PRINCIPAL EIGENVALUES FOR TIME CHANGED PROCESSES OF ONE-DIMENSIONAL α-STABLE PROCESSES

BY

YUICHI SHIOZAWA (SENDAI)

Abstract

In this paper, we calculate the principal eigenvalues for time changed processes of Brownian motions and symmetric α-stable processes in one dimension.

Mathematics Subject Classification: 31C25, 60G52, 60J45, 60 J 55.
Key words and phrases: Principal eigenvalue, symmetric α-stable process, time change, gaugeability, Dirichlet form.

1. INTRODUCTION

Let $\boldsymbol{M}^{\alpha}=\left(X_{t}^{\alpha}, P_{x}\right), 1<\alpha \leqslant 2$, be a symmetric α-stable process on \boldsymbol{R} and denote its Dirichlet form by $\left(\mathscr{E}^{\alpha}, \mathscr{F}^{\alpha}\right)$. Let D be an open set and M^{D} the absorbing α-stable process on D. Let μ be a measure in the Kato class and A_{t}^{μ} the positive continuous additive functional (PCAF) in the Revuz correspondence to μ. We now define

$$
\lambda(\mu ; D)=\inf \left\{\mathscr{E}^{\alpha}(f, f) \mid f \in C_{0}^{\infty}(D), \int_{D} f^{2} d \mu=1\right\}
$$

Then $\lambda(\mu ; D)$ is the principal eigenvalue for the time changed process of M^{D} by A_{t}^{μ}. It is difficult in general to obtain principal eigenvalues for symmetric α-stable processes because of the non-locality. We do not know the principal eigenvalue even for the absorbing process on an interval; a lower bound estimate was obtained in [3] (see also [2] and [10]).

A purpose of this paper is to calculate $\lambda(\mu ; D)$ for special pairs of μ and D. For example, let δ_{a} be the Dirac measure at a. We can then calculate $\lambda\left(\delta_{a}+\delta_{-a} ; \boldsymbol{R} \backslash\{0\}\right), a \neq 0$, by using the Green function of the absorbing process on $\boldsymbol{R} \backslash\{0\}$:

$$
\lambda\left(\delta_{a}+\delta_{-a} ; \boldsymbol{R} \backslash\{0\}\right)=-\frac{\Gamma(\alpha) \cos (\pi \alpha / 2)}{\left(4-2^{\alpha-1}\right)|a|^{\alpha-1}}
$$

(Example 3.3). We also calculate principal eigenvalues for time changed processes of killed Brownian motions in one dimension.

Our motivation lies in the proof of the gaugeability: a measure μ is said to be gaugeable on D if

$$
\sup _{x \in \boldsymbol{D}} E_{x}\left[\exp \left(A_{\tau_{\boldsymbol{D}}}^{\mu}\right)\right]<\infty,
$$

where τ_{D} is the exit time from D. It was shown in [5], [11] and [13] that for a Kato measure μ with compact support, μ is gaugeable on D if and only if $\lambda(\mu ; D)>1$. Hence, by the calculation of $\lambda\left(\delta_{a}+\delta_{-a} ; R \backslash\{0\}\right)$, we can give a necessary and sufficient condition for $\delta_{a}+\delta_{-a}$ being gaugeable in terms of the index α and the point a.

2. PRELIMINARIES

Let $M^{\alpha}=\left(X_{t}^{\alpha}, P_{x}\right), 1<\alpha \leqslant 2$, be the symmetric α-stable process on \boldsymbol{R}. Denote its Dirichlet form by ($\mathscr{E}^{\alpha}, \mathscr{F}^{\alpha}$). In case of $\alpha=2, M^{2}$ is the Brownian motion and $\left(\mathscr{E}^{2}, \mathscr{F}^{2}\right)=\left(D / 2, H^{1}(\mathbb{R})\right.$), where $H^{1}(\mathbb{R})$ is the Sobolev space of order one and

$$
\boldsymbol{D}(f, f)=\int_{\boldsymbol{R}}\left(\frac{d f}{d x}\right)^{2} d x, \quad f \in H^{1}(\boldsymbol{R})
$$

If $1<\alpha<2$, then M^{α} is a pure jump process and its Dirichlet form $\left(\mathscr{E}^{\alpha \alpha}, \mathscr{F}^{\alpha}\right)$ is as follows:

$$
\begin{gathered}
\mathscr{E}^{\alpha}(f, f)=\frac{1}{2} \mathscr{A}(\alpha) \iint_{\boldsymbol{R} \times \boldsymbol{R}} \frac{(f(x)-f(y))^{2}}{|x-y|^{1+\alpha}} d y d x, \\
\mathscr{F}^{\alpha}=\left\{f \in L^{2}(\boldsymbol{R}) \left\lvert\, \iint_{\mathbf{R} \times \mathbf{R}} \frac{(f(x)-f(y))^{2}}{|x-y|^{1+\alpha}} d y d x<\infty\right.\right\},
\end{gathered}
$$

where

$$
\mathscr{A}(\alpha)=\frac{\alpha 2^{\alpha-1} \Gamma((1+\alpha) / 2)}{\pi^{1 / 2} \Gamma(1-\alpha / 2)}, \quad \Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

