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1. INTRODUCTION 

Let 5, t(l), 5(2)1 . .. be a sequence of i.i.d. random vectors taking values in 
Rd, d 2 1. Denote by B the covariance matrix of (. We assume that this matrix 
exists and, furthermore, is positive definite, i.e. the underlying distribution is 
strictly d-dimensional. Moreover, we assume that ES, = 0, k = 1, . . ., d, where 
5 = (tl, . . ., ta). Consider the sums [(") = 5") +. . . + t("), n = 1, 2, . . . By the CLT, 
as la-co 

(1.1) P (n- ' I 2  C'") E A) --, (P(o,B) Ad I ~ x )  
A 

for any set A being the set of continuity of the Lebesgue measure A,. Here 
tp[~,~)(x) denotes the density of the normal distribution in Rd having the zero 
vector of expectation and the covariance matrix B. 

If in (1.1) the set A = A,, i.e. A varies as n + a, and 

n-1/2inf(Ixl: XEA,) -, co, 
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then from (1.1) it follows that P (n-lI2 ~(" IE A,) -t 0. The problem arises: how to 
establish an asymptotic formula for P (n-li2 (("'E A,)? Such a problem is called 
the large deviation problem. 

The large deviation theory for the sums of i.i.d. scalar random variables is 
well developed. The overview of [14] gives an impression about the state of the 
theory to the end of the seventies. Among the works which appeared later on, 
the series of papers written by Rozovskii (see e.g. [16]) are worth mentioning. 

As to the sums of i.i.d. random vectors such works as [17], [6], [2], 1151 
should be mentioned in the first turn. The volume of this paper does not allow 
us to analyze the present state of that part of the large deviation theory which 
deals with i.i.d. random vectors. We emphasize only that our attentiqn is fo- 
cused on an extension of the local theorem proved in 161. 

Thus, we stay within the frame of the classical large deviation theory that 
has not very much in common with the modern theory presented in Dembo and 
Zeitouni [fly Deuschel and Stroock [Sly Ellis 191, Bahadur and Zabell [I], etc. 

As in [6] we assume that the underlying distribution is absolutely con- 
tinuous and the so-called Cramdr condition holds, i.e. 

(1.2) f (s) = ~ e { ~ ~ ~ >  = I e('+*) p (x) Ad (dx) < GO, s E S ,  
R d 

where S is an open subset of Rd having 0 = (0, . . ., 0) as an interior point. 
Denote by M(s)  and M (s), respectively, the gradient and the matrix of the 

second partial derivatives (hessian) of In f (s). Let X be the image of S under the 
mapping M (s). 

The following form of the local limit theorem was established in [ 6 ] .  

THEOREM 1.1. Let the underlying density p(x) be uniJormly bounded. k t ,  
further, p,(x) be the n-th convolution of p(x). If (1.2) isfuIJilled, then as n + co 

Here XI is a compact subset of X while 

e (x) = inf e -<"."> f (s) . 
SES 

and 
$, (x) = ( ~ l m n ) - ~ ~ ~  (det M (s (x)))- 'I2, s (x) = M-I  (x). 

Such a fact allows asymptotic analysis of the large deviation probability 
P(n- l t2  l(") E A3 for various sequences {A,). 

The question is: how to extend the relation (1.3) to the whole X? It should 
be emphasized that the situation admits huge variety of possible configurations 
of S and X. So one should try to classify them somehow. We set off the 
following special cases : 
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(1) both S and X coincide with Rd; 
(2) S is bounded while X = Rd; 
(3) X is bounded while S = Wd. 
The present paper concerns the first of these cases. As to the second one it 

is analyzed in [13] (see also [12]). The third case was studied in [18]. 
It is evident that the desired extension requires additional restrictions on 

the underlying density p(x). They concern certain regularity of the asymptotic 
behavior of p (x) as 1x1 + m . Such a regularity aims at proving a version of the 
Abel type theorem which establishes the asymptotic off (s) as s + BS. In the 
process of proving the Abel theorem we simultaneously predict asymptotic 
properties of the so-called conjugate density. So, the Abel theorem plays a key 
role within the framework of the considered problem, 

We assume that as 1x1 + rn 

(1.4) p (x) = eAr(lxl)(l + T (x)), 

where 

I and r ( t )  is saciently smooth (see Section 2). 
Obviously, (1.4) implies S = Rd. It is easy to show that X = Rd as well. Of 

course, the condition does not exhaust the whole case S = X = Rd. Never- 
theless, it determines a very rich class of distributions which contains, in par- 
ticular, the spherically invariant densities p (x) = q (lxt), q (t) = e-'(*). 

