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l* INTRODUCTION 

We are concerned with the Central Limit Theorems for a certain class of two- 
parameter stochastic processes. This class has been proposed by Hensz-Chq- 
dzy6ska et al. in [ 5 ]  and [6] as a stochastic model of a stain of pollution. The 
stain is assumed to spread out radially from the center of its initial source (the 
origin) and to have a random shape at each moment. Moreover, many little 
"springs" of the further expansion of the stain appear irregularly on its edge. 
Therefore, the evolution in time of the edge of the stain may be treated as 
a realization of a two-parameter stochastic process c(., .) parametrized with 
time and direction. For fured moment t and direction a, e ( t ,  a) is a random 
distance from the origin of the boundary point of the stain at moment t, with 
radial coordinate a. The process l( . ,  .) will be called a random stain. It is 
natural to assume that with probability one, for each direction a, the trajectory 
((., a) is a non-decreasing continuous function of time and the velocity exists; 
moreover, the "springs" of expansion appear in Poissonian way. Therefore, the 
stain c ( - ,  - )  is defined by formulas (2.1) and (2.2) in Section 2. 

In 153 and [6] the asymptotic shape of the stain has been investigated and 
suitable Laws of Large Numbers are proved. 

In this paper the asymptotic behavior in time of the distribution of the 
stain is studied. 

In Sections 3 and 4 we consider one-dimensional distributions of the stain 
in a fixed direction. Under the natural assumption that the intensity function of 
increase has polynomial growth we prove the Central Limit Theorem: first for 
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the stain with discrete time (Theorem 3.1) and then for the stain with 
continuous time (Theorem 4.1). Moreover, under the assumption of Theo- 
rem 3.1 we obtain a uniform estimate of the rate of convergence to the stan- 
dard normal distribution function (Corollary 3.3). It is also shown that if the 
intensity function of increase has exponential growth, then the stain (even with 
discrete time) does not satisfy the Central Limit Theorem in any direction 
(Theorem 3.4). 

In Section 5 we consider multidimensional distribution of the stain in fixed 
directions ctl, . . ., a,. Under certain additional assumptions we prove that the 
multidimensional Central Limit Theorem holds (Theorems 5.1 and 5.2) and we 
obtain explicit formulas for the limit covariance matrix (Theorem 5.2). 

2 NOTATION A N D  PRELIMINARIES 

We follow the notation used in [ S ]  and [6] .  By S, = (eia: cr~l), where 
I = [O,  274, we denote the unit circle on the plane. We shall often identify 
points of S1 with elements of I, in a natural way, with addition modulo 2n: in I. 
Let f be a Borel nonnegative function defined on S1 and t,h be a continuous 
nonnegative function defined on [O, oo). We denote by (G, t 2 0) the Poisson 
process with parameter d > 0 and let f, be the time of occurrence of the j-th 
event for the process (nt, t 2 0), j = 1, 2, . . . Moreover, let =,,,,,.. be a se- 
quence of independent random variables uniformly distributed on S, ,  indepen- 
dent of the process (nt, t 2 0). 

As in [6] we define the following two-parameter stochastic processes: 

and 
T 

(2.2) l(T, a) = 1 V(t, a)dt ,  T 3 0, a ~ l .  
0 

Following [5] and [6] we call the process (5  (T, a), T 2 0, a €1) a stain with 
continuous time. V ( t ,  cr) is called a velocity of expansion of the stain 5 at the 
moment t and in the direction a. The function f is understood as a 'spring' of 
further expansion of the stain. Finally, @ is called the intensity function of 5. 
Therefore, it is natural to assume that @ is increasing in time. We consider two 
types of the growth of $: polynomial and exponential. 

A stain with discrete time is defined in [6] as follows: 
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where $ (r), z = 0, 1, . . ., is a fixed sequence of positive numbers (describing the 
intensity of expansion of the stain). We set 

T - l  

(2.4) C ( T ,  ff) = C VCt, 4, 
t = O  

hence 
T - 1  

where 

The process X,@) can be represented equivalently (in the sense of prob- 
ability distribution) in the following form (see [ S ]  and [6]): 

where IN,), ,,,,,... is a sequence of identicalIy distributed independent random 
variables with Poisson distribution (with parameter A > 0) and (a i,, ).- 1-1,2 ,... ; , = O , I ,  ... 
is a matrix of independent random variables uniformly distributed on I and in- 
dependent of (N,h = ,. . . . 