Let v be a smooth measure and A_{t}^{v} the PCAF in the Revuz correspondence to v ([6], Theorem 5.1.4). Let $M^{v}=\left(X_{t}^{v}, P_{x}^{v}\right)$ be the subprocess of M^{α} with respect to the multiplicative functional $\exp \left(-A_{t}^{v}\right)$ (see [6], Appendix A.2, for details):

$$
E_{x}^{v}\left[f\left(X_{t}^{v}\right)\right]=E_{x}\left[\exp \left(-A_{t}^{v}\right) f\left(X_{t}^{\alpha}\right)\right] .
$$

Then the process M^{v} generates the Dirichlet form ($\left.\mathscr{E}^{v}, \mathscr{F}^{v}\right)$:

$$
\mathscr{F}^{v}=\mathscr{F}^{\alpha} \cap L^{2}(\boldsymbol{R} ; v), \quad \mathscr{E}^{v}(f, f)=\mathscr{E}^{\alpha}(f, f)+\int_{\boldsymbol{R}} f^{2} d v, f \in \mathscr{F}^{v}
$$

([6], Theorem 6.1.1). Let $M^{D}=\left(X_{t}^{D}, P_{x}^{D}\right)$ be the absorbing α-stable process on D : denote by τ_{D} the exit time from $D, \tau_{D}=\inf \left\{t>0 \mid X_{t} \notin D\right\}$. Let Δ be the cemetary point. We set

$$
X_{t}^{D}= \begin{cases}X_{t}^{\alpha}, & 0 \leqslant t<\tau_{D} \\ \Delta, & \tau_{D} \leqslant t\end{cases}
$$

and P_{x}^{D} satisfies

$$
E_{x}^{D}\left[f\left(X_{t}^{D}\right)\right]=E_{x}\left[f\left(X_{t}^{\alpha}\right): t<\tau_{D}\right] .
$$

Moreover, the Dirichlet form $\left(\mathscr{E}^{D}, \mathscr{F}^{D}\right)$ of M^{D} is the following:

$$
\begin{aligned}
& \mathscr{F}^{D}=\left\{f \in \mathscr{F}^{\alpha} \mid f=0 \text { on } D^{c}\right\}, \\
& \mathscr{E}^{D}(f, f) \\
&= \begin{cases}\frac{1}{2} \int_{D}\left(\frac{d f}{d x}\right)^{2} d x, & \alpha=2, \\
\frac{1}{2} \mathscr{A}(\alpha) \int_{D \times D} \frac{(f(x)-f(y))^{2}}{|x-y|^{1+\alpha}} d y d x+\mathscr{A}(\alpha) \int_{D} f(x)^{2} \int_{D^{c}} \frac{1}{|x-y|^{1+\alpha}} d y d x, & 1<\alpha<2\end{cases}
\end{aligned}
$$

([6], Theorem 4.4.2, Example 4.4.1).
Now we review the notion of time changes. In general, let X be a locally compact separable metric space and m a positive Radon measure on X with full support. Let $M=\left(X_{t}, P_{x}, \zeta\right)$ be an m-symmetric transient Hunt process on X, where ζ is the lifetime of $M, \zeta=\inf \left\{t>0 \mid X_{t}=\Delta\right\}$. We denote by $G(x, y)$ the Green function of M and by $G_{\alpha}(x, y)$ the α-resolvent density.

Definition 2.1. (i) A positive Radon measure μ on X is said to be in the Kato class $\mathscr{K}(G)$ if

$$
\lim _{\alpha \rightarrow \infty} \sup _{x \in X} \int_{X} G_{\alpha}(x, y) \mu(d y)=0
$$

(ii) A measure $\mu \in \mathscr{K}(G)$ is said to be in $\mathscr{K}_{\infty}(G)$ if for any $\varepsilon>0$ there exists a compact set K and a constant $\delta>0$ such that

$$
\sup _{x \in X} \int_{K^{c}} G(x, y) \mu(d y)<\varepsilon,
$$

and for all measurable sets $B \subset K$ with $\mu(B)<\delta$

$$
\sup _{x \in X} \int_{\boldsymbol{B}} G(x, y) \mu(d y)<\varepsilon .
$$

Note that any finite measures in $\mathscr{K}(G)$ belong to $\mathscr{K}_{\infty}(G)$ (see [5]). Let $\mu \in \mathscr{K}(G)$. Then there exists a unique PCAF A_{t}^{μ} in the Revuz correspondence to μ (see [1] and [6]).

Let $\mu \in \mathscr{K}(G)$ and τ_{t} be the right continuous inverse of $A_{t}^{\mu}, \tau_{t}=$ $\inf \left\{s>0 \mid A_{s \wedge \zeta}^{\mu}>t\right\}$. Put $\check{X}_{t}=X_{t t}$. Then $\check{M}=\left(\check{X}_{t}, P_{x}\right)$ is said to be the time changed process of M by A_{t}^{μ}. Denote by Y the topological support of μ and by \tilde{Y} the quasi-support of μ. Then \check{M} is a μ-symmetric Markov process on \tilde{Y} and its lifetime is $A_{\zeta}^{\mu}([6], \S 6)$. Set

$$
H_{Y} u(x)=E_{x}\left[u\left(X_{\sigma_{Y}}\right): \sigma_{Y}<\infty\right],
$$