Consider the elliptically contoured density 

p(A) (x) = (de t A)'/' q ((x AX) 'I2), 

where A is a positive definite matrix. Denote by piA)(x) the n-th convolution of 
ptA)(x). For x = A-112 u we have 

pLA) (x) = (det A)- lJ2 PiAA) (A-  ' I 2  er)  = p, (u), 

where p,(u) is the n-th convolution of p(u) = q(lu1). It means that the relation 

being proved for a spherically invariant underlying density p (x) = q (lxl), is 
immediately extended to all elliptically contoured densities which are deter- 
mined by the weight function q(t). 

Obviously, it remains true for densities which are spherically invariant 
only asymptotically (see (1.4)). So, the condition (1.4) is well motivated. 

The paper is organized as follows. In Section 2 we state our basic result. 
Section 3 contains auxiliary facts concerning the class S. The proof of the Abel 
theorem is given in Section 4. In Section 5 we prove the local limit theorem for 
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the conjugate distributions. The basic result is derived in Section 6 as an 
immediate corollary to that theorem. Some statistical applications and other 
concluding remarks are given in Section 7. 

2. REGULAWITY CONDITIONS AND THE BASIC RESULT 

It is convenient to state the regularity conditions imposed on r ( t )  in terms 
of its derivative. Let us put h(t)  = rl ( t ) .  We have to distinguish between the 
following three classes: 

( 1 )  h ( t )  is of slow variation as t 4 a; 
(2) h( t )  is of regular variation as t + a; 
(3) h( t )  tends to iAnity faster than any power of t .  
These three cases cover all the possible rates of growth of r ( t )  which are 

compatible with the assumption that S = Rd. 
Recall that a positive measurable function I(t) defined on (0, co) is d slow 

variation as t  + oo if for any fixed c > 0 

It is well known that a slow varying function admits the Karamata representation 

where lim,,, a(t) = a, > 0, lim,, , E ( t )  = 0 (see e.g. [ 5 ] ,  Theorem 1.3.1). 
Denote by 9 the class of slowly varying functions as t + co admitting the 

following representation: 

where E (t) is differentiable. 
The following definition relates to the first of the above cases. 

D m m ~  2.1. We say that h ( t )  E Y c 9 if the function E (t) in (2.1) satis- 
fies the following conditions : 

tE' ( t )  
lim - - " E ( t )  - 0 ,  J T d t = m  
t + m  ~ ( t )  1 

and for some q ~(0, 1J4) 

Obviously, if h(t)  E 9, then it monotonically increases for all sufficiently 
large t  and h (co) = co . 
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DEFINITION 2.2. We say that h (t) E 8 if it is of regular variation with ex- 
ponent u > 0 and admits the representation 

(2,4) ' h (t) = t" 1 ( t )  , 

where i ( t ) ~  9 and additionally in (2.1) 

lim t  IE' (t)l < cc 
$-'a3 

The following definition specifies the third case. 

DWINITICIN 2.3. We say that a continuous function h (t)  G 9 if it strictly 
monotonically increases and its inverse function m(t )  belongs to Y .  

Set A? = 9 u 9? u 9. It is easily seen that the class S restricts the regu- 
larity but not the rate of growth of the functions which belong to it. The 
class contains, for example, such d8erent functions as, say, the k-th iterations 
of l n x  and ex. Practically, the whole spectrum of possible growth rates is cov- 
ered by A?. 

The following theorem contains our basic result. 

THEOREM 2.4. If the underlying density is uniformly bounded and satisfies 
(1.4) where J ( t ) € H ,  then the relation (1.5) holds. 

3. ASYMPTOTIC PROPERTIES 
OF THE FUNCTIONS BELONGING TO 2 

It is convenient to adopt the following notation. We write a ( t)  = p ( t )  if 

By ex we denote the unit vector which is collinear to x €Rd, i.e. ex = 1x1 - ' x.  
Let c be any positive constant whose concrete value is of no importance, i.e. 
c is, strictly speaking, not the same in different places. By w(t) we denote 
any nonnegative function such that lim,,, w (t) = 0. Finally, 0 is any variable 
taking values in [- 1, 11. 

In order to study the asymptotic properties of the moment generating 
function we have to make use of the so-called Laplace method. This method is 
based on the approximation of the integrand in a certain neighborhood of its 
point of maximum. The asymptotic itself depends both on the maximum of the 
integrand and on how acute is that maximum. The latter, in view of (1.4), 
requires knowing the analytic properties of the function r (1x1). Straightforward 
calculation shows that 



302 D. Juszczak and A. V. Nagaev 

and 

where I is the unit matrix. 
The derivatives of the third order are 

It  is worth noting that for all h ( t ) ~ P  the second derivative h" ( t )  exists, 
and if h ( t ) ~ S ,  then hf'( t )+ co, t + m .  Let 

V = V ( x )  = hess r (1x1). 