Remark 2.1. In both cases (2.6) and (2.7), X, (a), t = 0 ,  1 ,  . . ., is a sequence 
of independent stochastic processes with the same finite-dimensional distribu- 
tions stationary with respect to a. 

3. CENTRAL LIMIT THEOREM IN A FIXED DIRECTION 
FOR A STAIN WITH DISCRETE TIME 

THWREM 3.1. Let 4: = 5 (T,  a), T = 0 ,  1, . . ., be a stain with discrete time 
defined by (2.5) and (2.6) and let $ ( t )  = f, r 2 0. Then the stain satisfies the 
Central Limit Theorem in an arbitrary fixed direction u, that is 

In the proof of the theorem we use the following simple lemma. 

LEMMA 3.2. For r 0 and T = 1, 2 ,  . . . let 
T -  1 T 

C; = C (T- t)' tZr and JT = 1 (T- t)2 t2'dt. 
t = O  0 
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Then 

I f  (3.2) holds, then we say that the asymptotic behavior of the sequences 
(c:),",, and (J,),"=, is the same and we write c; = JT as T + a. 

Proof  of Theorem 3.1. Let us put, for a fixed cl ,  Y,T = ( T - t ) f X , ,  
where X, is defined in (2.7). Then 

Recall that X,, t  = 1 ,  2 ,  . . ., are mutually independent and identically dis- 
tributed random variables and let us write E [[X,-EX,13] : = 3. Then B < co 
and 

E [ ~ Y T - E Y ; T ~ ~ ]  = ( ~ - t ) ~  t3'B. 

Hence for any T the random variables Y i ,  . . ., YF- are independent, 
To prove (3.1) we shall show that Liapunov's condition holds, i.e. 

Y - Y ]  40 as T +  oo, 
CT * = 0  

where C$ = ztT=-: D2 Y;T. We first need to estimate 

4r+2 < BQ (r) (T+ T3r+ ' , where Q (r) = 
(3r + 1)(r + 1)' 

Now we want to find the order of C T :  

where we write a2 = DZ X,. Then, by Lemma 3.2, 

Hence 

(3.5) C;  w H (r) a3  T3'+ 'I2, where H (r) = [(2r + 1) (r  + I) (2r + 311 - '/'. 
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Now, from (3.3H3.5) we get 

This means that the Liapunov condition is satisfied, which implies that the 
Central Limit Theorem holds. ra 

In Corollary 3.3 below we give a uniform estimate of the rate of con- 
vergence in Theorem 3.1. This is a consequence of the result by Berry and 
Esseen [2]. 

COROLLARY 3.3. Let 8 be the standard normal distribution function and 
FT (x) denote the distribution function of the random variabEe f T  defined in (3.1). 
Then we have the following asymptotic bound: 

where c is an absolute constant, B = E [IX, - EX,I3], a2 = E [IX, - EX,I2] and 
G (r )  = 0 (r7I2). 

P r o  of. The rapidity of convergence can be evaluated by the Berry and 
Esseen theorem ([2], p, 7; [3], p. 515), where we put = Y l -  EY,T and Y:, 
k = 0, . .., T- 1, is defined in the first line of the proof of Theorem 3.1. Then 

T 

S ~ p l ~ ~ ( x ) - @ ( x ) l ~ c S ~ ~ ~ B ~ ~ ,  - ~ < x $ W ,  
XER k =  1 

where 

# ? 3 k = ~ [ I ~ ~ - E ~ f 1 3 ] < W ,  D ~ = D ~ K  and z flz=c$. 
k = O  

Therefore, by (3.4) and (3.5) we obtain 
BQ(r)(T+1)3T3r+1 3 

Sup IFT (x) - @ (x)l 2 C 
c3 H (r) T 3r+9,Z 6 C3G(r) T-1'2, 

XER fl 

where G (r) = Q (r) /H (r) = 0 (r - l)/O (r - 912) = 0 (r7i2). rn 

THEOREM 3.4. Let [ = g (T ,  m),  T = 0, 1 ,  . . ., be a stain with discrete time, 
f 1,  and $ ( t )  = e'. Then the stain does not satisfy the Central Limit Theorem in 
any direction. 