where σ_{Y} is the hitting time of $Y, \sigma_{Y}=\inf \left\{t>0 \mid X_{t} \in Y\right\}$. Let $(\mathscr{E}, \mathscr{F})$ be the regular Dirichlet form of \boldsymbol{M}. Then \bar{M} also generates the regular Dirichlet form $(\check{\delta}, \mathscr{\mathscr { F }})$ on $L^{2}(Y ; \mu)$ ([6], Theorem 6.2.1):

$$
\begin{aligned}
\check{\mathscr{Y}} & =\left\{\psi \in L^{2}(Y ; \mu) \mid \psi=u \mu \text {-a.e. on } Y \text { for some } u \in \mathscr{F _ { e }}\right\}, \\
\check{\mathscr{E}}(\psi, \psi) & =\mathscr{E}\left(H_{\tilde{Y}} u, H_{\tilde{Y}} u\right),
\end{aligned}
$$

where $\left(\mathscr{F}_{e}, \mathscr{E}\right)$ is the extended Dirichlet space of $(\mathscr{F}, \mathscr{E})([6]$, p. 35). Moreover, ($\check{6}, \mathscr{F}$) satisfies

$$
\begin{equation*}
\check{\mathscr{E}}(u, u)=\inf \{\mathscr{E}(v, v) \mid v \in \mathscr{F}, \tilde{v}=\tilde{u} \text { q.e. on } Y\}, \tag{2.1}
\end{equation*}
$$

where \tilde{u} is a quasi-continuous version of u, and q.e. is the abbreviation for quasi-everywhere. The equation (2.1) is the so-called Dirichlet principle.

3. EXAMPLES

3.1. In case of $\alpha=2$. First we shall study the principal eigenvalues for time changed processes of killed Brownian motions in one dimension. Let μ be a Kato class measure with respect to \boldsymbol{M}^{ν}. Define

$$
\lambda(\mu ; v)=\inf \left\{\left.\frac{1}{2} D(f, f)+\int_{\mathbf{R}} f^{2} d v \right\rvert\, f \in \mathscr{F}^{v}, \int_{\mathbf{R}} f^{2} d \mu=1\right\} .
$$

Then the equation (2.1) implies that $\lambda(\mu ; v)$ coincides with the principal eigenvalue for the time changed process of M^{ν} by A_{t}^{μ}.

Example 3.1. Let $M^{2}=\left(B_{t}, P_{x}\right)$ be the one-dimensional Brownian motion. Set $v(d x)=\chi_{(a, b)}(x) d x$ for $a<b$. Then $A_{t}^{a v}=\alpha \int_{0}^{t} \chi_{(a, b)}\left(B_{s}\right) d s$ for $\alpha>0$. Denote by $\boldsymbol{M}^{a v}=\left(B_{t}^{a v}, P_{x}^{a v}\right)$ the killed Brownian motion with respect to $\exp \left(-A_{t}^{\alpha \nu}\right)$. Then $M^{\alpha v}$ generates the Dirichlet form ($\mathscr{E}^{\text {gav }}, H^{1}(R)$):

$$
\mathscr{E}^{g v}(f, f)=\frac{1}{2} \boldsymbol{D}(f, f)+\alpha \int_{a}^{b} f^{2} d x, \quad f \in H^{1}(R) .
$$

By definition,

$$
\begin{equation*}
\lambda\left(\beta \delta_{z} ; \alpha \chi_{(a, b)}\right)=\inf \left\{\mathscr{E}^{\alpha v}(f, f) \mid f \in H^{1}(R), \beta f^{2}(z)=1\right\} . \tag{3.1}
\end{equation*}
$$

Let Cap be the 0 -order capacity with respect to $M^{\alpha \nu}$. Since the right-hand side of (3.1) coincides with $\operatorname{Cap}(\{z\}) / \beta$, its infimum is attained by

$$
\frac{1}{\sqrt{\beta}} P_{x}^{\alpha v}\left(\sigma_{z}<\infty\right)=\frac{1}{\sqrt{\beta}} E_{x}\left[\exp \left(-\alpha \int_{0}^{\sigma_{z}} \chi_{(a, b)}\left(B_{s}\right) d s\right)\right] .
$$

Suppose first that $z<a$. Then we can see from [4], p. 167, 2.7.1, that

$$
\begin{aligned}
& E_{x}\left[\exp \left(-\alpha \int_{0}^{\sigma_{z}} \chi_{(a, b)}\left(B_{s}\right) d s\right)\right] \\
&= \begin{cases}1, & x<z, \\
\frac{\sqrt{2 \alpha}(a-x) \sinh (\sqrt{2 \alpha}(b-a))+\cosh (\sqrt{2 \alpha}(b-a))}{\sqrt{2 \alpha}(a-z) \sinh (\sqrt{2 \alpha}(b-a))+\cosh (\sqrt{2 \alpha}(b-a))}, & z<x \leqslant a, \\
\frac{\cosh (\sqrt{2 \alpha}(b-x))}{\sqrt{2 \alpha}(a-z) \sinh (\sqrt{2 \alpha}(b-a))+\cosh (\sqrt{2 \alpha}(b-a))}, & a<x \leqslant b, \\
\frac{1}{\sqrt{2 \alpha}(a-z) \sinh (\sqrt{2 \alpha}(b-a))+\cosh (\sqrt{2 \alpha}(b-a))}, & b<x .\end{cases}
\end{aligned}
$$

