume that 
X belongs to the strict generalized domain of semistable attraction of a full 
operator semistable Y having nonnormal component (see [11] for details). 
Then, by definition, there exists a constant c > 1 and a sequence (k,) of natural 
numbers tending to infinity with k,+,/k,  + c as n -P m and linear operators 
A, E GL (Rd) such that for S, = x:= ,Xi we have 

Here * denotes convergence in distribution. The distribution v of the limit Y is 
then strictly (c?, +operator semistable (E an invertible d x d matrix), that is 

(1.2) vC = (cE v), 

where vc denotes the c-fold convolution power and (P v) (A)  = v ( c - ~  A) is the 
image measure. Note that if v is strictly operator stable with exponent E, then 
(1.2) holds for any c > 1, but the class of operator semistable laws is much 
larger than that of operator stable laws. 
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Then it is shown in El51 that there exists a sequence (B,) c G L ( R ~ )  regu- 
larly varying with exponent - E, that is, BIAnl B, 4 I V E  as n + co, such that 

Moreover, the whole sequence (B,  S,), is stochastically compact with limit dis- 
tributions in vA: A E [I, c]]. Given any unit vector 0 E R ~ ,  we can project 
the random walk (S,)  onto the direction 0, that is we consider the one-dimen- 
sional random walk . 

Then it is shown in 1151 that for any 11611 = 1 there exists a sequence 
r, = r, (0) > 0 such that (r,, ( S , ,  B)), is stochastically compact. The norming 
sequence (rn) behaves roughly like n-lIg(@), where the tail index 0 < a(@) < 2 
depends on the exponent E in (1.2). More precisely, for every 6 > 0 there exists 
an no 2 1 such that 

whenever n 2 no. See [ I l l ,  Remark 8.3.21, for details. 
The tail behavior and the asymptotic behavior of truncated moments of 

(X, 8 )  are well understood. In fact, if we let V, (t, 0) = P {1<X, O>l > t), it 
follows from Theorem 6.4.15 of [11] that for any 6 > 0 there exist constants 
C 1 ,  Cz  > 0 and a to > 0 such that 

for any t 2 to and any I 2  1. If we let U b ( t ,  O j =  E ( I ( X ,  8) lb1( j (X,  6)I G t ) ) ,  
where b > ate), it is shown in Corollary 6.4.16 of [ll] that there exists a to > 0 
and constants C 3 ,  C, > 0 such that 

Some technical estimates on n P ( [ ( X ,  0)1 > r;') as in (9.21) and (9.24) of 
[ll] together with some asymptotic results on r, as in Lemma 4.1 of [13] are 
also needed. In fact, 

(1.7) 0 < i n f n P ( ( ( X ,  O ) ( > r i l )  <supnP(((X, €91 > r i l ) <  co. 
n 3  1 n> 1 

The law of the iterated logarithm for sums of a-stable random variables 
was first discovered in 187 and then generalized in various ways. See e.g. 
[I]-161 and [13]. In particular, [5] established some result on the limiting 
behavior of weighted sums of heavy-tailed random vectors when the weights 
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are o f  uniform bounded variation. In this paper we generalize the results in [4] 
partly in the following way, extending the results in [5j:  

Let X belong to the strict generalized domain of semistable attraction of 
some full (E, c) operator semistable Y having no normal component. Then we 
have 

THW~REM 1.1. Let$ [ I ,  a) + (0, a) be nondecreasing with lim,,, f (x) = co. 
Then: 

(a) If there exists an EO> 0 such that 

then for any array ofreal numbers (a,,, 1 < k < k,, n 2 1 )  with k,, < Mn, for all 
n 2 1, sup., lankl < M and z:= '=, a; = O (do) for some 60 < 1, where M is a posi 
tive constant not depending on n,for any llOll = 1 we have, for r,, = rn(0) and a(0) 
as above, 

lrn 2 .?"k CXk, s}l 
lim sup f ( n ) ~ ~ ~ c e ~  = 0 a s .  

n-l m 

and especially for any S > 0 

lrn z:= '=, < x k ~  
lim sup = 0 a.s. 