It is easily seen that for any x € R d  the matrix V is positive definite with eigenvalues 

Furthermore, V ( x )  e = 1, (1x1) e for all e I ex while V (x)  ex = A, (1x1) ex.  It means 
that the multiplicity of A,  (1x1) equals d -  1 and the eigenvector ex corresponds 
to &(lxl). 

LEMMA 3.1. Let t -, a. If h ( t ) ~ x  then 

(3.5) 1 2  0) = 0 (11 It)); 

if h ( t )  E W ,  then 

(3.6) A, (0 =: 1, 0); 
but if h ( t )  E 9, then 

(3.7) A, (0 = (A2 It)). 

Proof.  Let h ( t ) ~ 5 0 .  By (2.1) we have 
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and therefore (3.5) follows. Let h ( t ) ~ 9 .  In view of (2.1) and (2.4) we obtain 

whence (3.6) follows. If h ( t ) ~ F ,  then (3.7) follows from the evident relation 

h( t )  urn' (u) 
thl{ t )  - m(u) ' 

where u = h(t ) .  The lemma is proved. 

The statements (3.5) and (3.7) mean that in the case where either h( t )  or 
m(t)  is of slow variation the eigenvalues of V (x) behave in a quite different way 
as 1x1 + a. This seriously complicates the asymptotic analysis of f (8) .  

LEEAPAA 3.2. Let A+ = max ( A l  ( t ) ,  ilz (t)). If h ( t )  E #, then as t -, m 

Proof .  Let h ( t ) ~ 9 .  From (3.6) it follows that 

By virtue of (2.4) we have m ( t )  - ti/" l l  (t), where 1, (t) slowly varies as t -, m. It 
implies that (see e.g. [lo], Chapter VIII, Theorem 1) 

Then 
U 

t l y2  = (th (t))ll2 = (urn (u))li2 - u112+ 11(2u)  i2 (u) = o (J m(v)  dv), 
1 

where t = m(u) and Iz(u) is of slow variation. Thus the lemma follows. 
Now let h ( t )  E 9. By (3.7) we have 2, - h' ( t )  - (m' (u ) ) - l ,  t  = m (u), where, 

we remind, m(u) slowly varies as u + m. Since (see e.g. [lo], Chapter VIII, 
Theorem 1) 

we obtain, taking into account (2.31, 
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It remains to consider the case h ( t )  E 9. Here in view of (2.2) we have 
A+ - h(t) / t ,  and therefore t A Y 2  - ( ~ h ( t ) ) " ~ .  Utilizing the l'Haspita1 rule and 
(2.2) we get 

lim 
(th (t))"' 1 t - "' h (t)lI2 1 ( th (t))- 

= - lim =-lirn = 0. 
r - m f y m ( u ) d u  2,-m th' ( t )  2t+, ~ ( t )  

In view of (2.3) the lemma follows. 

In particular, from the lemma we obtain 

Notice that in (3.1H3.3) the functions h (JxJ), h' (lxl), h" (1x1) play a dominant 
role. The following lemma establishes asymptotic relations between these func- 
tions. 

LEMMA 3.3. Let t + a. If h( t )  E X then 

if h { t )  E R, then 

but if h (t)  E then 

P r o  of. Let h ( t ) ~  9. The first of the relations (3.9) follows immediately 
from (3.5). In order to prove the second one notice that 

and use (2.2). 
Now let h ( t ) ~ B .  In view of (2.1) and (2.4) we have 

Therefore, from (2.5) and (3.6) we obtain (3.10). 
Finally, let h( t )  E F. Putting t = m(u) we obtain 

( t )  -- (mt (4 and - h' ( t )  - - - (m' ( ~ 1 ) "  
t2  h" ( t )  - - rn2 (u) m" (u) th" ( t )  m (u) m" (u) ' 
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Since for t n ( u ) ~ Y  

urn' (u) -- - ~ ( l ) ,  (4 
we have 

h (t) -- (wr ( u ) ) ~  
t2 h" ( t )  - d (u) lrn" (dl). 

From (2.1) and (2.2) it follows that 

Thus (3.11) follows. The proof is complete. 

Let us put 

From Lemma 3.3 and the evident relation 

we conclude that 

and 

(3.1 3) f(lx1) < ch" (lxl), h ( t )  E 9. 

