LIMITING BEHAVIOR OF WEIGHTED SUMS OF HEAVY-TAILED RANDOM VECTORS AND APPLICATIONS

 BYCHEN PINGYAN (GUANGZHOU) AND HANS-PETER SCHEFFLER (RENO)

Abstract

We present an integral test to determine the limiting behavior of weighted sums of i.i.d. \boldsymbol{R}^{d}-valued random vectors belonging to the (generalized) domain of operator semistable attraction of some nonnormal law, and deduce a version of Chover's law of the iterated logarithm for them. As applications, the corresponding limit results for some classical summability methods are also established.

2000 Mathematics Subject Classification: 60F15, 60F10, 60E07.
Key words and phrases: Generalized domains of semistable attraction; operator semistable laws; laws of the iterated logarithm; integral test.

1. INTRODUCTION AND MAIN RESULTS

Let X, X_{1}, X_{2}, \ldots be i.i.d. \boldsymbol{R}^{d}-valued random vectors. We assume that X belongs to the strict generalized domain of semistable attraction of a full operator semistable Y having nonnormal component (see [11] for details). Then, by definition, there exists a constant $c>1$ and a sequence $\left(k_{n}\right)$ of natural numbers tending to infinity with $k_{n+1} / k_{n} \rightarrow c$ as $n \rightarrow \infty$ and linear operators $A_{n} \in G L\left(\mathbb{R}^{d}\right)$ such that for $S_{n}=\sum_{i=1}^{n} X_{i}$ we have

$$
\begin{equation*}
A_{n} S_{k_{n}} \Rightarrow Y \quad \text { as } n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

Here \Rightarrow denotes convergence in distribution. The distribution v of the limit Y is then strictly (c^{E}, c)-operator semistable (E an invertible $d \times d$ matrix), that is

$$
\begin{equation*}
v^{c}=\left(c^{E} v\right) \tag{1.2}
\end{equation*}
$$

where v^{c} denotes the c-fold convolution power and $\left(c^{E} v\right)(A)=v\left(c^{-E} A\right)$ is the image measure. Note that if v is strictly operator stable with exponent E, then (1.2) holds for any $c>1$, but the class of operator semistable laws is much larger than that of operator stable laws.

Then it is shown in [15] that there exists a sequence $\left(B_{n}\right) \subset G L\left(R^{d}\right)$ regularly varying with exponent $-E$, that is, $B_{[\lambda n]} B_{n}^{-1} \rightarrow \lambda^{-E}$ as $n \rightarrow \infty$, such that

$$
\begin{equation*}
B_{k_{n}} S_{k_{n}} \Rightarrow Y \quad \text { as } n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

Moreover, the whole sequence $\left(B_{n} S_{n}\right)_{n}$ is stochastically compact with limit distributions in $\left\{\lambda^{-E} v^{\lambda}: \lambda \in[1, c]\right\}$. Given any unit vector $\theta \in \boldsymbol{R}^{d}$, we can project the random walk (S_{n}) onto the direction θ, that is we consider the one-dimensional random walk

$$
\left\langle S_{n}, \theta\right\rangle=\sum_{i=1}^{n}\left\langle X_{i}, \theta\right\rangle
$$

Then it is shown in [15] that for any $\|\theta\|=1$ there exists a sequence $r_{n}=r_{n}(\theta)>0$ such that $\left(r_{n}\left\langle S_{n}, \theta\right\rangle\right)_{n}$ is stochastically compact. The norming sequence $\left(r_{n}\right)$ behaves roughly like $n^{-1 / \alpha(\theta)}$, where the tail index $0<\alpha(\theta)<2$ depends on the exponent E in (1.2). More precisely, for every $\delta>0$ there exists an $n_{0} \geqslant 1$ such that

$$
\begin{equation*}
n^{-1 / a(\theta)-\delta} \leqslant r_{n} \leqslant n^{-1 / a(\theta)+\delta} \tag{1.4}
\end{equation*}
$$

whenever $n \geqslant n_{0}$. See [11], Remark 8.3.21, for details.
The tail behavior and the asymptotic behavior of truncated moments of $\langle X, \theta\rangle$ are well understood. In fact, if we let $V_{0}(t, \theta)=P\{|\langle X, \theta\rangle|>t\}$, it follows from Theorem 6.4.15 of [11] that for any $\delta>0$ there exist constants $C_{1}, C_{2}>0$ and a $t_{0}>0$ such that

$$
\begin{equation*}
C_{1} \lambda^{-\alpha(\theta)-\delta} \leqslant \frac{V_{0}(\lambda t, \theta)}{V_{0}(t, \theta)} \leqslant C_{2} \lambda^{-\alpha(\theta)+\delta} \tag{1.5}
\end{equation*}
$$

for any $t \geqslant t_{0}$ and any $\lambda \geqslant 1$. If we let $U_{b}(t, \theta)=E\left(|\langle X, \theta\rangle|^{b} I(|\langle X, \theta\rangle| \leqslant t)\right)$, where $b>\alpha(\theta)$, it is shown in Corollary 6.4.16 of [11] that there exists a $t_{0}>0$ and constants $C_{3}, C_{4}>0$ such that

$$
\begin{equation*}
C_{3} \leqslant \frac{t^{b} V_{0}(t, \theta)}{U_{b}(t, \theta)} \leqslant C_{4} \quad \text { for all } t \geqslant t_{0} \tag{1.6}
\end{equation*}
$$

Some technical estimates on $n P\left(|\langle X, \theta\rangle|>r_{n}^{-1}\right)$ as in (9.21) and (9.24) of [11] together with some asymptotic results on r_{n} as in Lemma 4.1 of [13] are also needed. In fact,

$$
\begin{equation*}
0<\inf _{n \geqslant 1} n P\left(|\langle X, \theta\rangle|>r_{n}^{-1}\right) \leqslant \sup _{n \geqslant 1} n P\left(|\langle X, \theta\rangle|>r_{n}^{-1}\right)<\infty . \tag{1.7}
\end{equation*}
$$

