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PRINCIPAL EIGENVAEUES FOR TIME CHANGED PROCESSES 
OF ONIF,-DIMENSIONAL a-STABLE PROCESSES 

Abstract. In this paper, we calculate the principal eigenvalues for 
time changed processes of Brownian motions and symmetric a-stable 
processes in one dimension. 
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1. INTRODUCTION 

Let Ma = (XF, P,), 1 < a < 2, be a symmetric a-stable process on R and 
denote its Dirichlet form by (ba, Pa). Let D be an open set and MD the 
absorbing a-stable process on D. Let p be a measure in the Kato class and 
A: the positive continuous additive functional (PCAF) in the Revuz correspon- 
dence to p. We now define 

Then A(p; D) is the principal eigenvalue for the time changed process of MD 
by A:. It is dacult in general to obtain principal eigenvalues for symmetric 
a-stable processes because of the non-locality. We do not know the principal 
eigenvalue even for the absorbing process on an interval; a lower bound es- 
timate was obtained in [3] (see also [2] and [lo]). 

A purpose of this paper is to calculate A (p; D) for special pairs of p and D. 
For example, let 6, be the Dirac measure at a. We can then calculate 
A(6, + 6 -,; R\{O)), a # 0, by using the Green function of the absorbing process 
on R\iO): 

(Example 3.3). We also calculate principal eigenvalues for time changed proces- 
ses of killed Brownian motions in one dimension. 
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Our motivation lies in the proof of the gaugeability : a measure p is said to 
be gaugeable on D if 

where z, is the exit time from D. It was shown in 151, [Ill and [13] that for 
a Kato measure p with compact support, p is gaugeable on D if and only if 
1 (p; D)  > 1. Hence, by the calculation of 1(S, + 6-,;  R\(O)), we can give a ne- 
cessary and sufficient condition for 8, + 6-, being gaugeable in terms of the 
index a and the point a. 

2 PRELIMINARIES 

Let Mu = ( X f ,  Px),  1 < a G 2, be the symmetric a-stable process on R. 
Denote its Dirichlet form by (ga, 97. In case of a = 2, M2 is the Brownian 
motion and (g2, P2) = (D/2, HI (R)), where H1 (R) is the Sobolev space of 
order one and 

If 1 < u < 2, then Ma is a pure jump process and its Dirichlet form (C", P a )  is 
as follows: 

where 

a2"-' r ((1 + a)/2) cn 

d (a) = , r (x )  = j e-'t"-l dt. 
?I1/" (1 - u/2) 0 

Let v be a smooth measure and A: the PCAF in the Revuz correspondence 
to v (161, Theorem 5.1.4). Let Mv = (X:, P:) be the subprocess of Mu with 
respect to the multiplicative functional exp (- A:) (see [6] ,  Appendix A.2, for 
details): 

E. Cf (XXl  = Ex Cexp (-A:)  f 1x31. 

Then the process Mv generates the Dirichlet form (&', 9"): 

FV = .FanC(R; v), bV(f, f )  = 6 V ; f ) + i f 2 d v ,  f €9' 
R 
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([6], Theorem 6.1.1). Let MD = (Xf, P:) be the absorbing a-stable process 
on D :  denote by z, the exit time from D, TD = inf{t > 0 I X,$D) .  Let A be 
the cemetary point. We set 

.- 

and Pjj satisfies 

Moreover, the Dirichlet form FD) of MD is the following: 

u = 2 ,  

1 
dydx, 1 < o! < 2 

([6], Theorem 4.4.2, Example 4.4.1). 
Now we review the notion of time changes. In general, let X be a locally 

compact separable metric space and m a positive Radon measure on X with full 
support. Let M = (X,, P,, I )  be an m-symmetric transient Hunt process on X, 
where c is the lifetime of M, 5 = id{t > 0 I X, = A). We denote by G(x, y) the 
Green function of M and by G,(x, y) the a-resolvent density. 

DEFINITION 2.1. (i) A positive Radon measure p on X is said to be in the 
Kato class X (G) if 

lim sup j G, (x , y) p (dy) = 0. 
a+m X E X X  

(ii) A measure p~ X (G) is said to be in Xm (G) if for any E > 0 there exists 
a compact set K and a constant 6 > 0 such that 

and for all measurable sets B c K with p(B) < S 

Note that any finite measures in X ( G )  belong to Xm (G) (see [5]) .  Let 
p~ X (G). Then there exists a unique PCAF A: in the Revuz correspondence 
to p (see [I] and [6]). 