n+ (log n ) ( l f  6)1"(8) 

(b) If there exists an c0 > 0 such that 

then for any array of real numbers (ank, 1 < k < k,, n 2 1)  such that there exist 
two strictly increasing sequences of positive integers E(n), m (n), n >, 1, with 

sup (1 (n  + 1) - 1 (n)) < m and l im inf laro,,(,,,l > 0 
n 3  1 n+ m 

and any 111811 = 1 we have 

lrnx:= <Xk, ')I 
l im sup = a.s. 

n+ m f ( n ) l / a ( e )  

and especially for any 0 < 6 < 1 

lrn z:= '=, ank <Xk 3 6) 1 
l im n+ sup flog n)(l - a ) / a ( ~ )  = a.s. 
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As a corollary the following law of the iterated logarithm (LIL) holds true: 

COROLLARY 1.2. Let (a,,, 1 < k < k,, n 3 1) fu@Il conditions (a) and (b) of 
Theorem 1.1. Then for any llOll = 1 we have 

k" 
- lim sup \rn z an, {X,, 8)11110g10g" - el@(') as., 

R+CO k = l  

where rn is as above. 

Complementarily to our results on the limiting behavior of weighted sums 
of { X i ,  8) given above, we also consider the behavior of the norm of the 
weighted sum of the Xis. Recall that the distribution v of Y is a full (cE, c) 
operator semistable law without normal component and let Rd = V1 B . . . @ Vb 
denote the spectral decomposition of Rd with respect to E. Recall that 
E = E")@. . .@ E'pl and that every eigenvalue of ECo has real part l/ai for 
1 < i d p. Then Theorem 1 in [7] implies that 0 < a, < . . . < or, < 2. 

In the following let ;rr' belong to the strict generalized domain of semistable 
attraction of a (c", c) semistable law v such that (1.3) holds. In view of Theorem 
8.3.7 of [11] we can assume without loss of generality that the distribution of 
X is spectrally compatible with v. Then the spaces 5 are B,-invariant for all 
nandall 1 < i d p , s o t h a t B , =  Bil)@ ...@ BF). Wewri tex=X(l )+  ...+ XfP) 
with respect to the spectral decomposition of Rd obtained above and for 
1 6 i < p set ~ ( ~ . - . . * i )  = ~ ' 1 ] +  . . . + X"' and B!,~~. . .~' '  = 3;') @ . . . 

THEOREM 1.3. Suppose that X is in the strict generalized domain of semi- 
stable attraction ofsome full (cE, c) operator semistable law without normal corn- 
ponent, where c > 1. Moreover, let f: [I, a) + (0, m) be nondecreasing with 
Iim,,, f (x) = co. Then: 

(a) If there exists an E* > 0 such that 

then for any 1 < i < p, for any array of real numbers {ank, 1 d k d k,, n 2 1 )  
with kn d Mn, for all n a 1, lankl 4 M and z;=, a& = 0 (aa0) for some 
6 ,  < 1, where M is a positive constant not depending on n, we have 

1l3;l ..... i)z;= xil.....Q 
lim sup fl = o a.s. 

n+ m f (n)'lai 

and especially for any 6 > 0 
B l . . .  0 a xi1 ,..., "11 k=l uk 

lim sup = 0 a.s. 
n-+ co (log n)(l +Wai 

(b) If there exists an E* > 0 such that 
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then for any 1 < i < p, for any array of real numbers (amk, 1 4 k < k , ,  n 2 1 )  
such that there exist two strictly increasing sequences of positive integers l(n), 
m(n), n 2 1, with 

sup ( l  (n + 1) - 1 (n)) < rn and lim inf la~cn~,mcnll > 0 
it3 1 n+ m 

we have 

1 .  k n  k = l  a nk xp ,..., i )  

Jim sup 
f (n)i/"(el 

II 
= a.s. 

n+ w 

and especially fur any O < 6 < 1 
B . . , k  a xp ,..., i )  

k = l  "k 
lirn sup II 

= co a.s. 
n+ w (log n)(l -Q"i 

COROLLARY 1.4. Under the assunaptions of Theorem 1.3 we have 

2. PROOFS 

To prove the convergent parts of Theorems 1.1 and 1.3 we need the 
following preliminary results. 