Set 

u: ( t )  = (A, @ I ) -  Y fJ; (4  = (A2 @ I ) -  
LEMMA 3.4. If h ( t )  E Y u9tY then t-' h( t )  a; (t) = o (1). 

Pro of. Let h(t)  E 9. By (3.4) and (2.3) for all sufficiently large t we have 

t -  ' h ( t)  r: ( t )  = (th (t))- "' ( E  (t))- ' I 2  Q ct- 'I2 +('/')Q (h (t))- = o ( I ) .  

If h( t )  E 9, then the required statement follows immediately from the obvious 
relation 

t  -' h ( t )  a: (t) = (th (t)) - ""E ( t )  + a)- ' I 2 .  

The lemma is proved. 

LEMMA 3.5. I f h  (t) E F, then there exists 1 ( t)  such that 1 (t) + co as t + co and 

sup h"(t+r) G ~ r - ' ( h ( t ) ) ' ~ ~ * ,  ~ E ( O .  114). 
Id Q ai(t)l(t) 



306 D. Juszczak and A. V. Nagaev.  

Pro of. Since h (t) E 9, we have 

Im" (24 + v)l (U + v) l+  2v 
sup h" (m (u + v)) = sup , G sup < cul +'"m (14)) - 

I U I  C U P  ~.l.~n(m'(u+u)) I V I ~ U ~ Z ~ ~ ( U + ~ )  

Define 

It is easily seen that 

Recall that rn (u) is of slow variation. In view of (2.3) we obtain z+ 3 cu-"(u). On 
the other hand, ol (m(u)) = u-l12 ( ~ ( u ) ) ' ' ~  = o (T+) Similarly, al (m(u)) = o (r-). 
Let I(t), t = m (u), be such that 

Then 

sup h"(t-tz) g sup h U ( t + z )  = sup h"(m(u+u)). 
Izl G ai(i)l(i) TE[-r-.++I Ivl < u / 2  

The lemma is proved. 

Let 

From Lernmas 3.4 and 3.5 we arrive at the following corollary: 

COROLLARY 3.6. If h (t) E % then t h e  exists I (lsl) such that limlsl+, 1 (IS]) = GO 

and 

Proof.  Let us write for brevity a,, a2, a+ instead of al (wa(lsl)), a, (m (Isl)), 
a +  (m (IsJ)), respectively. Let h t E 9 u 9. Note that in this case a +  = a,. It is 
easily seen that a, = (m' (Jsl))'")= o (m (Is/)). Thus, there exists p (Is11 such that 
~(1s)) -+ o~ as Is1 -, oo and 

(3.15) a2 P (bl) = 0 (m (1~1)). 

From (3.12) we have 

sup r"(m (Is]) +u) d sup c h (m (Is0 + u) 
2 ' 

14 <aap(lsl) IUI G ~ P ( I S I )  (m (1~1) + u) 
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Thus, by (3.15) 

Isl 
sup f(m(lsl)+u)<c- 

lul Cazp(lsl) m2 (lsl)> 

whence 

Is1 sup ~(m(lsl)+u)cr$<c- 
14 Gaap(lsl1 m2 (lsl) ut. 

In view of Lemma 3.4 there exists v(ls1) + co as Is1 + co such that 

sup f(m (1x1) + U) 6; v 3  (1~1) = o (1). 
lul s rzP(lsl) 

Taking 1 (lsl) = mintp (lsl), v (lsl)) we arrive at the statement for h (t) E Y u &. 
Now let h ( t ) ~ g .  Here a+ =al. From Lemma 3.5 it follows that there 

exists ~ ( 1 ~ 1 )  -+ a3 as Is1 + co and 

sup h"(m(Isl)+u) 6 cl~l'+~"m(lsl))-~, 
lul ~ u l r ( l s l )  

whence 

sup h" (rn (IS!) + u) s: < c Is1 - lP + 2* (m (lsl)) I". 

I4 G~IP(IsI)  

Let v(ls1) + co as Is1 -+ cr, and 

sup k" (m (lsl) + u) a: v3 (Isl) = o (1). 
lul Ca ld ls l )  

Thus, taking into account (3.13), we obtain 

sup r"(rn(Isl)+u)a:v3(IsI)=o(1). 
lul GalrItsl)  

As before it remains to put I(ls1) = min ( p  (lsl), v (Isl)). The corollary is proved. 

