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Abstracf. In the paper we study the random walks zy=,Xi on 
the interval [O, Nj c 2, where Xi are i.i.d. random variables with 
characteristic function @ = (1 -cos 0 )  1 f ' I 2  Here f is a rational func- 
tion. We consider more precisely the case 

where the distribution of the random variable Xi is characterized. 
Using the results of previous works on the inverses of the Toeplitz 
matrices with singular symbol of rational regular part, we compute 
exact formulas for the expected number of visits and the hitting proba- 
bilities on the interval [0, NJ. From these exact expressions we deduce 
the formula for the asymptotic behavior of the quantities considered as 
N goes to infinity. 
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1. INTRODUCTION - 

We consider a random walk on [O,  N ] .  This random walk is defined by 
the sequence S, = X ,  + XI + . . . + X,, where Xi, i > 0, are independent iden- 
tically distributed (i.i.d.) copies of an integer-valued random variable X. Denote 
by Q, the characteristic function of the random variable X. Then we have 

where ck = P ( ( X  = k)) .  For all k ,  E E  LO, we put, as in [3], 
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Let z, be a stopping time associated with filtration Pn = c ( X 0 ,  XI, . . ., X,) 
defined by 

min { k  E [I ,  + m] ; Sk $ [0, N ] )  if the minimum exists, 
T N = {  -- + -. .. otherwise. 

For k, 1;[0, m, let N(k ,  I ]  be the expected number of visits of the process 
Sn to 1 before z, and assume that So = X, = k. We denote by g,(k, I )  the 
expectation of N(k ,  1) defined by 

Cn&OQn(k ,  I )  for k ,  1.E LO, m> 
otherwise. 

Denote by iA the characteristic function of a set A; then N (k, I) is the 
restriction of the following to So = k: 

Consequently, 

The expectation g,(k,  I) and the probabilities Q,(k, 1) allow us to compute 
many interesting probabilistic quantities. For instance, we can consider: 

* The expected number of visits in 10, N ]  of the process when So = k, 
namely, 

N 

(2) Y ( k )  = C g,(k, 0. 
l = O  - 

The expected number of visits in [0,  N] of the process when So is a ran- 
dom state in [0,  Nl under the condition that the probability that So = k is the 
same for all k in LO, m. The expectation is given by 

1 
"y = -Cg,(k, I). 

Nflk, ,  

The expected number of returns before z, determined by 
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We can also study the hitting probability 

given by (see [3]) 
N 

This allows us to consider now the following two hitting probabilities: 

d 

.. - - 1 

(61 - I HiIW = C H,(k,  0 
l = m  

and 
+ m  

171 = c H,(~,I). 
l = N + 1  

Here we will focus on the last examples. It is well known that there exists 
a deep connection between these fundamental quantities and truncated Toep- 
litz operators. To describe this relationship (see also [4] and [ 5 ] )  let us consider 
matrices I,, QN, GN of order N +  1 with entries S(k, I )  (identity matrix), and 
P (k, I), g, (k, I), where k and 1 are in (0, 1, . . ., N ) .  If g is an integrable function 
on the one-dimensional torus I: we denote by i, = i(k), k f Z ,  its Fourier 
coefficients : 

1 
Q (k) = - J f (t) e-ikf dt. 

2~ T 

The operator whose matrix in the basis {einB},,, is 

will be called a truncated Toeplitz operator associated with g.  
Let f = 1 - 8. Then 

T N ( ~ )  = IN-QN, 

where Q ,  is the matrix with entries P (k, I) = P ((X = k - 1)). First-of all let us 
see -that 

GN (IN - Q N )  = IN. 

Indeed, for all k, I E [ O ,  N ]  n N 
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and we can conclude our equality. Consequently, instead of the computation of 
the sum in (1) we can perform the computation of the inverse of a Toeplitz 
matrix, 

We see in the folIowing sections that a lot of random walks are related to 
the truncated Toeplitz operator of symbol 

For such a type of symbol, in this paper we determine exact expressions of 
the expectation gN(E, I )  given in (1) and we obtain exact foi-mulas for the 
quantitieh defined in (21, (31, (6) and (7) with particular random walks. By these 
exact expressions, known asymptotic expansions can be found again, particular- 
ly for (6) and (7) (see [3], p, 254). However, we are mainly interested in the 
expressions to obtain exact results for intervals [0, N], even if N is small. 