LEMMA 2.1 (see [2]). Let f > 0 be a nondecreasing function with 

Then there exists a nodecreasing function g > 0 such that 

g(2x) < m and 
" dx 

g ( x ) < f ( x ) ,  limsup- 
X-+m g(x)  

LEMMA 2.2. Let (Zi)irr be independent random uariables. Set Sk = z:=, Z i ,  
k d N. Then for any integer j 2 2 there exist positive numbers Cj and Dj depend- 
ing only on j such that for all t > 0 

P (max ISkI > 4j- t )  < Cj P (max lXil > t )  + Dj ( P  {max lSkl > t))'. 
k < N  i < N  k < N  

Pro of. The assertion follows from Proposition 6.7 of [9] by induction. er 

We also need the next lemma to prove the divergent parts of our main 
theorems. 
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LEMMA 2.3. Let f be as in (b) of Theorem 1 . 1 .  Then there exists a non- 
decreasing function g :  [I, co) + (0, co) such that 

m dx 
lim g(x) = co and 1 = 00 .  
n+ m 2 x(f  tx)g(x)) l tEo 

Proof .  The assertion follows from Lemma 2.2 of [ I ] .  rn 

P r o  of of Theor  em 1.1. (a) Without loss of generality we can assume 
that k n > n ,  and by Lemma 2.1 we also can assume that 
Iim sup,,, f (2x) l f (x )  < m. Furthermore, we can also assume that M is an 
even integer. Directly from (4.6) of [I31 we have s ~ p , , ~ r , - ~ r ; ~  < a, and 
hence 

sup r ,  r c l  < max {I, (sup rn - r; c a. 
nB 1 n 3 l  

Consequently, we have 

lirn sup r ,  f (n) - l Ia[ ' )  Irk. f (kn)- l la (@) j -  c co . 
n + w  

Then to prove (1.8), it is enough to show that 

l rk , , z i l  ank <xk> e)l 
lim sup = 0 as.  

n+m f (kn)l'a'e' 

By the same argument as in [lo], one can assume, without loss of generality, 
that kn = n for every n >, 1. Hence (2.1) follows from 

I r n z ; = l  an, (XkY 
lim sup f (n)lia(@) = 0 as.  

n-+ m 

Choose an integer j > 2 with j (1-6, )  > 1. Then (2.2) holds if we can show that 
for any E > 0 we have 

(G z;= %k < X k ~  
lim sup f ( n ) l / a ( 8 )  < \ 4j-I .  ME a.s. 

n+ m 

Note that, by (1.5) and (1.7) and our assumptions off, for any b > 0 and some 
constant C > 0 we have 

< Csup nP { r n l ( X n ,  8 ) )  > I)  C (nf (n)l-Eo)-l  < m. 
n B  1 n = l  
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Note that by (4.7) of [13] we have b = supnbl suplQh4nrnr;1 < a. Then the 
monotonicity of f together with the Borel-Cantelli lemma implies that 

is bounded almost surely. Therefore 

Hence to prove (2.3) it enough to show that 

r n  IxL=, <X,,  0) I (rn I<Xk, e>I < sf (n)1/a(8))I 
(2.4) limsup 

n-m f (n)lla(el 

Before we prove (2.4) we first show that 

(2.5) 

r n  l (X,, 0) - nr, E {X, 8) I (r ,  I {X, 0)l G ~f (n)lia(')) 
f (n) 1/a(B) 

-+ 0 in probability. 

In fact, for E"> O decompose 

- nrn E < X ,  0) I (r ,  I(X, 8)l < E f (n)l/a(O1)l 2 ~f (n)'/'(')) 

Now, by (1.5) and (1.7), 

I I < nP {r, I (X, 0) 1 > E f (n)lla(')) 

I < C,(sup nP { r ,  I(X, 0)l > 1 ) ) f  (n)-(l-") + O m  
n 3 l  

Moreover, by Chebyshev's inequality together with (1.6) we conclude that for 
some constants C1, C2 > 0 we have 

I2 4 C1 nr,2 f (n)-2Ja(0) U 2  (r; f (n)lWe) E, 0) 

< C, nP (r, I (X, 0)l > E f (n)lia(')) + 0, 
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proving (2.5). Since ( rnx i= ,  {Xk, 0)) is stochastically compact, (2.5) implies 

nr, E {X, 6) I (r,, I (X , 8) 1 < E f (n)lJa('l) 
j- (pa)l/ace~ - + O  as n - + c o .  