Hence a direct calculation yields

$$
\begin{aligned}
\lambda\left(\beta \delta_{z} ; \alpha \chi_{(a, b)}\right) & =\frac{1}{\beta} \mathscr{E}^{\alpha v}\left(P^{\alpha v}\left(\sigma_{z}<\infty\right), P_{\cdot}^{\alpha v}\left(\sigma_{z}<\infty\right)\right) \\
& =\frac{1}{2 \beta} \frac{\sqrt{2 \alpha} \sinh (\sqrt{2 \alpha}(b-a))}{\cosh (\sqrt{2 \alpha}(b-a))+\sqrt{2 \alpha}(a-z) \sinh (\sqrt{2 \alpha}(b-a))} .
\end{aligned}
$$

Next we assume that $a<z \leqslant b$. Then we can also see from [4], p. 167, 2.7.1, that

$$
E_{x}\left[\exp \left(-\alpha \int_{0}^{\sigma_{z}} \chi_{(a, b)}\left(B_{s}\right) d s\right)\right]= \begin{cases}\frac{1}{\cosh (\sqrt{2 \alpha}(z-a))}, & x \leqslant a, \\ \frac{\cosh (\sqrt{2 \alpha}(x-a))}{\cosh (\sqrt{2 \alpha}(z-a))}, & a<x<z \\ \frac{\cosh (\sqrt{2 \alpha}(b-x))}{\cosh (\sqrt{2 \alpha}(b-z))}, & z<x \leqslant b, \\ \frac{1}{\cosh (\sqrt{2 \alpha}(b-z))}, & b<x,\end{cases}
$$

and thereby

$$
\lambda\left(\beta \delta_{z} ; \alpha \chi_{(a, b)}\right)=\frac{\sqrt{\alpha}}{4 \sqrt{2 \beta}}\left\{\frac{\sinh (2 \sqrt{2 \alpha}(z-a))}{\cosh ^{2}(\sqrt{2 \alpha}(z-a))}+\frac{\sinh (2 \sqrt{2 \alpha}(b-z))}{\cosh ^{2}(\sqrt{2 \alpha}(b-z))}\right\} .
$$

Example 3.2. For $n \in N$, let $\left\{a_{i}\right\}_{i=0}^{n}$ and $\left\{b_{i}\right\}_{i=1}^{n}$ be sequences which satisfy $a_{0}<b_{1}<a_{1}<b_{2}<\ldots<b_{n}<a_{n}$. Here we take $v=\sum_{i=0}^{n} \alpha_{i} \delta_{a_{i}}$ for $\alpha_{i} \geqslant 0$. Then $A_{t}^{\nu}=\sum_{i=0}^{n} \alpha_{i} l_{a_{i}}(t)$, where $l_{a}(t)$ is the local time of the one-dimensional Brownian motion at a. Let $M^{v}=\left(B_{t}^{v}, P_{x}^{v}\right)$ be the killed Brownian motion with respect to $\exp \left(-A_{t}^{y}\right)$. Then its Dirichlet form $\left(\mathscr{E}^{v}, \mathscr{F}^{v}\right)$ is the following:

$$
\begin{aligned}
\mathscr{F}^{v} & =\left\{f \in H^{1}(\boldsymbol{R}) \mid \sum_{i=0}^{n} \alpha_{i} f\left(a_{i}\right)^{2}<\infty\right\}, \\
\mathscr{E}^{v}(f, f) & =\frac{1}{2} \boldsymbol{D}(f, f)+\sum_{i=0}^{n} \alpha_{i} f\left(a_{i}\right)^{2}, \quad f \in \mathscr{F}^{v} .
\end{aligned}
$$

Put $\mu=\sum_{i=1}^{n} \beta_{i} \delta_{b_{i}}$ for $\beta_{i}>0$. Then

$$
\lambda\left(\sum_{i=1}^{n} \beta_{i} \delta_{b_{i}} ; \sum_{i=0}^{n} \alpha_{i} \delta_{a_{i}}\right)=\inf \left\{\mathscr{E}^{v}(f, f) \mid f \in \mathscr{F}^{v}, \sum_{i=1}^{n} \beta_{i} f\left(b_{i}\right)^{2}=1\right\} .
$$

Note that the infimum above is attained by the harmonic function u, which satisfies

$$
\begin{aligned}
& u(x)=E_{x}\left[\exp \left(-A_{\sigma_{B}}^{v}\right) u\left(B_{\sigma_{B}}\right)\right] \\
& = \begin{cases}u\left(b_{1}\right) E_{x}\left[\exp \left(-\alpha_{0} l_{a_{0}}\left(\sigma_{1}\right)\right)\right], & x<b_{1}, \\
u\left(b_{i}\right) E_{x}\left[\exp \left(-\alpha_{i} l_{a_{i}}\left(\sigma_{i}\right)\right): \sigma_{i}<\sigma_{i+1}\right]+u\left(b_{i+1}\right) E_{x}\left[\exp \left(-\alpha_{i} l_{a_{i}}\left(\sigma_{i+1}\right)\right): \sigma_{i+1}<\sigma_{i}\right], \\
& b_{i}<x<b_{i+1}, \\
u\left(b_{n}\right) E_{x}\left[\exp \left(-\alpha_{n} l_{a_{n}}\left(\sigma_{n}\right)\right)\right], & b_{n}<x,\end{cases}
\end{aligned}
$$