10 - PAMS 24.2 
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Let p E X (G) and T, be the right continuous inverse of A:, T, = 
inf{s > 0 1 AtAI; > t}. Put 2, = X,,. Then i@ = (g,, P,) is said to be the time 
changed process of M by A:. Denote by Y the topological support of ,u and by 

the quasi-support of p. Then is a ysymmetric Markov process on and 
its lifetime is A! ([6], $6). Set 

where ar is the hitting time of Y, a, = inf {t > 0 I X,E Y}. Let (8, S) be the 
regular Dirichlet form of M .  Then also generates the regular Dirichlet form 
(6, $1 on P(Y; p) ( [6 ] ,  Theorem 6.2.1): 

@ = {$E@(Y; p) 6) 1 = u p-a.e. on Y for some U E S ~ } ,  

where (Fe, 8) is the extended Dirichlet space of (P, 8) [[dl, p. 35). Moreover, 
(#, $1 satisfies 

(2.1) b(u, u) = inf{&(v, v)  I VEF, a =  a q.e. on Y), 

where U" is a quasi-continuous version of u, and q.e. is the abbreviation for 
quasi-everywhere. The equation (2.1) is the so-called Dirichlet principb. 

3. EXAMPLES 

3.1. Hn case of ct = 2. First we shall study the principal eigenvalues for time 
changed processes of killed Brownian motions in one dimension. Let p be 
a Kato class measure with respect to MY. Define 

Then the equation (2.1) implies that L (p; v )  coincides with the principal eigen- 
value for the time changed process of Mv by A:. 

EXAMPLE 3.1. Let M2 = (B,, P,) be the one-dimensional Brownian mo- 
tion. Set v (dx) = x ~ ~ , ~ )  (r) dr for a < b. Then AP = ct 1; ~ , , b )  (B.) ds for ct > 0. 
Denote by Mu' = (By, P y )  the killed Brownian motion with respect to 
exp(-AY). Then Ma' generates the Dirichlet form (Cav, H1(R)): 

By definition, 



Principal eigenvalues for time changed processes 359 

Let Cap be the 0-order capacity with respect to Mav. Since the right-hand side 
of (3.1) coincides with Cap((z))/b, its infimum is attained by 

Suppose first that z < a. Then we can see from [4], p. 167, 2.7.1, that 

,/%(a - X) sinh (@ (b - a)) + cosh (@ (b - a)) 
z < x < a ,  

fi(a-z)sinh(@(b-a))+cosh(@(b-a))' 

cosh ($ (b - x)) 
u < x < b ,  

= 1 &(a-z)sinh(fi(b-a))+cosh(&(b-a)r 
1 

b < x. 
fi(o-i)sinh(Ji.(h-u))+rorhj&jlr(b-a)). 

Hence a direct calculation yields 

- 1 -- fi sinh (fi (b - a)) 

28 msh(fi(b-a))+&(a-z)sinh(fi(b-a))' 

Next we assume that a c z 6 b. Then we can also see from [4], p. 167, 2.7.1, 
that 

1 
x 6 a, 

cosh (fi (z -a))' 

cosh (,/% (x - a)) 
uz cosh (@ (z -a)) ' a < x < z ,  

Ex Cexp 1 X(o,b) (Bs) ds)l = 
o cosh ( f i ( b  -x)) 

z < x d b ,  
cosh (fi (b - z)) ' 

and thereby I 1 
b < x ,  

cosh (a (b - z))' 

6 {sinh(2@(z-4 sinh(2&(b-z)) 
1, (BdZ;  ~ x ( a , b ) )  = - + 

4 f i b  cosh2 (fi (z - a)) cosh2 (& (b - z)) 
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EXAMPLE 3.2. For n E N, let {ai):=, and {bi)y=, be sequences which satisfy 
a. < bl < a ,  < b2 < ,.. < b, < a , .  Here we take v = ~ ~ = , u i 6 , ,  for a i 2 0 .  
Then A; = z;:, mi la, (I), where la (0 is the local time of the one-dimensional 
Brownian motion at a. Let MY = (B:, P3 be the killed Brownian motion with 
respect to exp(-A:). Then its Dirichlet form (gV, 9") is the following: 

Put p = x= Bi Bbi for pi > 0. Then 

Note that the infimum above is attained by the harmonic function u, which 
satisfies 

u Ex rexp (- a0 I., (~l))l, x < bl, 

u(bi)Ex[ex~(-ol,la(oi)): ai < ~i+l]+~(bi+~>Ex[e~(-~i~ui(~i+l)): ai+l <oil, 
bi< x < bi+l ,  

Id (b") Ex [~XP  (- % 1% (0n))I 9 bn < x, 

where 3 = (bi);=, and oi is the hitting time of bi. Then we see from 141, p. 164, 
2.3.1, that 

1 + 2a, (a, - x) 
Ex [ ~ X P  (-G la,, (an))] = 1 +2% (an - bn)9 b, < x  < a,. 

We also see from [4], p. 174, 3.3.5, that 

E, [exp (- ai E,, (oi)) : ai < g i  + 11 
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and 

Thus we have 

We shall find the minimum of the right-hand side of (3,2) under the assumption zq=, Pi u (bi)* = 1. Put 

u ( b i ) = x i  and Ai=(bi+1-bi+2ai(bi+i-ai)(ai-bi))-1.  