It follows that 

Let Unk = r, (Xk, 8) I ( r ,  I{Xk, B)I < E f (n)'la18)). In view of (2.61, to prove (2.41, 
it is enough to show that 

(x;=l (Unk-EUnk)l 
lim sup f ( n ) l i a ( ~ )  6 4'- -3M.2 as. 

n+m 

By the Borel-Cantelli lemma, it is enough to prove that 

In view of Lemma 2.2, (2.8) follows from 

(2.9) P ( max lank (U, - EUnk)I > 3M.5 f (n)'ia(B)} < co 
n=l  l d k d n  

and 

Since maxl sk<, lank (UUk - E Unk)l <  ME f (n)l'a(e), for every n 3 1, we know 
that P (max, <,<, lank(Unk- EUnk)l >  ME f (n)l/"(@)} = 0, so (2.9) holds true. 

By Chebyshev's inequality together with (1.5) and (1.6)' we have for some 
constant C > 0 

n 

P { C lank (Unk - EUnkII > 3MEf (n)l'a(e') 
k = l  

n 

< C (  C a&)rr." f (n)-'/'(') U2 ( r l l  f (n)lla(e)~, 8) 
k =  1 

< naO P (r,, 1 (X , 8)) > ~f (n)' < ndo - . 
Since j (1 -  6,) > 1, (2.10) follows at once. Hence (2.7) holds true. 

(b) The proof is similar to the proof of Theorem 1.1 (b) in [ 5 ] ,  so we omit 
it. See also the proof of Theorem 1.5 in [ 5 ] .  
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Before we give a proof of Theorem 1.3 and its corollary, similar to that in 
[13], we first prove a special case sufficient for our purpose. Recall from [ l l ]  
that a (cE, C )  operator semistable law is called spectrally simple if every eigen- 
value of E has the same real part. 

PROPOSI~ON 2.4. Let the distribution of Y be a full (cE, c) operator semista- 
bb ,  spectrally simple, nonnop.ma1 law on afinite-dimensional vector space V and let 
X belong to the strict generalized domain of semistable attraction of K i.e. (1.3) 
holds. Let f: C1, m] -+ (0, co) be nondecreasing with lim,,, f ( x )  = m. Then: 

(a)  If there exists an ED > 0 such that 

then for any array ofreal numbers (a,,, 1 d k d k, ,  n B 2)  with k, G Mn,for all 
n 3 1, sup,, la,l 6 M and 61, a& = 0 (na0) for some a, < 1, where M is a posi- 
tiue constant not depending on n, we have 

~ I B I I ~ ~ = ~  ankxk l l  
lim sup = 0 as. 

n+ m f (n)l'a 

(b) If there exists an EO > 0 such that 

then for any array of real numbers (a,,, 1 < k < k,, n 2 1 )  such that there exist 
two strictly increasing sequences of positiue integers l(n), m(n), n 2 1, with 

sup(1 (n+ 1)- l (n))  < oo and liminf]a,( ,,,, (,,I > 0 
n 3  1 R+ m 

we have 

I I B ~ ~ : = ~  ankxkII 
lim sup = c~ a.s., 

n+m f (4 l'" 

where B , E R V ( - E )  is the embedding sequence and l/ol is the real part of the 
eigenvalues of E. 