The law of the iterated logarithm for sums of α-stable random variables was first discovered in [8] and then generalized in various ways. See e.g. [1]-[6] and [13]. In particular, [5] established some result on the limiting behavior of weighted sums of heavy-tailed random vectors when the weights
are of uniform bounded variation. In this paper we generalize the results in [4] partly in the following way, extending the results in [5]:

Let X belong to the strict generalized domain of semistable attraction of some full $\left(c^{E}, c\right)$ operator semistable Y having no normal component. Then we have

Theorem 1.1. Let $f:[1, \infty) \rightarrow(0, \infty)$ be nondecreasing with $\lim _{x \rightarrow \infty} f(x)=\infty$. Then:
(a) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1-\varepsilon_{0}}}<\infty
$$

then for any array of real numbers $\left\{a_{n k}, 1 \leqslant k \leqslant k_{n}, n \geqslant 1\right\}$ with $k_{n} \leqslant M n$, for all $n \geqslant 1$, $\sup _{n, k}\left|a_{n k}\right| \leqslant M$ and $\sum_{k=1}^{k_{n}} a_{n k}^{2}=O\left(n^{\delta_{0}}\right)$ for some $\delta_{0}<1$, where M is a positive constant not depending on n, for any $\|\theta\|=1$ we have, for $r_{n}=r_{n}(\theta)$ and $\alpha(\theta)$ as above,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=1}^{k_{n}} \cdot a_{n k}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=0 \text { a.s. } \tag{1.8}
\end{equation*}
$$

and especially for any $\delta>0$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=1}^{k_{n}} a_{n k}\left\langle X_{k}, \theta\right\rangle\right|}{(\log n)^{(1+\delta) / \alpha(\theta)}}=0 \text { a.s. } \tag{1.9}
\end{equation*}
$$

(b) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1+\varepsilon_{0}}}=\infty
$$

then for any array of real numbers $\left\{a_{n k}, 1 \leqslant k \leqslant k_{n}, n \geqslant 1\right\}$ such that there exist two strictly increasing sequences of positive integers $l(n), m(n), n \geqslant 1$, with

$$
\sup _{n \geqslant 1}(l(n+1)-l(n))<\infty \quad \text { and } \quad \liminf _{n \rightarrow \infty}\left|a_{l(n), m(n)}\right|>0
$$

and any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=1}^{k_{n}} a_{n k}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=\infty \text { a.s. } \tag{1.10}
\end{equation*}
$$

and especially for any $0<\delta<1$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=1}^{k_{n}} a_{n k}\left\langle X_{k}, \theta\right\rangle\right|}{(\log n)^{(1-\delta) / \alpha(\theta)}}=\infty \text { a.s. } \tag{1.11}
\end{equation*}
$$

As a corollary the following law of the iterated logarithm (LIL) holds true:
Corollary 1.2. Let $\left\{a_{n k}, 1 \leqslant k \leqslant k_{n}, n \geqslant 1\right\}$ fulfill conditions (a) and (b) of Theorem 1.1. Then for any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|r_{n} \sum_{k=1}^{k_{n}} a_{n k}\left\langle X_{k}, \theta\right\rangle\right|^{1 / \operatorname{loglog} n}=e^{1 / \alpha(\theta)} \text { a.s., } \tag{1.12}
\end{equation*}
$$

where r_{n} is as above.
Complementarily to our results on the limiting behavior of weighted sums of $\left\langle X_{i}, \theta\right\rangle$ given above, we also consider the behavior of the norm of the weighted sum of the $X_{i}{ }^{\text {'s }}$. Recall that the distribution v of Y is a full (c^{E}, c) operator semistable law without normal component and let $\boldsymbol{R}^{d}=V_{1} \oplus \ldots \oplus V_{p}$ denote the spectral decomposition of \boldsymbol{R}^{d} with respect to E. Recall that $E=E^{(1)} \oplus \ldots \oplus E^{(p)}$ and that every eigenvalue of $E^{(i)}$ has real part $1 / \alpha_{i}$ for $1 \leqslant i \leqslant p$. Then Theorem 1 in [7] implies that $0<\alpha_{p}<\ldots<\alpha_{1}<2$.

In the following let X belong to the strict generalized domain of semistable attraction of a $\left(c^{E}, c\right)$ semistable law v such that (1.3) holds. In view of Theorem 8.3.7 of [11] we can assume without loss of generality that the distribution of X is spectrally compatible with v. Then the spaces V_{i} are B_{n}-invariant for all n and all $1 \leqslant i \leqslant p$, so that $B_{n}=B_{n}^{(1)} \oplus \ldots \oplus B_{n}^{(p)}$. We write $X=X^{(1)}+\ldots+X^{(p)}$ with respect to the spectral decomposition of \boldsymbol{R}^{d} obtained above and for $1 \leqslant i \leqslant p$ set $X^{(1, \ldots, i)}=X^{(1)}+\ldots+X^{(i)}$ and $B_{n}^{(1, \ldots, i)}=B_{n}^{(1)} \oplus \ldots \oplus B_{n}^{(i)}$.