COROLLARY 3.7. Let us put x(s) = rn(ls1) e,. Then for any h ( t ) ~  &' there 
exists E(ls1) + co such that 

+ 4 (x - x v (X (4) (X - X (s)) + a (X , S) , 
where 

(3.17) sup 16 (x, s)1+ 0 as Is1 -+ co. 
Ix -x(s) l<~+l I ls l )  
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I P r o  of. By Taylor's formula, r (1x1) in a neighborhood of x (s) admits the 
representation (3.16) where 

while Oijk are diagonal matrices with non-zero entries lying in [O, 11. Obviously, 

< sup r"(m (1st) + 0 Ix - x (s)l) a? E 3  (IS(). 
Ix-xis11 < u +  l(Is1) 

The statement follows immediately from (3.14). The corollary is proved. 

1 4. A THEOREM OF THE ABEL TYPE 

The following function plays a very important role: 

(4.1) H ( x ,  $3 = ( s ,  x)-r(lxl). 

We regard H ( x ,  s) as a function of x taken s as a parameter. From (3.2) it 
follows that H ( x ,  s )  as a function of x is concave for any S E  Rd. Since in (3.1) the 
function h( t )  is strictly increasing, H(x, s) attains its maximum at 
x = x (s) = m (Is]) es, where, we remind, m (t) is inverse to h (t). Corollary 3.7 
implies that if h (t) E S, then there exists 1 ( I s ] )  -, co such that 

I 
1 (4.2) H(x, s) = H(x(s), ~ - ~ { x - x ( ~ ) ) ' B ( x - x ( s ) ) + ~ ( x ,  s), 

where i?f = V (x  (s)) and 6 (x, s) satisfies (3.17). The above formula plays a key 
role in the proof of the Abel theorem by means of the Laplace method. For the 
sake of brevity we will write I instead of 1 (Jsl). 

Consider the ellipsoid region 

The boundary of A, is represented as 

dA, = {x: x = r(e)e, e€Sd-I,  H(x(s), s) -H(x (s )+x ,  S) = 12/4). 

LEMMA 4.1. Let a+ be as in Corollary 3.7. Then 

sup r (e) < lo+ and r2 (e) eT Re - 12/2. 
d d - l  

Proof. For r = In+ by (4.2) we have for all sufficiently large Is1 
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Obviously, A- < eT Re g A+, where A- = min (A,, A2), A+ = rnax (A1, ,I2). In 
particular, a: eTBe 2 1- a: = 1. Hence, for all sufficiently large Isl, 

It implies that SUPAI- L r (e) < in+ . Further 

H (x Is), S) -H (x (s)  + r (e) e, s) = $ r  (e)2 eT He + em (Is!), 

and therefore r2 (e) eT fie - E2/2. The Iemma is proved. 

Consider the ellipsoid 

(4.41 A: = (x: xTRx < $ 1 ' ) -  

It is evident that for all sufficiently large Is1 we have A$ c A,. Let an orthogonal 
matrix C be such that 

14-51 CTHC = D = diag(I,, . . ., A,, A,), 

For any x = (x,, . . ., x,,-,, x,) we put 2 = (x,, . . ., xd-,). 
I The following theorem establishes the asymptotic of the moment gene- 

rating function f (s) as Is1 + m. 

THEOREM 4.2. Let the underlying density p (x) be ungormly bounded and 
satisfy (1.4) where h( t )  = r'(t) belongs to X'. Then as 1st + co 

where H (x, s) is defined as in (4.1) while x(s) is the point of maximum of H(x, s) 
as a function of x. 

Proof .  Let Y be so large that for 1x1 > Y 

(4.6) p(x) < 2e-'(lxl). 

Define f (s) as follows: 
r 

Obviously, as Is1 + CQ 

(4.8) fi (s) = 0 (eYlsl) . 

Let A, be determined by (4.3). Denote by f2, (s) the corresponding part of 
f 2  (4, i.e. 

fZ (s) = J p (x) dx. 
As +x(s) 

7 - PAMS 24.2 
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It is evident that min (1x1: x E A,+ x (s)) + m as 1st + m. By (1.4) and (4.11, 

From (4.2) it follows that 

J , p ( x 3 3  ax = e R t ~ ( ~ ) , ~ )  J exp 1-4 xT Rx) dx (1 + 0o (Is\)). 
As +x(s)  As 

Further, 

It is well known that 

j exp ( - 3 xT Hx) dx = ( 2 ~ ) ~ l ~  a!- a2, 
R d 

In view of (4.4) we have 

S exp(-$xTHx)dx 6 exp(-ixTRx)dx. 
xCAs x&A; 

By (4.5) we obtain 

j exp(-$xTE7x)dx < S exp (-3 (Al 1212 + A, x i ) )  dx 
xe-4; ~ l l j 1 1 ~ + ~ 2 x j 3 ( 1 / 3 ) 1 ~  

- - a2 J exp(-$lx12)dx = ~ ( a i - ~ a ~ ) .  
1x1 3c l  

Thus, as Is/ -, oo 

(4.10) f2 (s) = (27~)~~' 4':- a2 eH(X(s ) sS )  (1 + Ow (Isl)). 
It remains to estimate 

fi z (4  = j e < S , X >  p (x) dx . 
1x1 > Y.x - x(s)$A, 

For all sufficiently large Is1 we have 

tr"e)eTTe 6 H(X(S), s)-~(x(s)+r(e)e,  s). 