Proof,  (a) By the same argument as in the proof of Theorem 1.1, we can 
assume that k, = n for every n 2 1. Hence it is enough to prove that 

lim sup I 13n x: = 1 ~ k l  I 
= 0 a.s. 

n- m f (n)lt" 

Let (8( l ) ,  . . ., 13'")) be an orthonormal basis of K Since 
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to prove (2.11) it suffices to show that for any 1 < j 6 m we have 

Fix any 1 d j d na, write B: O(J7 = r,, On for some r,, > 0 and llOkll = I. Hence to 
prove (2.12) it is enough to show that 

Following the proof of Theorem 1.1, using the uniform R-O variation results 
obtained in El41 instead of (1.51, (1.6) and (1.7), we get (2.13). We leave the 
details to the reader. 

(b) The proof is similar to the proof of Theorem 1.1. See also [5] .  

P r o  of of Theorem 1.3. Using Proposition 2.4, we obtain the result of 
Theorem 1.3 along the lines of the proof of Theorem 2.6 in [13]. rn 

In this section, as applications of Theorem 1.1, we will discuss the cor- 
responding results for some classical summability methods. For the Cesiro 
method, Riesz method, by the same argument as in [lo] we have: 

THEOREM 3.1 (Cesaro method). Let 0 < u < 1 and f: [I, oo) + ( O ,  m) be 
nondecreasing with Iim,,, f (x)  = m. Then: 

(a) If there exists an E,, > 0 such that 

then for any IlOll = 1 we have, for r, = r,(O) and a(6) as above, 

Iim sup 
IrnC=o~""_: <X, ,  8))  

f (n) i /a(e)  = 0 a.s. n-+ m 

and especially for any S > 0 

I~,,CE,,A:-~ <X,, e>l 
lim sup = 0 a s .  

n+ m 
(log n)(l + a)/a(e) 

(b) if there exists an E* > 0 such that 
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then for any Ilf311 = 1 we have 

lr~x;=o <xk,  
lirn sup 

f In) l/"(@) = 00 a.s. 
n- co 

and especially fur any 0 < 6 < 1 

I ~ " ~ ; = , A : I :  <Xk, e>l 
lirn sup 

n+ m 
n)(l -&)/a(@ = * a'S' 

where for any /3 > -1, A6 = 1 and ~f = @+I) ...(fl+j)/j ! for every j 3 1. 

COROLLARY 3.2. For any Illell = 1 we have 
n 

(3.5) lim sup lrn A::: (X,, 8)11"0g10gn - - e'fa(') a.s., 
n+m k = o  

where P, is US above. 

THEOREM 3.3 @esz method or delayed method). Let p > 1 and f: [I, co) 4 

(0, a) be nondecreasing with lim,,, f ( x )  = m. Then 
(a) If there exists an go > 0 such that 

then for any E > 0 and for any ll8ll = 1 we have, for r, = rn(f3) and ~ ( 8 )  as above, 

lim sup 
f (n)lla(e) = 0 as .  n-m 

and especially for any 6 > 0 

lim sup = 0 a.s. 
,,+ (log n)(l+"1'"(@) 

(b) If there exists an go > 0 such that 

then for any E > 0 and for any llell = 1 we have 

(X, ,  0) 1 
lim sup I r n C k = n  

f (n)l /a(W 
= 00 a.s. 

n+ m 

and especially for any 0 < 6 < 1 

lirn sup 
IrnCZ:"'" cxk, e}1 

(logn) (1 -6)/a(8) = * a's' 
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COROLLARY 3.4. For any p > 1, any E > 0 and for any 1jO11 = 1 we have 
n + enltp 

- lim sup lr, (X,, B)~'~'*~'~' - ella(*) a.s., 
n-m k=n  

where r, is as above. 

For the Euler method, we have 

THEOREM 3.5 (Euler method). Let 0 < q < 1 and f: [ I ,  m) 4 (0, CQ) be 
nodecreasing with lim,,, f ( x )  = a. Then: 

(a)  If there mists an > 0 such that 

then for any llell = 1 we have, fur rn = r,(B) and a(8) as above, 

(3.1 1) lim sup 
I * n & ~ ; = o c ~ q k ( l - q ~ - k  (4, 

f ( n ) l / ~ ' B '  
= 0 a.s. 

n-'m 

and especially for any 6 > O 

lim sup 
l r n & ~ ~ = o ~ ~ q k ( l - ~ ~ p k < ~ ~ ,  

(3.12) (log n)(l + ~ ( 8 )  = 0 a.s. 
a- m 

(b) If there exists an .so > 0 such that 

.. . . 