Theorem 1.3. Suppose that X is in the strict generalized domain of semistable attraction of some full (c^{E}, c) operator semistable law without normal component, where $c>1$. Moreover, let $f:[1, \infty) \rightarrow(0, \infty)$ be nondecreasing with $\lim _{x \rightarrow \infty} f(x)=\infty$. Then:
(a) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1-\varepsilon_{0}}}<\infty,
$$

then for any $1 \leqslant i \leqslant p$, for any array of real numbers $\left\{a_{n k}, 1 \leqslant k \leqslant k_{n}, n \geqslant 1\right\}$ with $k_{n} \leqslant M n$, for all $n \geqslant 1, \sup _{n, k}\left|a_{n k}\right| \leqslant M$ and $\sum_{k=1}^{k_{n}} a_{n k}^{2}=O\left(n^{\delta_{0}}\right)$ for some $\delta_{0}<1$, where M is a positive constant not depending on n, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|B_{n}^{(1, \ldots, i)} \sum_{k=1}^{k_{n}} a_{n k} X_{k}^{(1, \ldots, i)}\right\|}{f(n)^{1 / \alpha_{i}}}=0 \text { a.s. } \tag{1.13}
\end{equation*}
$$

and especially for any $\delta>0$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|B_{n}^{(1, \ldots, i)} \sum_{k=1}^{k_{n}} a_{n k} X_{k}^{(1, \ldots, i)}\right\|}{(\log n)^{(1+\delta) / \alpha_{i}}}=0 \text { a.s. } \tag{1.14}
\end{equation*}
$$

(b) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1+\varepsilon_{0}}}=\infty,
$$

then for any $1 \leqslant i \leqslant p$, for any array of real numbers $\left\{a_{n k}, 1 \leqslant k \leqslant k_{n}, n \geqslant 1\right\}$ such that there exist two strictly increasing sequences of positive integers $l(n)$, $m(n), n \geqslant 1$, with

$$
\sup _{n \geqslant 1}(l(n+1)-l(n))<\infty \quad \text { and } \quad \liminf _{n \rightarrow \infty}\left|a_{l(n), m(n)}\right|>0
$$

we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|B_{n}^{(1, \ldots, i)} \sum_{k=1}^{k_{n}} a_{n k} X_{k}^{(1, \ldots, i)}\right\|}{f(n)^{1 / \alpha(\theta)}}=\infty \text { a.s. } \tag{1.15}
\end{equation*}
$$

and especially for any $0<\delta<1$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|B_{n}^{(1, \ldots, i)} \sum_{k=1}^{k_{n}} a_{n k} X_{k}^{(1, \ldots, i)}\right\|}{(\log n)^{(1-\delta) / a_{i}}}=\infty \text { a.s. } \tag{1.16}
\end{equation*}
$$

Corollary 1.4. Under the assumptions of Theorem 1.3 we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|B_{n}^{(1, \ldots, i)} \sum_{k=1}^{k_{n}} a_{n k} X_{n}^{(1, \ldots, i)}\right\|^{1 / \log \log n}=e^{1 / \alpha_{i}} \text { a.s. } \tag{1.17}
\end{equation*}
$$

2. PROOFS

To prove the convergent parts of Theorems 1.1 and 1.3 we need the following preliminary results.

Lemma 2.1 (see [2]). Let $f>0$ be a nondecreasing function with

$$
\int_{2}^{\infty} \frac{d x}{x f(x)}<\infty
$$

Then there exists a nondecreasing function $g>0$ such that

$$
g(x) \leqslant f(x), \quad \limsup _{x \rightarrow \infty} \frac{g(2 x)}{g(x)}<\infty \quad \text { and } \quad \int_{2}^{\infty} \frac{d x}{x g(x)}<+\infty
$$

Lemma 2.2. Let $\left(Z_{i}\right)_{i \leqslant N}$ be independent random variables. Set $S_{k}=\sum_{i=1}^{k} Z_{i}$, $k \leqslant N$. Then for any integer $j \geqslant 2$ there exist positive numbers C_{j} and D_{j} depending only on j such that for all $t>0$

$$
P\left\{\max _{k \leqslant N}\left|S_{k}\right|>4^{j-1} t\right\} \leqslant C_{j} P\left\{\max _{i \leqslant N}\left|X_{i}\right|>t\right\}+D_{j}\left(P\left\{\max _{k \leqslant N}\left|S_{k}\right|>t\right\}\right)^{j}
$$

Proof. The assertion follows from Proposition 6.7 of [9] by induction.
We also need the next lemma to prove the divergent parts of our main theorems.

Lemma 2.3. Let f be as in (b) of Theorem 1.1. Then there exists a nondecreasing function $g:[1, \infty) \rightarrow(0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} g(x)=\infty \quad \text { and } \quad \int_{2}^{\infty} \frac{d x}{x(f(x) g(x))^{1+\varepsilon_{0}}}=\infty
$$

Proof. The assertion follows from Lemma 2.2 of [1].
Proof of Theorem 1.1. (a) Without loss of generality we can assume that $k_{n} \geqslant n$, and by Lemma 2.1 we also can assume that $\lim _{\sup _{x \rightarrow \infty}} f(2 x) / f(x)<\infty$. Furthermore, we can also assume that M is an even integer. Directly from (4.6) of [13] we have $\sup _{n \geqslant 1} r_{n-1} r_{n}^{-1}<\infty$, and hence

$$
\sup _{n \geqslant 1} r_{n} r_{k_{n}}^{-1} \leqslant \max \left\{1,\left(\sup _{n \geqslant 1} r_{n-1} r_{n}^{-1}\right)^{M}\right\}<\infty .
$$

Consequently, we have

$$
\limsup _{n \rightarrow \infty} r_{n} f(n)^{-1 / \alpha(\theta)}\left(r_{k_{n}} f\left(k_{n}\right)^{-1 / \alpha(\theta)}\right)^{-1}<\infty
$$

Then to prove (1.8), it is enough to show that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{k_{n}} \sum_{k=1}^{k_{n}} a_{n k}\left\langle X_{k}, \theta\right\rangle\right|}{f\left(k_{n}\right)^{1 / \alpha(\theta)}}=0 \text { a.s. } \tag{2.1}
\end{equation*}
$$

By the same argument as in [10], one can assume, without loss of generality, that $k_{n}=n$ for every $n \geqslant 1$. Hence (2.1) follows from

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=1}^{n} a_{n k}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=0 \text { a.s. } \tag{2.2}
\end{equation*}
$$