P r o  of. Let us put, for a fixed a, YT = (T- t )  et X,, where now f = 1 ;  then 

8 - PAMS 24.2 
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and N ,  has Poisson distribution with parameter A. We assume for simplicity 
that A = 1. Recall that 

We shaII show that the characteristic function of 

does not converge to the characteristic function of JV (0, 1). 
We have 

1 T - 1  T - 1  

Z T  = - (T- t) et (Nz -  1), where 8; = D2 5 (T, u )  = (T- tI2 e2'. BT t = o  t=o  

Then 

and 8: E yZeZT, where y2 = (e-2+g-4)/(1 -,5-2)3. 

We can write 

yeT - yeT 
ZT:=-ZT,  where -+I ,  

PT BT 
and 

Then the sequence (ZT)  is convergent in distribution if and only if so is (3,) (see 
e.g. [l], Ex. 25.7, or [7], p. 141), and in this case 

lim = 1 for each s e R .  
T-+m (Pi5 (4 

By properties of characteristic functions we have 

since 
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Recall that rp,, - , (s) = exp (2"- is- 1), and then 

Consider the exponent in the above characteristic function 

Since a'' = cos B+isin 8, the imaginary part of (3.6) has the form 

'Note that the series C,"=, ke-k is convergent (as the derivative of geometric 
series), and hence, as T + co, 

Also, by the comparison test (the Weierstrass theorem), 

S2,T (s) + S2 (S) : = 
k =  1 

and the series is absolutely convergent almost uniformly in s (i.e. for any 
M s 0, the convergence is uniform in s~ [ - M ,  MI). 

Consequently, S1 and S, are continuous functions. Clearly, S1 (0) = S2  (0) = 0. 
But for s > 0 we have 

Therefore, the imaginary part of the exponent (3.6) converges, as T + ao, 
to the continuous function g (s) = S, (s) - S1 (s), which is different from 0 for s in 
a certain neighborhood of 0 and g (0) = 0. Hence, as T -, a, the characteristic 
functions qgT (s) cannot converge to exp (-s2/2), the characteristic function of 
standard normal distribution JV (0, 1). This implies that the sequence (qzT (s));= 
does not converge to exp(-s2/2). H 
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4. THE CENTRAL LIMIT THEOREM 
FOR A STAIN WITH CONTINUOUS TIME 

In this section we investigate the limit theorems for a stain with con- 
tinuous time, defined by formulas (2.1) and (2.2). 

THEOREM 4.1. Let ( = ((T, a)  be a stain with continuous time and deJine 
$ (t) = t r ,  r 3 0. Then the stain satisfies the Central Limit Theorem, that is 

The simple analytic lemma below will be needed in the proof of Theo- 
rem 4.1. 

LEMMA 4.2. Fix r 2 0. Then 

Ii) 

(ii) 

Pro of of Theorem 4.1. The proof of the Central Limit Theorem for 
a stain with continuous time can be reduced to the Central Limit Theorem for 
a stain with discrete time. We have 

T 

( ( T , a ) = j V ( t , u ) d t ,  T20, and V(t ,c t )= C $ ( < ) f ( a - a i ) ,  t 2 0 ,  
0 ficr 

5 ( T , a ) =  J V( t , a )d t+  j V( t , a )d t  
['J,N) IN, T) 
N- 1 

= C 1 ( C i C $(&)f fa-ai))dt  
k = O  [k.k+1) O < T i < [ t I + l  t & b c [ t ] +  1 
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Now we put 
N-1 k N- l 

F(N,  a)= C C $ ( v ) X , =  C I N - v ) $ ( u ) X , ,  
k = 0  v f 0  k = O  

where 

Then %(PI, a) is the stain with discrete time as in Theorem 3.1, and (X,) is 
a sequence of independent identically distributed random variables. For sim- 
plicity we shall assume that EX, = 1. We can write 

Let us put 5 (T, a) = = { N ,  or) + A IT), where A (T) = 5&!,, - Ct3;',,, + St?,,) and 
N = [TI (the entire of T). 