Note that H (x (s) +re, s), r > 0, as a function of r, is concave. Taking into 
account (4.21, for r 2 r(e) and for all sufficiently large Is1 we obtain 
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Therefore, 

As before we get 

Thus 

(4.12) f i2  (s)  = o ($1- l crz eH(x(S)*s)). 

It remains to combine (4.7H4.12). The theorem is proved. 

Since 
t 

tm( t ) - r (m( t ) )  = ~ r n ( u ) d u + m ( l ) - r ( l ) ,  
1 

one can restate the Abel theorem as follows: 

(4.13) f (5 )  = (2~)~ ' '  d- l (m Ilsl)) ~2 (m ( 1 ~ 1 ) )  
Is1 

x exp(m ( 1 )  - r (1) + j rn (u) du) (1 +Ow (Isl)). 
1 

This formula is sometimes very convenient. 

5. ASYMPTOTIC PROPERTIES 
OF THE CONJUGATE DISTRIBUTIONS 

Consider the family of the so-called conjugate densities defined as 

It turns out that the conjugate distribution is asymptotically normal as Is1 + a. 
Moreover, the convergence to the limiting normal distribution is very strong. 
Let us put 

The following statement is of independent interest. 

LEMMA 5.1. Under the conditions of Theorem 4.2 as is1 + oo 

where I is the unit matrix. 
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Proof.  Let Y be chosen as in (4.6). In view of (1.41, (5.1) and (4.1) we have 
for I H - ' I 2  x + x (s)/ > Y 

(5.3) $,(x) = (detm-'l2(f ( ~ ) ) - ~ e x ~ ( ~ ( f l - ~ ~ x + x ( s ) ,  s ) ) ( l + ~ o ( l s l ) ) .  

Applying (4.2) and Theorem 4.2 yield 

(5-4) A (XI  = V(O,I) (4 ( 1  + 6 0  (14)) 
at least for 1x1 < 3-'12 I .  

In particular, for any Z > 0 and all ~ ~ c i e n t l y  large Is1 we have 

provided Z < 1x1 d 3'+1'"1. 
From (5.3), (4.11) and Theorem 4.2 we obtain 

(5.6) A(x) s ~ e x ~ ( - i I l x l )  

provided 1x1 2 3 - ' I 2  1 ,  Ir7-lt%+ x (s)l > Y. 
Now let la-112 x + x (s)] < I: Since in (5.1) the underlying density is uni- 

formly bounded, we have taking into account (5.2) 

By (5.4), for any fmed Z we have 

Utilizing (5.5)-(5.7), (4.13) and (3.8) yields 

SUP 13s (x) - CP(0,1, (x)I G sup CPco,r, (x) + sup (x) + SUP f iS ( x )  
1x1 2z 1x1 >z 1x1 $2, IB- 1/2x+x(s)[ SY 

la- ~ / ~ x + x ( s ) I  &Y 

= w (2) + Bw (2) + co (Isl) . 
Since Z is arbitrary, the lemma follows. 

The normalizing used in (5.2) does not quite fit our purpose. Actually, we 
should deal with 

where we write for brevity M instead of M(s).  The density so normalized has 
the zero expectation and the unit covariance matrix. We expect that ps(x) is 
also asymptotically normal. In order to justlfy this we should prove that M (s) 
and x(s) are asymptotically close as well as M and I T 1 .  It is established in the 
following two statements. 

LEMMA 5.2. Let the unit vectors e(O) and e' be such that 

e(O1 = (0,  . . ., 0,  I ) ,  e' = ( e l ,  . . ., e d - l ,  0 )  = (Z, 0).  
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If an orthogonal matrix C is as in (4.9, then 

I(., ~(M(s) - -x  ( ~ ) ) ) 1  = @w(lsl)(l(e, ef)l fll+ l<e, e'O')l ~ 2 ) .  

Proof.  It is easily seen that 

Split Rd as before, i.e. 

where Y and A, are defined as in (4.6) and (4.31, respectively. Denote by I , ,  
Z2 and I 3  the corresponding parts of the last integral, i.e. 