Choose an integer $j \geqslant 2$ with $j\left(1-\delta_{0}\right)>1$. Then (2.2) holds if we can show that for any $\varepsilon>0$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=1}^{n} a_{n k}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / x(\theta)}} \leqslant 4^{j-1} \cdot 3 M \varepsilon \text { a.s. } \tag{2.3}
\end{equation*}
$$

Note that, by (1.5) and (1.7) and our assumptions of f, for any $b>0$ and some constant $C>0$ we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} P\left\{r_{n}\left|\left\langle X_{n}, \theta\right\rangle\right|>\right. & \left.b^{-1} \varepsilon f(n)^{1 / \alpha(\theta)}\right\} \leqslant C \sum_{n=1}^{\infty} f(n)^{-1+\varepsilon_{0}} P\left\{r_{n}\left|\left\langle X_{n}, \theta\right\rangle\right|>1\right\} \\
& \leqslant C \sup _{n \geqslant 1} n P\left\{r_{n}\left|\left\langle X_{n}, \theta\right\rangle\right|>1\right\} \sum_{n=1}^{\infty}\left(n f(n)^{1-\varepsilon_{0}}\right)^{-1}<\infty
\end{aligned}
$$

Note that by (4.7) of [13] we have $b=\sup _{n \geqslant 1} \sup _{1 \leqslant k \leqslant n} r_{n} r_{k}^{-1}<\infty$. Then the monotonicity of f together with the Borel-Cantelli lemma implies that

$$
\sum_{k=1}^{n} r_{n}\left|\left\langle X_{k}, \theta\right\rangle\right| I\left(r_{n}\left|\left\langle X_{k}, \theta\right\rangle\right|>\varepsilon f(n)^{1 / \alpha(\theta)}\right)
$$

is bounded almost surely. Therefore

$$
\frac{r_{n} \sum_{k=1}^{n} a_{n k}\left|\left\langle X_{k}, \theta\right\rangle\right| I\left(r_{n}\left|\left\langle X_{k}, \theta\right\rangle\right|>\varepsilon f(n)^{1 / \alpha(\theta)}\right)}{f(n)^{1 / \alpha(\theta)}} \rightarrow 0 \text { a.s. }
$$

Hence to prove (2.3) it enough to show that
(2.4) $\quad \limsup _{n \rightarrow \infty} \frac{r_{n}\left|\sum_{k=1}^{n} a_{n k}\left\langle X_{k}, \theta\right\rangle I\left(r_{n}\left|\left\langle X_{k}, \theta\right\rangle\right| \leqslant \varepsilon f(n)^{1 / \alpha(\theta)}\right)\right|}{f(n)^{1 / \alpha(\theta)}}$

$$
\leqslant 4^{j-1} \cdot 3 M \varepsilon \text { a.s. }
$$

Before we prove (2.4) we first show that

$$
\begin{equation*}
\frac{r_{n} \sum_{k=1}^{n}\left\langle X_{k}, \theta\right\rangle-n r_{n} E\langle X, \theta\rangle I\left(r_{n}|\langle X, \theta\rangle| \leqslant \varepsilon f(n)^{1 / \alpha(\theta)}\right)}{f(n)^{1 / \alpha(\theta)}} \rightarrow 0 \text { in probability. } \tag{2.5}
\end{equation*}
$$

In fact, for $\tilde{\varepsilon}>0$ decompose

$$
\begin{aligned}
& P\left\{\left|\sum_{k=1}^{n} r_{n}\left\langle X_{k}, \theta\right\rangle-n r_{n} E\langle X, \theta\rangle I\left(r_{n}|\langle X, \theta\rangle| \leqslant \varepsilon f(n)^{1 / \alpha(\theta)}\right)\right| \geqslant \tilde{\varepsilon} f(n)^{1 / \alpha(\theta)}\right\} \\
& \leqslant \\
& \quad P\left(\bigcup_{k=1}^{n}\left\{r_{n}\left|\left\langle X_{k}, \theta\right\rangle\right|>\varepsilon f(n)^{1 / \alpha(\theta)}\right\}\right) \\
& \quad+P\left\{\mid \sum_{k=1}^{n} r_{n}\left\langle X_{k}, \theta\right\rangle I\left(r_{n}\left|\left\langle X_{k}, \theta\right\rangle\right| \leqslant \varepsilon f(n)^{1 / \alpha(\theta)}\right)\right. \\
& \left.\quad-n r_{n} E\langle X, \theta\rangle I\left(r_{n}|\langle X, \theta\rangle| \leqslant \varepsilon f(n)^{1 / \alpha(\theta)}\right) \mid \geqslant \tilde{\varepsilon} f(n)^{1 / \alpha(\theta)}\right\} \\
& =I_{1}+I_{2} .
\end{aligned}
$$

Now, by (1.5) and (1.7),

$$
\begin{aligned}
I_{1} & \leqslant n P\left\{r_{n}|\langle X, \theta\rangle|>\varepsilon f(n)^{1 / \alpha(\theta)}\right\} \\
& \leqslant C_{2}\left(\sup _{n \geqslant 1} n P\left\{r_{n}|\langle X, \theta\rangle|>1\right\}\right) f(n)^{-\left(1-\varepsilon_{0}\right)} \rightarrow 0 .
\end{aligned}
$$

Moreover, by Chebyshev's inequality together with (1.6) we conclude that for some constants $C_{1}, C_{2}>0$ we have

$$
\begin{aligned}
I_{2} & \leqslant C_{1} n r_{n}^{2} f(n)^{-2 / \alpha(\theta)} U_{2}\left(r_{n}^{-1} f(n)^{1 / \alpha(\theta)} \varepsilon, \theta\right) \\
& \leqslant C_{2} n P\left\{r_{n}|\langle X, \theta\rangle|>\varepsilon f(n)^{1 / \alpha(\theta)}\right\} \rightarrow 0
\end{aligned}
$$

proving (2.5). Since $\left(r_{n} \sum_{k=1}^{n}\left\langle X_{k}, \theta\right\rangle\right)$ is stochastically compact, (2.5) implies

$$
\frac{n r_{n} E\langle X, \theta\rangle I\left(r_{n}|\langle X, \theta\rangle| \leqslant \varepsilon f(n)^{1 / \alpha(\theta)}\right)}{f(n)^{1 / \alpha(\theta)}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