where $B=\left\{b_{i}\right\}_{i=1}^{n}$ and σ_{i} is the hitting time of b_{i}. Then we see from [4], p. 164, 2.3.1, that

$$
\begin{array}{ll}
E_{x}\left[\exp \left(-\alpha_{0} l_{a_{0}}\left(\sigma_{1}\right)\right)\right]=\frac{1+2 \alpha_{0}\left(x-a_{0}\right)}{1+2 \alpha_{0}\left(b_{1}-a_{0}\right)}, & a_{0} \leqslant x<b_{1} \\
E_{x}\left[\exp \left(-\alpha_{n} l_{a_{n}}\left(\sigma_{n}\right)\right)\right]=\frac{1+2 \alpha_{n}\left(a_{n}-x\right)}{1+2 \alpha_{n}\left(a_{n}-b_{n}\right)}, & b_{n}<x \leqslant a_{n}
\end{array}
$$

We also see from [4], p. 174, 3.3.5, that

$$
\begin{aligned}
E_{x}\left[\exp \left(-\alpha_{i} l_{a_{i}}\left(\sigma_{i}\right)\right):\right. & \left.\sigma_{i}<\sigma_{i+1}\right] \\
& = \begin{cases}\frac{b_{i+1}-x+2 \alpha_{i}\left(b_{i+1}-a_{i}\right)\left(a_{i}-x\right)}{b_{i+1}-b_{i}+2 \alpha_{i}\left(b_{i+1}-a_{i}\right)\left(a_{i}-b_{i}\right)}, & b_{i}<x \leqslant a_{i} \\
\frac{b_{i+1}-x}{b_{i+1}-b_{i}+2 \alpha_{i}\left(b_{i+1}-a_{i}\right)\left(a_{i}-b_{i}\right)}, & a_{i}<x<b_{i+1}\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& E_{x}\left[\exp \left(-\alpha_{i} l_{a_{i}}\left(\sigma_{i+1}\right)\right): \sigma_{i+1}<\sigma_{i}\right] \\
& \qquad= \begin{cases}\frac{x-b_{i}}{b_{i+1}-b_{i}+2 \alpha_{i}\left(b_{i+1}-a_{i}\right)\left(a_{i}-b_{i}\right)}, & b_{i}<x \leqslant a_{i} \\
\frac{x-b_{i}+2 \alpha_{i}\left(a_{i}-b_{i}\right)\left(x-a_{i}\right)}{b_{i+1}-b_{i}+2 \alpha_{i}\left(b_{i+1}-a_{i}\right)\left(a_{i}-b_{i}\right)}, & a_{i}<x<b_{i+1}\end{cases}
\end{aligned}
$$

Thus we have
(3.2) $\frac{1}{2} D(u, u)+\sum_{i=0}^{n} \alpha_{i} u\left(a_{i}\right)^{2}$

$$
\begin{aligned}
= & \frac{1}{2} \sum_{i=1}^{n-1} \frac{\left(1+2 \alpha_{i}\left(b_{i+1}-a_{i}\right)\right) u\left(b_{i}\right)^{2}-2 u\left(b_{i}\right) u\left(b_{i+1}\right)+\left(1+2 \alpha_{i}\left(a_{i}-b_{i}\right)\right) u\left(b_{i+1}\right)^{2}}{b_{i+1}-b_{i}+2 \alpha_{i}\left(b_{i+1}-a_{i}\right)\left(a_{i}-b_{i}\right)} \\
& +\frac{\alpha_{0}}{1+2 \alpha_{0}\left(b_{1}-a_{0}\right)} u\left(b_{1}\right)^{2}+\frac{\alpha_{n}}{1+2 \alpha_{n}\left(a_{n}-b_{n}\right)} u\left(b_{n}\right)^{2} .
\end{aligned}
$$

We shall find the minimum of the right-hand side of (3.2) under the assumption $\sum_{i=1}^{n} \beta_{i} u\left(b_{i}\right)^{2}=1$. Put

$$
u\left(b_{i}\right)=x_{i} \quad \text { and } \quad A_{i}=\left\{b_{i+1}-b_{i}+2 \alpha_{i}\left(b_{i+1}-a_{i}\right)\left(a_{i}-b_{i}\right)\right\}^{-1}
$$

Set

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right)= & \frac{1}{2} \sum_{i=1}^{n-1} A_{i}\left\{\left(1+2 \alpha_{i}\left(b_{i+1}-a_{i}\right)\right) x_{i}^{2}-2 x_{i} x_{i+1}+\left(1+2 \alpha_{i}\left(a_{i}-b_{i}\right)\right) x_{i+1}^{2}\right\} \\
& +\frac{\alpha_{0}}{1+2 \alpha_{0}\left(b_{1}-a_{0}\right)} x_{1}^{2}+\frac{\alpha_{n}}{1+2 \alpha_{n}\left(a_{n}-b_{n}\right)} x_{n}^{2}
\end{aligned}
$$

and

$$
G\left(\kappa, x_{1}, \ldots, x_{n}\right)=F\left(x_{1}, \ldots, x_{n}\right)-\kappa\left(\sum_{i=1}^{n} \beta_{i} x_{i}^{2}-1\right) .
$$