We want to prove that 

From Theorem 3.1 we have 

Note that 

By (4.2) and (4.31, the convergence (4.1) will be proved if we show the following: 

and 
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We first prove (4.4). Since f is nonnegative and $ is non-decreasing, we 
have the estimate 

which gives 

Let us put EX, = 1; then by Lemma 4.2 we obtain 

Similarly, we find 

Consequently, 

and 

which yields 

From (4.7H4.9) it follows that 

Since f(N, E) = z:=, $ (v) Xv is a stain with discrete time, from the 
proof of Theorem 3.1 we have 



Central Limit Theorems for rmdorn stain 331 

From (4.10) and (4.11) we obtain 

which implies (4.4). 

Now, we want to prove the convergence (4.5). To this end, we investigate 
the asymptotic behavior of the variance D2 A (T )  as T 4 m. From (4.6) we have 

where ak = ( N -  kj [(k + I)" - k'], k = 0, . . ., N - 1, are positive numbers 
and Xk, k = 0, . . . , N - 1, are nonnegative independent identically distributed 
random variables. Hence, assuming EX, = 1 and using the notation 
b : =  E(X2) = D 2 X k + 1  = m2+1, we have 

Note that from (4.7) we get the estimate 

We also have 
N- 1 N- 1 

J 1  = a: EX: = b ( N -  k)2 [(k + 1)'- krI2 < 0 (N2'+l), 
k = O  k = O  

where the last inequality follows from Lemma 4.2. Hence, from (4.12) we obtain 

Analogously, we have 

and 

The estimates (4.13H4.15) imply the inequality 

and hence 

(4.16) D2 [A ( T ) ]  < E [A2 (T)] < 0 (N2'+ 2). 
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We have 

o2 5 (T, 4 = DZ [FW, 41 +DZCA (T)1+2Cov[~(N, 4, A(T)I,  

and 

-DXDY < COV(X, Y )  < DXDY. 
Therefore, using (4.11) and (4.16) we obtain the estimates: 

as T +  co and N = [ T I ,  

1 1 
3 I+--- o (N) 0 (N1") 

1 as T - c m  andN=[T]. 

It follows from (4.17) and (4.18) that 

D ' r ( z " + l  as T + m  and N = [ T ] ,  
D2 T(N, a) 

which implies (4.5). Thus, the proof is complete. 
I 

5. MULTIDIMENSIONAL CENTRAL LIMIT THEOREM 

In this section we investigate the convergence of fmite-dimensional dis- 
tributions of random stain to multidimensional Gaussian distribution. 

THEOREM 5.1. Let (5 ( N ,  B)), N = 1 ,  2,  . . ., B E S1 ,  be a stain with discrete 
time, where $ ( t )  = t' (r $ 0 )  and f is a nonnegative bounded BoreE function on S1 .  
Let 

Assume that for any 81, OZ E Sl there exists 
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Then the sequence of stochastic processes (C(N,  . ));, l ,  where 

converges weakly in the sense of$nite-dimensional distributions to a Gaussian 
process with zero mean value and covariance function e (., 3 ) :  Sl x Sl + R which is 
dejned in (5.1). This means that for each rn = 1, 2, . .. and any $xed angles 
O , ,  02, . . . , O,E S1 the distributions of the random vectors ( r ( N ,  01), . . ., F(N, Om)), 
N = 1, 2, . . . , converge weakly as N 4 co to JV (0, E), where C = [ s j , l ] j , l=  ,...,m 

with sj,l = Q ( O j ,  0,) (in particular, sj,j  = 1). 

In the proof of Theorem 5.1 we use the Normal Correlation Theorem from 
[4] which we quote below. 

NORMAL CORRELATION THEOREM (Gikhman and Skorokhod [4]). Let {qn) 
denote a seqzaence of random processes v, (8) = Cyl, a,, ( B ) ,  0 E O, n = 1 ,  2, . . . 
Suppose that the following .three conditions are satisfied: 

(a) For any fixed n, the random variables orn1 (01), anz (02), . . ., anmn (Om,,) are 
independent for arbitrary el ,  B2, . . ., ern,, have second order moments and 

where maxk btk (0) + 0 as n + a. 
(b) The sequence of covariance functions R, (81, 02) = E [qn (el) q, (O,)] con- 

verges as n + ca to some limit 

(c) For every 0, the sums rn (6) = xFz ank (0) satisfy Lindeberg's condition: 
For ran arbitrary positive E ,  

where I ln , (O ,  x )  is the distribution function of the random variable a,k(8) and 

Then the sequence {qn(0)) converges weakly in the sense of jinite-dirnen- 
sional distributions as n + co to a Gaussian random function with expectation 
zero and covariance R (01, 02).  