It follows that

$$
\begin{align*}
& \frac{\left|r_{n} \sum_{k=1}^{n} a_{n k} E\left\langle X_{k}, \theta\right\rangle I\left(r_{n}|\langle X, \theta\rangle| \leqslant \varepsilon f(n)^{1 / \alpha(\theta)}\right)\right|}{f(n)^{1 / \alpha(\theta)}} \tag{2.6}\\
& \quad \leqslant \frac{M n r_{n}\left|E\langle X, \theta\rangle I\left(r_{n}|\langle X, \theta\rangle| \leqslant \varepsilon f(n)^{1 / \alpha(\theta)}\right)\right|}{f(n)^{1 / \alpha(\theta)}} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{align*}
$$

Let $U_{n k}=r_{n}\left\langle X_{k}, \theta\right\rangle I\left(r_{n}\left|\left\langle X_{k}, \theta\right\rangle\right| \leqslant \varepsilon f(n)^{1 / \alpha(\theta)}\right)$. In view of (2.6), to prove (2.4), it is enough to show that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|\sum_{k=1}^{n} a_{n k}\left(U_{n k}-E U_{n k}\right)\right|}{f(n)^{1 / \alpha(\theta)}} \leqslant 4^{j-1} \cdot 3 M \varepsilon \text { a.s. } \tag{2.7}
\end{equation*}
$$

By the Borel-Cantelli lemma, it is enough to prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left\{\left|\sum_{k=1}^{n} a_{n k}\left(U_{n k}-E U_{n k}\right)\right|>4^{j-1} \cdot 3 M \varepsilon f(n)^{1 / \alpha(\theta)}\right\}<\infty \tag{2.8}
\end{equation*}
$$

In view of Lemma 2.2, (2.8) follows from

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left\{\max _{1 \leqslant k \leqslant n}\left|a_{n k}\left(U_{n k}-E U_{n k}\right)\right|>3 M \varepsilon f(n)^{1 / \alpha(\theta)}\right\}<\infty \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P\left\{\sum_{k=1}^{n}\left|a_{n k}\left(U_{n k}-E U_{n k}\right)\right|>3 M \varepsilon f(n)^{1 / \alpha(\theta)}\right\}\right)^{j}<\infty . \tag{2.10}
\end{equation*}
$$

Since $\max _{1 \leqslant k \leqslant n}\left|a_{n k}\left(U_{n k}-E U_{n k}\right)\right| \leqslant 2 M \varepsilon f(n)^{1 / \alpha(\theta)}$, for every $n \geqslant 1$, we know that $P\left\{\max _{1 \leqslant k \leqslant n}\left|a_{n k}\left(U_{n k}-E U_{n k}\right)\right|>3 M \varepsilon f(n)^{1 / \alpha(\theta)}\right\}=0$, so (2.9) holds true.

By Chebyshev's inequality together with (1.5) and (1.6), we have for some constant $C>0$

$$
\begin{aligned}
P\left\{\sum_{k=1}^{n}\left|a_{n k}\left(U_{n k}-E U_{n k}\right)\right|>\right. & \left.3 M \varepsilon f(n)^{1 / \alpha(\theta)}\right\} \\
& \leqslant C\left(\sum_{k=1}^{n} a_{n k}^{2}\right) r_{n}^{2} f(n)^{-2 / \alpha(\theta)} U_{2}\left(r_{n}^{-1} f(n)^{1 / \alpha(\theta)} \varepsilon, \theta\right) \\
& \leqslant n^{\delta_{0}} P\left\{r_{n}|\langle X, \theta\rangle|>\varepsilon f(n)^{1 / \alpha(\theta)}\right\} \leqslant n^{\delta_{0}-1}
\end{aligned}
$$

Since $j\left(1-\delta_{0}\right)>1$, (2.10) follows at once. Hence (2.7) holds true.
(b) The proof is similar to the proof of Theorem 1.1 (b) in [5], so we omit it. See also the proof of Theorem 1.5 in [5].

Before we give a proof of Theorem 1.3 and its corollary, similar to that in [13], we first prove a special case sufficient for our purpose. Recall from [11] that a $\left(c^{E}, c\right)$ operator semistable law is called spectrally simple if every eigenvalue of E has the same real part.

Proposition 2.4. Let the distribution of Y be a full $\left(c^{E}, c\right)$ operator semistable, spectrally simple, nonnormal law on a finite-dimensional vector space V and let X belong to the strict generalized domain of semistable attraction of Y, i.e. (1.3) holds. Let $f:[1, \infty] \rightarrow(0, \infty)$ be nondecreasing with $\lim _{x \rightarrow \infty} f(x)=\infty$. Then:
(a) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1-\varepsilon_{0}}}<\infty
$$

then for any array of real numbers $\left\{a_{n k}, 1 \leqslant k \leqslant k_{n}, n \geqslant 1\right\}$ with $k_{n} \leqslant M n$, for all $n \geqslant 1$, $\sup _{n, k}\left|a_{n k}\right| \leqslant M$ and $\sum_{k=1}^{k_{n}} a_{n k}^{2}=O\left(n^{\delta_{0}}\right)$ for some $\delta_{0}<1$, where M is a positive constant not depending on n, we have

$$
\limsup _{n \rightarrow \infty} \frac{\left\|B_{n} \sum_{k=1}^{k_{n}} a_{n k} X_{k}\right\|}{f(n)^{1 / \alpha}}=0 \text { a.s. }
$$

(b) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1+\varepsilon_{0}}}=\infty
$$

then for any array of real numbers $\left\{a_{n k}, 1 \leqslant k \leqslant k_{n}, n \geqslant 1\right\}$ such that there exist two strictly increasing sequences of positive integers $l(n), m(n), n \geqslant 1$, with

$$
\sup _{n \geqslant 1}(l(n+1)-l(n))<\infty \quad \text { and } \quad \liminf _{n \rightarrow \infty}\left|a_{l(n), m(n)}\right|>0
$$

we have

$$
\limsup _{n \rightarrow \infty} \frac{\left\|B_{n} \sum_{k=1}^{k_{n}} a_{n k} X_{k}\right\|}{f(n)^{1 / \alpha}}=\infty \text { a.s. }
$$

where $B_{n} \in R V(-E)$ is the embedding sequence and $1 / \alpha$ is the real part of the eigenvalues of E.