As a direct calculation yields

$$
\frac{1}{2} \sum_{k=1}^{n} x_{k} \frac{\partial G}{\partial x_{k}}=F\left(x_{1}, \ldots, x_{n}\right)-\kappa=0
$$

it follows that

$$
\lambda\left(\sum_{i=1}^{n} \beta_{i} \delta_{b_{i}} ; \sum_{i=0}^{n} \alpha_{i} \delta_{a_{i}}\right)=\min \{\kappa \mid \operatorname{det} A(\kappa)=0\}
$$

where

$$
\begin{aligned}
& A(\kappa)=\left[\begin{array}{cccccc}
B_{1} & -A_{1} & 0 & \ldots & \ldots & 0 \\
-A_{1} & B_{2} & -A_{2} & \cdots & \cdots & \ldots \\
0 & -A_{2} & B_{3} & \cdots & \cdots & \ldots \\
\cdots \\
\cdots & \cdots & \cdots & -A_{n-2} & B_{n-1} & -A_{n-1} \\
0 & \cdots & \cdots & 0 & -A_{n-1} & B_{n}
\end{array}\right], \\
& B_{1}=\frac{2 \alpha_{0}}{1+2 \alpha_{0}\left(b_{1}-a_{0}\right)}+A_{1}\left(1+2 \alpha_{1}\left(b_{2}-a_{1}\right)\right)-2 \kappa \beta_{1}, \\
& B_{k}=A_{k-1}\left(1+2 \alpha_{k-1}\left(a_{k-1}-b_{k-1}\right)\right)+A_{k}\left(1+2 \alpha_{k}\left(b_{k+1}-a_{k}\right)\right)-2 \kappa \beta_{k}, \\
& 2 \leqslant k \leqslant n-1 \text {, } \\
& B_{n}=\frac{2 \alpha_{n}}{1+2 \alpha_{n}\left(a_{n}-b_{n}\right)}+A_{n-1}\left(1+2 \alpha_{n-1}\left(a_{n-1}-b_{n-1}\right)\right)-2 \kappa \beta_{n} .
\end{aligned}
$$

When $n=1$, we get

$$
\lambda\left(\beta_{1} \delta_{b_{1}} ; \alpha_{0} \delta_{a_{0}}+\alpha_{1} \delta_{a_{1}}\right)=\frac{\alpha_{0}+\alpha_{1}+2 \alpha_{0} \alpha_{1}\left(a_{1}-a_{0}\right)}{\beta_{1}\left(1+2 \alpha_{0}\left(b_{1}-a_{0}\right)\right)\left(1+2 \alpha_{1}\left(a_{1}-b_{1}\right)\right)} .
$$

In particular, if $b_{1}-a_{0}=a_{1}-b_{1}=r$, then

$$
\lambda\left(\beta_{1} \delta_{b_{1}} ; \alpha_{0} \delta_{a_{0}}+\alpha_{1} \delta_{a_{1}}\right)=\frac{\alpha_{0}+\alpha_{1}+4 \alpha_{0} \alpha_{1} r}{\beta_{1}\left(1+2 \alpha_{0} r\right)\left(1+2 \alpha_{1} r\right)}
$$

When $n=2$ and $\alpha_{0}=\alpha_{2}=0$, we obtain

$$
\begin{aligned}
& \lambda\left(\beta_{1} \delta_{b_{1}}+\beta_{2} \delta_{b_{2}} ; \alpha_{1} \delta_{a_{1}}\right)=\frac{\beta_{1}\left(1+2 \alpha_{1}\left(a_{1}-b_{1}\right)\right)+\beta_{2}\left(1+2 \alpha_{1}\left(b_{2}-a_{1}\right)\right)}{4 \beta_{1} \beta_{2}\left\{b_{2}-b_{1}+2 \alpha_{1}\left(b_{2}-a_{1}\right)\left(a_{1}-b_{1}\right)\right\}} \\
&-\frac{\sqrt{\left\{\beta_{1}\left(1+2 \alpha_{1}\left(a_{1}-b_{1}\right)\right)-\beta_{2}\left(1+2 \alpha_{1}\left(b_{2}-a_{1}\right)\right)\right\}^{2}+4 \beta_{1} \beta_{2}}}{4 \beta_{1} \beta_{2}\left\{b_{2}-b_{1}+2 \alpha_{1}\left(b_{2}-a_{1}\right)\left(a_{1}-b_{1}\right)\right\}} .
\end{aligned}
$$

Assume in addition that $\beta_{1}=\beta_{2}=\beta$ and $b_{2}-a_{1}=a_{1}-b_{1}=r$. Then

$$
\lambda\left(\beta\left(\delta_{b_{1}}+\delta_{b_{2}}\right) ; \alpha_{1} \delta_{a_{1}}\right)=\frac{\alpha_{1}}{2 \beta\left(1+\alpha_{1} r\right)} .
$$

3.2. In case of $1<\alpha \leqslant 2$. Next we shall consider the principal eigenvalues for time changed processes of absorbing α-stable processes with $1<\alpha \leqslant 2$. Let $\lambda(\mu ; D)$ be the principal eigenvalue for \breve{M}^{D} :

$$
\lambda(\mu ; D)=\inf \left\{\mathscr{E}^{\infty}(f, f) \mid f \in C_{0}^{\infty}(D), \int_{D} f^{2} d \mu=1\right\}
$$