Proof of Theorem 5.1. First, we verify that the assumptions of the 
Normal Correlation Theorem are satisfied. 

Put 
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Recall that 
El-1 

t (N,B)= Yr and D r ( N , O ) = C N ,  
t = o  

where CN is defined in Theorem 3.1 and C, does not depend on 8. Then under 
the notation of the Normal Correlation Theorem 

that is 

The first part of the condition (a) of the Normal Correlation Theorem is 
satisfied because, for fixed N, the processes Y$ (.), . . ., Y { - ,  ( 7 )  are indepen- 
dent. Next, by Theorem 3.1 we have 

where 

CF 
nZ = D2 Xi(0) and C i  w ~ 2 r + 3  

(2r + 1)  (r + 1) (2r + 3) 

Then 

max b i k  (6) < O (NZPf2) 
0 (NZ' + 3, 

+ O  as N + m .  
k 

Concerning the condition (b), note that 

@N(Ol O2) ' [qif (81) ~~(8211  = [ T ( N ,  81) r ( N ,  0211 5 

and hence (b) is satisfied by assumption (5.1). 
Consider the condition (c). We verify that Liapunov's condition with S = 1 

holds for the random variables (orNk) .  
We have 

N-1  N-1 1 N - 1  

Bi = x b i k ( 9 )  = Eaik =, E[IY2-EYf12] = 1 
k =  0 k = O  CN k = O  

and, by Theorem 3.1, 
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(ii) Let h ,  g be Borel nonnegativefunctions on R such that h (Z1) and g (Z1) 
have the same distribution. I f  E(h(.Z1)) < m and E ( T ~ )  < a, then 

LEMMA 5.5. Let c ( N ,  a) be a stain with discrete time, where $ (t)  = 1 and 
f = II,,,,. Then for fixed p~[-x, TC] we have 

P r o  of. From the form of < (T, a) in (2.4)-(2.7) we get 

N- l 

= E <il ( N  - t )  (X t  (a) -  EX^ (a))] [ (N - t) (Xt b + fl) - EXt (a + 
r = O  t = O  

Since ( X ,  (-))t"_, are independent processes, J, = 0 and 

where 

M ,  = E [Xt (a) X ,  (a + P)] and M2 = EXt (a) (E + 
By (2.7) we have 

Note that the random variables Z j  = f (a -aj) f (a +/3 -aj), j = 1, 2, . . ., 
and z = N ,  satisfy the assumptions of Lemma 5.4 (i) and, consequently, 

N t  

EI:C f (a-aj)f (a+p-aj)] = ECf ( a - ~ ~ ) f  (a+B-al)lE(Nt)- 
j=o 

By (5.3) we have E tf (a - al) f (a + fl  - a,)] = (n - IBl)/2x. 
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Consider the .last term in (5.4). Put Z j  = o r j ,  j = 1, 2, .. ., h ( . )  = f (a-.), 
g ( -  ) = f (a + P -. ) and z = N,.  Then the assumptions of Lemma 5.4 (iiii) are 
satisfied and from this lemma the equality follows: 

Moreover, Ef (a - a,) = by (5.2). Therefore, 

because N,  is a random variable with Poisson distribution (with parameter A). 
Similarly, using Lemma 5.4 (i) and (5.2) we find 

Therefore, 

and hence 

P r o  of of Theor  em 5.2. We verify that the assumptions of Theorem 5.1 
are satisfied. We have 

If 8, = 4 ,  then g, (Bj, 8,) = 1, limN+, e~ (ej, 81) = 1. 
If Oj  < 8, and 0 < 0, - Bj < n, then we can use Lemma 5.5 with f l  = el - Bj, 

and then 

If x < 8,-Oj < 2x, then 

O1 = Oj+(e1 - ej) "S2" Oj+ p,  where f l  = -(2n-(0,- 8,)) 

and we also use Lemma 5.5 to obtain 

(01-6j)-n. 
s j ,~  = ~ ~ ( e j ,  OZ) = 
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