Proof. (a) By the same argument as in the proof of Theorem 1.1, we can assume that $k_{n}=n$ for every $n \geqslant 1$. Hence it is enough to prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|B_{n} \sum_{k=1}^{n} a_{n k} X_{k}\right\|}{f(n)^{1 / \alpha}}=0 \text { a.s. } \tag{2.11}
\end{equation*}
$$

Let $\left\{\theta^{(1)}, \ldots, \theta^{(m)}\right\}$ be an orthonormal basis of V. Since

$$
\left\|B_{n} \sum_{k=1}^{n} a_{n k} X_{k}\right\|^{2}=\left|\left\langle B_{n} \sum_{k=1}^{n} a_{n k} X_{k}, \theta^{(1)}\right\rangle\right|^{2}+\ldots+\left|\left\langle B_{n} \sum_{k=1}^{n} a_{n k} X_{k}, \theta^{(m)}\right\rangle\right|^{2},
$$

to prove (2.11) it suffices to show that for any $1 \leqslant j \leqslant m$ we have

$$
\begin{equation*}
\frac{\left|\left\langle B_{n} \sum_{k=1}^{k_{n}} a_{n k} X_{k}, \theta^{(j)}\right\rangle\right|}{f(n)^{1 / \alpha}} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty \tag{2.12}
\end{equation*}
$$

Fix any $1 \leqslant j \leqslant m$, write $B_{n}^{*} \theta^{(j)}=r_{n} \theta_{n}$ for some $r_{n}>0$ and $\left\|\theta_{k}\right\|=1$. Hence to prove (2.12) it is enough to show that

$$
\begin{equation*}
\frac{r_{n}\left|\left\langle\sum_{k=1}^{n} a_{n k} X_{k}, \theta_{n}\right\rangle\right|}{f(n)^{1 / \alpha}} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty \tag{2.13}
\end{equation*}
$$

Following the proof of Theorem 1.1, using the uniform R-O variation results obtained in [14] instead of (1.5), (1.6) and (1.7), we get (2.13). We leave the details to the reader.
(b) The proof is similar to the proof of Theorem 1.1. See also [5].

Proof of Theorem 1.3. Using Proposition 2.4, we obtain the result of Theorem 1.3 along the lines of the proof of Theorem 2.6 in [13].

3. APPLICATIONS

In this section, as applications of Theorem 1.1, we will discuss the corresponding results for some classical summability methods. For the Cesàro method, Riesz method, by the same argument as in [10] we have:

Theorem 3.1 (Cesàro method). Let $0<\alpha<1$ and $f:[1, \infty) \rightarrow(0, \infty)$ be nondecreasing with $\lim _{x \rightarrow \infty} f(x)=\infty$. Then:
(a) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1-\varepsilon_{0}}}<\infty,
$$

then for any $\|\theta\|=1$ we have, for $r_{n}=r_{n}(\theta)$ and $\alpha(\theta)$ as above,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=0}^{n} A_{n-k}^{\alpha-1}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=0 \text { a.s. } \tag{3.1}
\end{equation*}
$$

and especially for any $\delta>0$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=0}^{n} A_{n-k}^{\alpha-1}\left\langle X_{k}, \theta\right\rangle\right|}{(\log n)^{(1+\delta) / \alpha(\theta)}}=0 \text { a.s. } \tag{3.2}
\end{equation*}
$$

(b) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1+\varepsilon_{0}}}=\infty,
$$

then for any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=0}^{n} A_{n-k}^{\alpha-1}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=\infty \text { a.s. } \tag{3.3}
\end{equation*}
$$

and especially for any $0<\delta<1$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=0}^{n} A_{n-k}^{\alpha-1}\left\langle X_{k}, \theta\right\rangle\right|}{(\log n)^{(1-\delta) / \alpha(\theta)}}=\infty \text { a.s. } \tag{3.4}
\end{equation*}
$$

where for any $\beta>-1, A_{0}^{\beta}=1$ and $A_{j}^{\beta}=(\beta+1) \ldots(\beta+j) / j$! for every $j \geqslant 1$.
Corollary 3.2. For any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|r_{n} \sum_{k=0}^{n} A_{n-k}^{\alpha-1}\left\langle X_{k}, \theta\right\rangle\right|^{1 / \log \log n}=e^{1 / \alpha(\theta)} \text { a.s. } \tag{3.5}
\end{equation*}
$$

where r_{n} is as above.
Theorem 3.3 (Riesz method or delayed method). Let $p>1$ and $f:[1, \infty) \rightarrow$ $(0, \infty)$ be nondecreasing with $\lim _{x \rightarrow \infty} f(x)=\infty$. Then
(a) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1-\varepsilon_{0}}}<\infty,
$$

then for any $\varepsilon>0$ and for any $\|\theta\|=1$ we have, for $r_{n}=r_{n}(\theta)$ and $\alpha(\theta)$ as above,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=n}^{n+e n^{1 / p}}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=0 \text { a.s. } \tag{3.6}
\end{equation*}
$$

and especially for any $\delta>0$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=n}^{n+\varepsilon n^{1 / p}}\left\langle X_{k}, \theta\right\rangle\right|}{(\log n)^{(1+\delta) / \alpha(\theta)}}=0 \text { a.s. } \tag{3.7}
\end{equation*}
$$