Example 3.3. Let \boldsymbol{M}^{0} be the absorbing α-stable process on $\boldsymbol{R} \backslash\{0\}$ and \boldsymbol{G}^{0} its Green function. Then Getoor [7] showed that

$$
G^{0}(x, y)=-\frac{1}{\Gamma(\alpha) \cos (\pi \alpha / 2)}\left(|x|^{\alpha-1}+|y|^{\alpha-1}-|x-y|^{\alpha-1}\right)
$$

(see also [9], p. 379). By definition,

$$
\begin{equation*}
\lambda\left(\delta_{a} ; \boldsymbol{R} \backslash\{0\}\right)=\inf \left\{\mathscr{E}^{a}(f, f) \mid f \in C_{0}^{\infty}(\boldsymbol{R} \backslash\{0\}), f(a)=1\right\} . \tag{3.3}
\end{equation*}
$$

Then we see in a similar way to Example 3.1 that the infimum of (3.3) is attained by $G^{0}(\cdot, a) / G^{0}(a, a)$. Hence

$$
\lambda\left(\delta_{a} ; \boldsymbol{R} \backslash\{0\}\right)=\frac{1}{G^{0}(a, a)}=-\frac{\Gamma(\alpha) \cos (\pi \alpha / 2)}{2|a|^{\alpha-1}} .
$$

The following are three graphs of $\lambda\left(\delta_{a} ; \boldsymbol{R} \backslash\{0\}\right)$ with respect to $\alpha \in(1,2]$. If $|a|$ is small, then $\lambda\left(\delta_{a} ; \boldsymbol{R} \backslash\{0\}\right)$ is increasing monotonously. However, $\lambda\left(\delta_{a} ; \boldsymbol{R} \backslash\{0\}\right)$ takes the maximal value for large $|a|$. We can guess that $\lambda\left(\delta_{a} ; \boldsymbol{R} \backslash\{0\}\right)$ takes the maximal value for $|a|>1.5$.

We can also show that

$$
\lambda\left(\delta_{a}+\delta_{-a} ; \boldsymbol{R} \backslash\{0\}\right)=\frac{1}{G^{0}(a, a)+G^{0}(a,-a)}=-\frac{\Gamma(\alpha) \cos (\pi \alpha / 2)}{\left(4-2^{\alpha-1}\right)|a|^{\alpha-1}}
$$

Example 3.4. Let M^{p} be the absorbing α-stable process on $\boldsymbol{R} \backslash\{-p, p\}$. Denote by $G^{p}(x, y)$ the Green function of M^{p}. Then we see from (2.9) of [9] that

$$
G^{p}(x, y)=L_{p}(x)+P_{x}\left(\sigma_{p}<\sigma_{-p}\right) a(y-p)+P_{x}\left(\sigma_{-p}<\sigma_{p}\right) a(y+p)-a(y-x)
$$

where

$$
a(x)=-\frac{1}{\Gamma(\alpha) \cos (\pi \alpha / 2)}|x|^{\alpha-1}
$$

and L_{p} is some function. Noting that $G^{p}(x, p)=G^{p}(x,-p)=0$, we obtain

$$
L^{p}(x)=\frac{1}{2}(a(x-p)+a(x+p)-a(2 p))
$$

Since it follows from Theorem 6.5 of [7] that

$$
P_{x}\left(\sigma_{ \pm p}<\sigma_{\mp p}\right)=\frac{1}{2}+\frac{1}{2 a(2 p)}(a(x \pm p)-a(x \mp p))
$$

we get

$$
\begin{aligned}
G^{p}(x, y)= & \frac{1}{2}(a(x-p)+a(x+p)+a(y-p)+a(y+p)-a(2 p)) \\
& -\frac{1}{2 a(2 p)}(a(x-p)-a(x+p))(a(y-p)-a(y+p))-a(x-y)
\end{aligned}
$$

Let $q \neq p$. Then we have

$$
\begin{aligned}
\lambda\left(\delta_{q} ; \boldsymbol{R} \backslash\{-p, p\}\right) & =\frac{1}{G^{p}(q, q)} \\
& =\frac{-2 \Gamma(\alpha) \cos (\pi \alpha / 2)|2 p|^{\alpha-1}}{4|p-q|^{\alpha-1}|p+q|^{\alpha-1}-\left(|p-q|^{\alpha-1}+|p+q|^{\alpha-1}-|2 p|^{\alpha-1}\right)^{2}} .
\end{aligned}
$$

In particular,

$$
\lambda\left(\delta_{0} ; \boldsymbol{R} \backslash\{-p, p\}\right)=-\frac{\Gamma(\alpha) \cos (\pi \alpha / 2)}{\left(2-2^{\alpha-2}\right)|p|^{\alpha-1}} .
$$

We can also prove the following:

$$
\begin{aligned}
\lambda\left(\delta_{q}+\delta_{-q} ; \boldsymbol{R} \backslash\{-p, p\}\right) & =\frac{1}{G^{p}(q, q)+G^{p}(q,-q)} \\
& =\frac{-\Gamma(\alpha) \cos (\pi \alpha / 2)}{2|p-q|^{\alpha-1}+2|p+q|^{\alpha-1}-|2 p|^{\alpha-1}-|2 q|^{\alpha-1}} .
\end{aligned}
$$

See [10], Section 3, and [13], Example 4.1, for more examples of principal eigenvalues for time changed processes of symmetric α-stable processes.