(5.10) J (e, ~(x-x(s)))p,(x)dx = I ~ + I ~ + I ~ .  
Rd 

By (4.13) and (3.8) we have 

Is1 
(5. 11) II < cA[ld- ' ) I 2  Ail2 pn (1st) exp (ls[Y- j m (u) du) = o (A; 

1 

By virtue of Theorem 4.2 and (4.2) we obtain 

I2 = ( 2 ~ ) - ~ / '  A(ld-1)12 Ail2 S (e, Cx) exp (-$xT Hx)dx (I + o (1)) 
X E A ~  

In view of (4.5) and (4.4) we get 

5 (e, Cx) exp (-3xT i7x) dx 
4-4. 

< S I(e, x)l exp(-$(Al 1 4 2 + A 2  xi))&. 
I l  lxl2+Azx:3(1/3)12 

Put for the sake of brevity u = (e, e'), P = (e, e(*)). Then 
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Thus, 

(5.12) 1, G ~( ls l ) ( l ~e ,  e'>l al +I+, e(0)>1 4. 
As to I, in view of (4.11) we have 

Repeating the just utilized argument yields 

I ,  ri c (loll al + CJ,) 1x1 eLois'lxl d x .  
1x1 3 cl 

Thus, 

The desired statement follows from (5.10H5.13). The lemma is proved. 

LEMMA 5.3. Under the conditions of Theorem 4.2 as Is1 + co 

sup I :;:e-ll = W(ISI). 
,Sd-~ e 

Proof.  It is easily seen that for any e E S ~ - '  we have 

where Q is the quadratic form determined by the matrix ((qij(l i , j=l, . , . ,d with 

Split the right-hand side integral in accordance with' (5.9): 

(5.14) q. .  Y = q!.+q!'.+q!". Y LI 1J 

Then, by (4.2), 

d 

- - (2 4 Afd-  I Ai l2  C ei ej j xi xi exp (-4 xT Bx) dx (1 + co (lsl)) 
i,j= 1 =As 

Let C and D be as in (4.5). Let us put Ce = E = ( r l ,  . . ., E ~ ) .  Then 
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where 

Jij = (27~)-~/' J xIxjexp(-~(A1 I x ~ ' + A ~  x$))dx. 
CXEA, 

For i#j 

For i = j  

" Jii = ( 2 ~ ) - 4 ~  j X? exp (-4 (Al Ix[= + A2 xi)) dx 
Rd 

+ cO 1 exp (- 5- (Al 121% A2 x i ) )  d x  
L I IZ I~  + A ~ X ~ C P  

or 

So, we may write down 
Q* = I ~ - l / 2  E 1 2 + E T ~ - 1 / 2  @ ~ - l / ~ & ,  

where 8 = IlOijlli,j= l , . . . ,d with Bij = 0 0  (Is!). We remind that, by our convention, 
the concrete form of 0 and w(t )  plays no role. Thus, 

(5.1 5) Q I ~  = 10- 112 4 2 (1 + ( 1 ~ 1 ) ) .  
In view of (3.8) we have 

whence 

Further (cf. the estimate of I, in the proof of Lemma 5.2), 
d d 

Q"' = qiy e. a e. < CA(d-1)/2 1 Ail2 gi Ej J; ,  
i ,j=l i , j = l  
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where 

J ! .  = 
E l  I X ~ I  I *~I  exp (-(rig) J K l F G Z ) d * .  

Ai]E(Z+ 3c12  

It is easily seen that 

From (5.14)-(5.17) it follows that Q = ID- lit & I 2  ( 1  + w (lsl)). I t  remains to apply 
Lemma 5.2. The lemma is proved. 

Now we can prove the basic statement of this section. 

THEOREM 5.4. Under the conditions of Theorem 4.2 as Is1 -r co 

P r o  of. We confine ourselves to the proof of the second statement. The 
first one is proved much easier. From Lemma 5.3 it follows that det M = 
det R- '(1 + w (Is!)). Determine y by the relation x + M (s) = H -  ' I 2  y + x (s). 
By (5.4) we have 

provided lyl < 3-lI2 1. Since y = Bit2 MIi2 x +Ifi1' (M (s)-x (s)), we have 

ly12 = xT M1I2 flM1/2 x + (M (s) - x ( s ) ) ~  B (M (s) - x (s)) + 2xT R1iZ B (M (s) - x (s)) 

= ~ T j $ j 1 / 2  R&fl/Z x + ~ 2  + 2 e ~  (xT  $jl;j1/2 x j $ j l / 2  X)1/2. 