! x f ( x ) ~ + ~ o  
= OD, 

then for any IlO(( = 1 we have 

Ir"JI;C:=, C:$(l -q)"-k 
(3.13) lim sup 

( X k Y  e)1 
f (n)f'a'el = CQ a.s. 

n- m 

and especially for any 0 < 6 < 1 

I r n & ~ = o ~ ~ q k ( l - ~ ~ - k < x k ,  8)1 
(3.14) lim sup (log n)(l -a ) /~ ( e j  = cc as., 

n- cc 

where Cf: = n ! / ( k ! ( n - k ) ! )  for any n 3 1 and 0 < k < n. 

COROLLARY 3.6. For any 0 < q < 1 and any llell = 1 we have 
n 

(3.15) lim sup 1rn& C CYqk(l -g)"-, ( X k ,  6)1 l/l0glogn - - e l / a ( ~ )  a.s., 
n+ m k=O 

where r, is as above. 

For Borel's method we have 
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THEOREM 3.7 (Bore1 method). k t  f: [I ,  co)+(O, a) be nondecreasing 
with lim,, , f (x) = cc. Then: 

(a) If there exists an EO > 0 such that 

then for any ll8ll = 1 we haue, for r ,  = r,(B) and u(8) as above, 

lim sup 
Irm J e - T r =  (nk/k !) ( X k ,  01 

j" (A) l/"'@ 
= 0 a.3. 

l + m  

and especially for any 6 > O 

(3.17) lim sup (log ~)2)[l +d)/a(@) = 0 a.s. 
Irr,q J e  -Tkrn= (nk/k!) ( x k ,  ~1 

a+m 

(b) If  there exists an E,, > 0 such that 

~ 
! 

then for any Illell = 1 we have 

(3.18) Iim sup 
lr[A] fie-' Zkm= (nk/k!) ( ~ k ,  e ) l  

f (a) 1/"(@1 = CO a s .  
A+m 

and especially for any 0 < 6 < 1 

(3.19) lim sup 
Ir[A]lJe-'~km=o"=,ck/k!) (Xk? '>I 

= ao as., 
I-t  m 

where [x] denotes the largest integer less than or equal to x. 

P r o  of. It is enough to prove part (a). By Lemma 2.1, we can assume that 
lim sup,,, f (241 f (x) < m. Since 

and sup,, , r, r$, c ao, it is enough to prove that 

(3.20) lim sup 
rn Je-" cF= ((n + l)k/k'/k!) I(x~, 

f (n)lIa"N 
= 0 as. 

n + m  

Take any 0 < t < min (1, ~(8)) .  Then, by Theorem 16 of [12], there exists 
an integer M > 1 such that 

6 - PAMS 24.2 
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Hence, by Markov's inequality, for any E > 0 and some constant C > O 

{ k 3 M n + l  ~ I ( X k , ~ ) I > ~ / ( . ) 1 J " 8 '  < C n - 1 r : E I ( X , 8 ) ( t .  1 
Since E I{X,  @)It < a~ and (1.4) holds true, by the Borel-Cantelli lemma, we get 

lim sup 
rn & e - n z k > M n  + 1 ICxk, O N  

f (n)l/a(~ = 0 as. n-+ co 

Then (3.20) follows from 

lim sup 
rn, ,he-nzr:o(nk/k!~ I < x ~ ,  

f (n)l /a(e)  
= 0 as. 

n-) 03 

Let a* = &e-"(n?k!), n 2 1 ,  0 < k < Mn A slight modification of the proof 
of Theorem 1.1 yields (3.21). This completes the proof of Theorem 3.7. 

As a corollary the following law of the iterated logarithm (LIL) holds true: 

COROLLARY 3.8. For any ll8ll = 1 we have 

where rn is as above. 

Resdts similar to Theorems 3.1, 3.3, 3.5, and 3.7 and respective corollaries 
also hold true for Xtl.--.,'). We leave the formulation and the proofs to the 
interested reader. 
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