(b) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1+\varepsilon_{0}}}=\infty,
$$

then for any $\varepsilon>0$ and for any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=n}^{n+\varepsilon n^{1 / p}}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=\infty \text { a.s. } \tag{3.8}
\end{equation*}
$$

and especially for any $0<\delta<1$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sum_{k=n}^{n+\varepsilon n^{1 / p}}\left\langle X_{k}, \theta\right\rangle\right|}{(\log n)^{(1-\delta) / \alpha(\theta)}}=\infty \text { a.s. } \tag{3.9}
\end{equation*}
$$

Corollary 3.4. For any $p>1$, any $\varepsilon>0$ and for any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|r_{n} \sum_{k=n}^{n+\varepsilon n^{1 / p}}\left\langle X_{k}, \theta\right\rangle\right|^{1 / \log \log n}=e^{1 / \alpha(\theta)} \text { a.s., } \tag{3.10}
\end{equation*}
$$

where r_{n} is as above.
For the Euler method, we have
Theorem 3.5 (Euler method). Let $0<q<1$ and $f:[1, \infty) \rightarrow(0, \infty)$ be nondecreasing with $\lim _{x \rightarrow \infty} f(x)=\infty$. Then:
(a) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1-\varepsilon_{0}}}<\infty
$$

then for any $\|\theta\|=1$ we have, for $r_{n}=r_{n}(\theta)$ and $\alpha(\theta)$ as above,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sqrt{n} \sum_{k=0}^{n} C_{n}^{k} q^{k}(1-q)^{n-k}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=0 \text { a.s. } \tag{3.11}
\end{equation*}
$$

and especially for any $\delta>0$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sqrt{n} \sum_{k=0}^{n} C_{n}^{k} q^{k}(1-q)^{n-k}\left\langle X_{k}, \theta\right\rangle\right|}{(\log n)^{(1+\delta) / \alpha(\theta)}}=0 \text { a.s. } \tag{3.12}
\end{equation*}
$$

(b) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1+\varepsilon_{0}}}=\infty
$$

then for any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sqrt{n} \sum_{k=0}^{n} C_{n}^{k} q^{k}(1-q)^{n-k}\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=\infty \text { a.s. } \tag{3.13}
\end{equation*}
$$

and especially for any $0<\delta<1$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|r_{n} \sqrt{n} \sum_{k=0}^{n} C_{n}^{k} q^{k}(1-q)^{n-k}\left\langle X_{k}, \theta\right\rangle\right|}{(\log n)^{(1-\delta) / \alpha(\theta)}}=\infty \text { a.s. } \tag{3.14}
\end{equation*}
$$

where $C_{n}^{k}=n!/(k!(n-k)!)$ for any $n \geqslant 1$ and $0 \leqslant k \leqslant n$.
Corollary 3.6. For any $0<q<1$ and any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|r_{n} \sqrt{n} \sum_{k=0}^{n} C_{n}^{k} q^{k}(1-q)^{n-k}\left\langle X_{k}, \theta\right\rangle\right|^{1 / \log \log n}=e^{1 / \alpha(\theta)} \text { a.s. } \tag{3.15}
\end{equation*}
$$

where r_{n} is as above.
For Borel's method we have

Theorem 3.7 (Borel method). Let $f:[1, \infty) \rightarrow(0, \infty)$ be nondecreasing with $\lim _{x \rightarrow \infty} f(x)=\infty$. Then:
(a) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1-\varepsilon_{0}}}<\infty,
$$

then for any $\|\theta\|=1$ we have, for $r_{n}=r_{n}(\theta)$ and $\alpha(\theta)$ as above,

$$
\begin{equation*}
\limsup _{\lambda \rightarrow \infty} \frac{\left|r_{[\lambda]} \sqrt{\lambda} e^{-\lambda} \sum_{k=0}^{\infty}\left(\lambda^{k} / k!\right)\left\langle X_{k}, \theta\right\rangle\right|}{f(\lambda)^{1 / \alpha(\theta)}}=0 \text { a.s. } \tag{3.16}
\end{equation*}
$$

and especially for any $\delta>0$

$$
\begin{equation*}
\limsup _{\lambda \rightarrow \infty} \frac{\left|r_{[\lambda]} \sqrt{\lambda} e^{-\lambda} \sum_{k=0}^{\infty}\left(\lambda^{k} / k!\right)\left\langle X_{k}, \theta\right\rangle\right|}{(\log \lambda)^{(1+\delta) / \alpha(\theta)}}=0 \text { a.s. } \tag{3.17}
\end{equation*}
$$

(b) If there exists an $\varepsilon_{0}>0$ such that

$$
\int_{2}^{\infty} \frac{d x}{x f(x)^{1+\varepsilon_{0}}}=\infty,
$$

then for any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{\lambda \rightarrow \infty} \frac{\left|r_{[\lambda]} \sqrt{\lambda} e^{-\lambda} \sum_{k=0}^{\infty}\left(\lambda^{k} / k!\right)\left\langle X_{k}, \theta\right\rangle\right|}{f(\lambda)^{1 / \alpha(\theta)}}=\infty \text { a.s. } \tag{3.18}
\end{equation*}
$$

and especially for any $0<\delta<1$

$$
\begin{equation*}
\limsup _{\lambda \rightarrow \infty} \frac{\left|r_{[\lambda]} \sqrt{\lambda} e^{-\lambda} \sum_{k=0}^{\infty}\left(\lambda^{k} / k!\right)\left\langle X_{k}, \theta\right\rangle\right|}{(\log \lambda)^{(1-\delta) / \alpha(\theta)}}=\infty \text { a.s., } \tag{3.19}
\end{equation*}
$$

where $[x]$ denotes the largest integer less than or equal to x.
Proof. It is enough to prove part (a). By Lemma 2.1, we can assume that $\lim \sup _{x \rightarrow \infty} f(2 x) / f(x)<\infty$. Since

$$
\sup _{n \leqslant \lambda<n+1}\left|\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}\left\langle X_{k}, \theta\right\rangle\right| \leqslant \sum_{k=0}^{\infty} \frac{(n+1)^{k}}{k!}\left|\left\langle X_{k}, \theta\right\rangle\right|
$$

and $\sup _{n \geqslant 1} r_{n} r_{n+1}^{-1}<\infty$, it is enough to prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{r_{n} \sqrt{n} e^{-n} \sum_{k=0}^{\infty}\left((n+1)^{k} / k!\right)\left|\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=0 \text { a.s. } \tag{3.20}
\end{equation*}
$$