Set 

+ a0 x; + an 
1 +2ao (bl - ao) 1 + 2a, (a, - b,) 

xf 

and 

As a direct calculation yields 

it follows that 
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where 

B, = 
2an +A,-~(1+20r,-1(a,-1-b,-l))-2~P,. 1 + 201, (a, - b") 

When n = 1, we get 

ao+al +2aoorl (al-a,) a ( p i  8bl ; UO + m i  a,,) = 
P I  (1+2uo (b i  -ao))(1+2ai(ai - b ~ l ) '  

In particular, if bl -ao = al - bl = r, then 

When n = 2 and uo = a2 = 0, we obtain 

Assume in addition that fil = f l 2  = 8 and b2 - al = al - b, = r. Then 

3.2. In case of 1 < u d 2. Next we shall consider the principal eigenvalues 
for time changed processes of absorbing a-stable processes with 1 < E < 2. Let 
I ( p ;  D) be the principal eigenvalue for a*: 
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EXAMPLE 3.3. Let M" be the absorbing a-stable process on R\{O) and Go 
its Green function. Then Getoor [7] showed that 

1 
(x = - r (or) cos (rm/2) 

( l~ l"-~+Iy l"- ' - Ix -y (~-~)  

(see also [9], p. 379). By definition, 

(3.3) A (6,; R\{O}) = inf (8" Cf, f) I f E Co" (R\(O)), f (a) = 1). 

Then we see in a similar way to Example 3.1 that the infimum of (3.3) is 

I attained by Go (., ca)/~O (a, a). Hence 

The following are three graphs of A (6,; R\(O)) with respect to a E (1, 21. If la1 is 
small, then A(6,; R\{O>) is increasing monotonously. However, L(6,; R\{O)) 
takes the maximal value for large lal. We can guess that L(6,; R\{O)) takes the 
maximal value for la1 > 1.5. 

We can also show that 

I EXAMPLE 3.4. Let MP be the absorbing a-stable process on R\(-p, p). 
Denote by GP (x, y) the Green function of MP. Then we see from (2.9) of [9] that 

where 

a(x) = - 
1 

r (a) cos (742) I x I ~ - ~ Y  

and L, is some function. Noting that GP(x, p) = GP(x, - p )  = 0, we obtain 
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Since it follows from Theorem 6.5 of [7] that 

we get 

Let q # p. Then we have 

1 
R \ ( - ~ ,  P I )  = Gp(q ,  q) 

- - -2r (a) cos (xa/2) 1 2 ~ l " - ~  
4 ( ~ - 4 1 ~ - ~  (p+q(a-1-((p-q(a-1+(p+q(u-1-(2p(a-1)2. 

In particular, 

r (a) cos (n01/2) 
R\~-P, PI) = - ( 2 - r - 3 1 p l a - l ~  

We can also prove the following: 

See [10] ,  Section 3, and [13], Example 4.1, for more examples of principal 
eigenvalues for time changed processes of symmetric a-stable processes. 

4 APPLICATION 

In this section, we apply the results in the preceding section to the gauge- 
ability. Recall first that (8,  $) is the regular Dirichlet form associated with an 
m-symmetric transient Hunt process on X. Let us define 

Then Chen [5], Takeda [Ill  and Takeda and Uemura [I31 proved the fol- 
lowing: 
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THEOREM 4.1 ( [ 5 ] ,  Theorem 5.1; [ll], Theorem 2.4; [13], Theorem 3.1). 
For p E 3y, (G) with compact support it follows that 

A measure p~ Xm (G) is said to be gaugeable if (4.1) holds. Applying Theo- 
rem 4.1 to the results in the preceding section, we can give conditions for some 
measures being gaugeable. For instance, let us consider Example 3.3. Denote 
by a. the hitting time of 0. Since the strong Markov property implies 

sup E, [exp ( I ,  (go))] = E,  C ~ X P  (4  (ao))I 
XER\IO) 

we have 

( r (a) c; @a/2) 
(4.2) E, [exp (l ,  (a,))] < co - 0 < la1 < - 

Let us make observations on (4.2). Fix or E (I, 21. We first suppose that 
a is small. If a particle hits a, then it will hit 0 soon. We next suppose that a is 
large, Once a particle hits a, it will stay near a for a while and hit a many times 
by the time it arrives at 0. 

Remark 4.2. Consider branching diffusion processes on a metric space. 
Then it is known that the expectation of the number of branches hitting a closed 
set coincides with the expectation of the Feynman-Kac functional (see [8]). 
Moreover, this relation also holds for branching symmetric a-stable processes 
on Rd ([12], Theorem 1.2). Combining this with Theorem 4.1 and our cal- 
culations of A h ,  D), we can give a necessary and sufficient condition for the 
expectation of the number of branches hitting a closed set being fmite. 

Acknowledgments. The author would like to thank Professor Masayoshi 
Takeda for his valuable comments and suggestions. 
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