4. APPLICATION

In this section, we apply the results in the preceding section to the gaugeability. Recall first that $(\mathscr{E}, \mathscr{F})$ is the regular Dirichlet form associated with an m-symmetric transient Hunt process on X. Let us define

$$
\lambda(\mu)=\inf \left\{\mathscr{E}(f, f) \mid f \in \mathscr{F}, \int_{X} f^{2} d \mu=1\right\}, \quad \mu \in \mathscr{K}_{\infty}(G)
$$

Then Chen [5], Takeda [11] and Takeda and Uemura [13] proved the following:

Theorem 4.1 ([5], Theorem 5.1; [11], Theorem 2.4; [13], Theorem 3.1). For $\mu \in \mathscr{K}_{\infty}(G)$ with compact support it follows that

$$
\begin{equation*}
\sup _{x \in X} E_{x}\left[\exp \left(A_{\zeta}^{\mu}\right)\right]<\infty \tag{4.1}
\end{equation*}
$$

if and only if $\lambda(\mu)>1$.
A measure $\mu \in \mathscr{K}_{\infty}(G)$ is said to be gaugeable if (4.1) holds. Applying Theorem 4.1 to the results in the preceding section, we can give conditions for some measures being gaugeable. For instance, let us consider Example 3.3. Denote by σ_{0} the hitting time of 0 . Since the strong Markov property implies

$$
\sup _{x \in R \backslash(0)} E_{x}\left[\exp \left(l_{a}\left(\sigma_{0}\right)\right)\right]=E_{a}\left[\exp \left(l_{a}\left(\sigma_{0}\right)\right)\right],
$$

we have

$$
\begin{equation*}
E_{a}\left[\exp \left(l_{a}\left(\sigma_{0}\right)\right)\right]<\infty \Leftrightarrow 0<|a|<\left(-\frac{\Gamma(\alpha) \cos (\pi \alpha / 2)}{2}\right)^{1 /(\alpha-1)} . \tag{4.2}
\end{equation*}
$$

Let us make observations on (4.2). Fix $\alpha \in(1,2]$. We first suppose that a is small. If a particle hits a, then it will hit 0 soon. We next suppose that a is large. Once a particle hits a, it will stay near a for a while and hit a many times by the time it arrives at 0 .

Remark 4.2. Consider branching diffusion processes on a metric space. Then it is known that the expectation of the number of branches hitting a closed set coincides with the expectation of the Feynman-Kac functional (see [8]). Moreover, this relation also holds for branching symmetric α-stable processes on \boldsymbol{R}^{d} ([12], Theorem 1.2). Combining this with Theorem 4.1 and our calculations of $\lambda(\mu, D)$, we can give a necessary and sufficient condition for the expectation of the number of branches hitting a closed set being finite.

Acknowledgments. The author would like to thank Professor Masayoshi Takeda for his valuable comments and suggestions.

REFERENCES

[1] S. Albeverio, P. Blanchard and Z. M. Ma, Feynman-Kac semigroups in terms of signed smooth measures, in: Random Partial Differential Equations, U. Hornung et al. (Eds.), Birkhäuser, Basel 1991, pp. 1-31.
[2] R. Bañuelos and T. Kulczycki, The Cauchy process and Steklov problem, J. Funct. Anal. 211 (2004), pp. 355-423.
[3] R. Bañuelos, R. Latala and P. J. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes, Proc. Amer. Math. Soc. 129 (2001), pp. 2997-3008.
[4] A. N. Borodin and P. Salminen, Handbook of Brownian Motion - Facts and Formulae, Probability and Its Application, Birkhäuser, Basel 1996.
[5] Z. Q. Chen, Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc. 354 (2002), pp. 4639-4679.
[6] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin 1994.
[7] R. K. Getoor, Continuous additive functionals of a Markov process with applications to processes with independent increments, J. Math. Anal. Appl. 13 (1966), pp. 132-153.
[8] R. Z. Khas'minskii, On positive solutions of the equation $\mathscr{U} u+V u=0$, Theory Probab. Appl. 4 (1959), pp. 309-318.
[9] S. C. Port, Hitting times and potentials for recurrent stable processes, J. Anal. Math. 20 (1967), pp. 371-395.
[10] Y. Shiozawa and M. Takeda, Variational formula for Dirichlet forms and estimates of principal eigenvalues for symmetric α-stable processes, Potential Anal. (to appear).
[11] M. Takeda, Conditional gaugeability and subcriticality of generalized Schrödinger operators, J. Funct. Anal. 191 (2002), pp. 343-376.
[12] M. Takeda, Gaugeability for Feynman-Kac functionals with applications to symmetric α-stable processes, preprint (2004).
[13] M. Takeda and T. Uemura, Subcriticality and gaugeability for symmetric α-stable processes, Forum Math. 16 (2004), pp. 505-517.

Mathematical Institute, Tohoku University
Aoba, Sendai, 980-8578, Japan
E-mail: sa0m15@math.tohoku.ac.jp

Received on 8.10.2004