Take any $0<t<\min \{1, \alpha(\theta)\}$. Then, by Theorem 16 of [12], there exists an integer $M>1$ such that

$$
\sum_{k \geqslant M n+1}\left(e^{-n} \frac{n^{k}}{k!}\right)^{t} \leqslant C n^{-(1+t / 2)} .
$$

Hence, by Markov's inequality, for any $\varepsilon>0$ and some constant $C>0$

$$
P\left\{r_{n} \sqrt{n} e^{-n} \sum_{k \geqslant M n+1} \frac{n^{k}}{k!}\left|\left\langle X_{k}, \theta\right\rangle\right|>\varepsilon f(n)^{1 / \alpha(\theta)}\right\} \leqslant C n^{-1} r_{n}^{t} E|\langle X, \theta\rangle|^{t} .
$$

Since $E|\langle X, \theta\rangle|^{t}<\infty$ and (1.4) holds true, by the Borel-Cantelli lemma, we get

$$
\underset{n \rightarrow \infty}{\limsup } \frac{r_{n} \sqrt{n} e^{-n} \sum_{k \geqslant M n+1}\left|\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 /(\theta)}}=0 \text { a.s. }
$$

Then (3.20) follows from

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{r_{n} \sqrt{n} e^{-n} \sum_{k=0}^{M n}\left(n^{k} / k!\right)\left|\left\langle X_{k}, \theta\right\rangle\right|}{f(n)^{1 / \alpha(\theta)}}=0 \text { a.s. } \tag{3.21}
\end{equation*}
$$

Let $a_{n k}=\sqrt{n} e^{-n}\left(n^{k} / k!\right), n \geqslant 1,0 \leqslant k \leqslant M n$. A slight modification of the proof of Theorem 1.1 yields (3.21). This completes the proof of Theorem 3.7.

As a corollary the following law of the iterated logarithm (LIL) holds true:
Corollary 3.8. For any $\|\theta\|=1$ we have

$$
\begin{equation*}
\limsup _{\lambda \rightarrow \infty}\left|r_{[\lambda]} \sqrt{\lambda} e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}\left\langle X_{k}, \theta\right\rangle\right|^{1 / \log \log \lambda}=e^{1 / \alpha(\theta)} \text { a.s. } \tag{3.22}
\end{equation*}
$$

where r_{n} is as above.
Results similar to Theorems 3.1, 3.3, 3.5, and 3.7 and respective corollaries also hold true for $X^{(1, \ldots, i)}$. We leave the formulation and the proofs to the interested reader.

REFERENCES

[1] P. Y. Chen, Limiting behavior of weighted sums with stable distributions, Statist. Probab. Lett. 60 (2002), pp. 367-375.
[2] P. Y. Chen and Q. P. Chen, LIL for φ-mixing sequence of random variables (in Chinese), Acta Math. Sinica 46 (3) (2003), pp. 571-580.
[3] P. Y. Chen and L. H. Huang, On the law of the iterated logarithm for geometric series of stable distribution (in Chinese), Acta Math. Sinica 43 (2000), pp. 1063-1070.
[4] P. Y. Chen and X. D. Liu, Law of the iterated logarithm for the weighted partial sums (in Chinese), Acta Math. Sinica 46 (5) (2003), pp. 999-1006.
[5] P. Y. Chen and H. P. Scheffler, Limiting behavior of weighted sums of heavy-tailed random vectors, Publ. Math. Debrecen (2004), to appear.
[6] P. Y. Chen and J. H. Yu, On Chover's LIL for the weighted sums of stable random variables, Acta Math. Sci. 23B (1) (2003), pp. 74-82.
[7] V. Chorny, Operator semistable distributions on R^{d}, Theory Probab. Appl. 57 (1986), pp. 703-705.
[8] J. Chover, A law of the iterated logarithm for stable summands, Proc. Amer. Math. Soc. 17 (1966), pp. 441-443.
[9] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin 1991.
[10] D. Li, M. B. Rao, T. F. Jiang and X. C. Wang, Complete convergence and almost sure convergence of weighted sums of random variables, J. Theoret. Probab. 8 (1995), pp. 49-76.
[11] M. M. Meerschaert and H. P. Scheffler, Limit Distributions for Sums of Independent Random Vectors, Wiley, New York 2001.
[12] V. V. Peterov, Sums of Independent Random Variables, Springer, New York 1975.
[13] H. P. Scheffler, A law of the iterated logarithm for heavy-tailed random vectors, Probab. Theory Related Fields 116 (2000), pp. 257-271.
[14] H. P. Scheffler, Multivariate R-O varying measures. Part I: Uniform bounds, Proc. London Math. Soc. 81 (2000), pp. 231-256.
[15] H. P. Scheffler, Norming operators for generalized domains of semistable attraction, Publ. Math. Debrecen 58 (2001), pp. 391-409.

Chen Pingyan
Department of Mathematics
Jinan University
Guangzhou, 510630, P.R. China
E-mail: chenpingyan@263.net

Hans-Peter Scheffler
Department of Mathematics
University of Nevada
Reno, NV 89557
E-mail: pscheff@unr.edu