From Lemma 5.2 and (4.5) we obtain 

By  Lemma 5.3 for 1x1 < Z we have xT M1I2 RMli2 x = IxI2 +Oa(IsJ). SO, for 
1x1 < Z we have Iyl2 = 1x1' + 60 ( I S / ) ,  and therefore 

SUP IPS ( Ix  - V(O,,, (x)l = w (1st). 
1x1 <z 

If Z is sufficiently large, then for 1x1 2 Z we have [yI2 2 $ 1xI2 -2R 1x1 2 $ 1 ~ 1 ~ .  
Let Y be as in (4.6). Taking into account (5.5H5.7) we obtain 
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It is easily seen that 

We have already established that 

(5.21) 11 = ~ ( l s l ) .  

I Obviously, for any fixed Z 

15.22) I ,  = ~ ( 3 .  

It remains to estimate i3. From (5.19) we easily obtain 

So, we have 

(5.23) 

Further, 

I 3 2  = S < c J exp (-cllxl) dx. 
I X ~ ~ C ~ , I G ~ I = X + M ( S ) ~ $ Y  1 x l 2 c l  

Thus, 

Finally, by (5.1), 

I 3 3  = j &(x) d x  < exd (det @I1/' exp(ls1 Y) (f (s))-'. 
IP1/2~ + M ( s ) I  < Y 

Taking into account (4.13) and Lemma 5.3 we obtain 

1.1 
133 < exp(ls1 Y- j m (u) du). 

I 

In view of (3.8) we get 

(5.25) 1 3 3  = w(IsI)- 

It remains to combine (5.20H5.25). The theorem is proved. 
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6. PROOF OF THEOREM 2.4 

By means of the Cramir transformation we obtain 

pn (nx) = f n  (s) e-"("."> PR,S (nx) 

where p,,, is the n-convolution of p, defined in (5.1). Determine s = s (x) by the 
equation x = M (s). Then 

(6.1) P" (nx) = n (det (s (XI))-'/' en (4 k., (01, 

where & ,  is the n-convolution of defined in (5.8). 

LEMMA 6.1. Under the conditions of Theorem 2.4 as n + co 

Proof. Assume that the characteristic function $, corresponds to ps, i.e. 

9, ( t )  = j ei('.X> pB (x) dx . 
Rd 

By the ParsevaI identity we obtain 

Therefore, taking into account Theorem 5.4 we have 

(6.2) 

and 

sup sup It,b, (t)l < 1 ,  6 > 0, 
seRd It1 ad 

The lemma follows immediately from (6.2), (6.3) and Theorem 5.4 (see e.g. [4], 
Section 4.19). 

From Lemma 6.1 it follows that as n + co 

(6.4) p",, (0) = ( 2 4  - (1 + 0 (1)) 

uniformly in s€Rd.  In view of (6.1) and (6.4) the theorem follows. 

7. CONCLUDING REMARKS 

1. It is readily seen that the crucial role in the proof of Theorem 2.4 is 
played b y  the asymptotic normality of the conjugate densities, which is estab- 
lished in Theorem 5.4. The latter theorem may be regarded as a contribution to 
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the theory of the so-called natural exponential families, at least to that part of 
the theory which analyzes the limit distributions arising as s + aS (see e.g. [3]). 

2. It  should be emphasized that the case h (t) E 9i' is rather simple. Here the 
eigenvalues Al and A2 of the matrix I7 are of the same order. This simplifies the 
asymptotic analysis of the conjugate densities. It is the case h (t) E Y u 9 that 
requires much more efforts. 

3. It is easily seen that the method that allowed us to prove Theorem 2.4 
works efficiently in more general situations as well. For example, instead of the 
basic condition (1.4) we could assume that, say, 

P(X) = exp(-r(lxl) a(ex))(l +oIlxl)), 

where a (el is a continuous strictly positive function defined on the unit sphere 
~ d - 1  . This case requires no principal changes in the proof, though it leads to 

much more cumbersome formulae adding less to the point. 

4. Within the theory probability context the established results are of use 
in the following cases: 

the integral large deviation theorems held uniformly in very rich families 
of sets; 

o testing the quality of the simpler upper bounds for large deviation prob- 
abilities ; 

a testing the convergence of the integral functionals of [("I; 
asymptotic analysis of finite convolutions of densities satisfying (1.4). 

The conjugate densities, regarded as natural exponential families, form an 
object that is of great interest from the point of view of statistics. Here, the 
basic points of interest are: 

local asymptotic normality of the natural exponential families uniformly 
over an open parametric set; 

large deviations of the maximum likelihood estimator for the parameters 
of the natural exponential family; 

extension of the class of the loss functions admitting the convergence of 
the maximum likelihood estimator risk etc. 
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