THEOREM 1 ,  Let a random walk be generated by the random variable 
X whose characteristic function is 

where P and Q are two trigonometric polynorniaEs without zero on the torus T, 
with degree nl and n2,  respectively. We assume that Q has all its zeros outside of 
a closed disc centered at 0 with radius R > 1 such that the analytic series 

has a convergence radius greater than 1. Let 

Then for O < k < E < * N + l ,  k = [ N x ] ,  E = [ N y ] ,  O < x <  y <  1 ,  

d (4 J ( 1 )  
g~ ( k ,  I )  = akr - N + 2 + d ( P ,  Q)' 

where 



' Application of the Toeplitz matrix to rendom walks 187 

If nz = 0, that is, if Q is a constant polynomial, then we obtain a more 
intrinsic formula, even if it restricts the domain of k and 1. That is the idea of 
the following corollary. 

COROLLARY 1. For a symbol of type 

a d  for nl < k 5 N-la, ,.the term d (k)  of Theorem 1 can be expressed in the 
following m2yner: 

The theorem shows that when the initial value k of the random walk is far 
from the border of the interval, we have an exact expression for g N ( k ,  1) given 
by (91, and for the same case the corollary gives us a precise asymptotic expan- 
sion. A proof of this result can be found in [2], and some extensions are treated 
in [I]. The remaining of the paper will be concerned with application of the 
theorem to particular random walks. Now we state two propositions. We see in 
the following one that if Q is the constant polynomial s, the formula for the 
term TN(f);+!l,l+l is slightly different from the equality (9) when k and 1 are 
greater than N - n, : 

PROPOSITION 1. If k ,  E > N - nl , then 

where c k , ~  = ~ ( k ,  1) = O(1). 

.Notice that Proposition 1 determines the behavior of the border terms of 
the transition matrix gN ( k ,  1). The terms c k , ~  are useful for some precise asymp- 
totic computations. We can write 

.- . 

00 
where gl = s /P,  and gl /a l  = XU, -, y,zU is the Laurent expansion on a ring 
centered at the origin. 

We have to keep in mind that in the two summations on p and p' in 
the formula (11) the terms exist if and only if N + 2 - m < s + l and 



188 P. Rambour  and J.-M. Rinkel  

N + 2 - m  < s'+ 1. The formula (11) shows also that the equality in Proposi- 
tion 1 is exact. 

In the following proposition we give formulas for computing the trace and 
the sum of the entries of the inverse of the Toeplitz matrices. It is well known 
that these two quantities have a probabilistic meaning in the case of a random 
walk. 

PROPOSITION 2 (Trace theorem). W t h  the same notation and under the 
assumptions-of Theorem 1 we obtain the following asymptotic expansion of the 
tram iif, ~~f )- l : 

where 
I 

and xt is given by (10). 

PROPOSITION 3 (Sum of terms). Under the assumpt5'ons of Theorem 1 we 
have 

The proofs of all these results can be found in [2]. 

2. APPLICATIONS 

2.1. Integer-valued random variable of symmetrised geometric type. 

DEFINITION 1. Let X be an integer-valued random variable. We say that 
X is of symmetrised geometric type if there exist three positive real numbers 
a,  a, I such that for all ~ E Z *  

with 
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PROPOSITION 4. A  random variable X has a characteristic function of type 

if and only if its law is of symrnetrised geometric type .  More precisely, if its law 
is gioen b y  the equations (12) and (13), then 

P (x) = J" (1 - ax ) .  
d 

. ~ 

.- .. 

proof.  We have 

Indeed, by direct calculations we obtain 

Hence 

Conversely, if the random variable has a characteristic function of the form 

we can write 
a(1  + a )  a ( 1  + a )  -2aA 

A =  with 0: = 
"(1 -a )+2a  A(1-a)  ' 

Then 

"(1 -a )+2a  a ( l  f a )  11 -eieI2 
@ (ei4 = -- 

1 - a  l l -ae ie ]2  

13 - PAMS 25.1 
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Hence-for $11' k €2' -we get . 
l - a  ~(1.-a) 

P ( X =  k ) =  dkl, P(X = 0) = 
a ( 2 - u ) + u  a(2-or)+u' 

which completes the proof. rn 

PROPOSIT~ON 5.  Let XI, X 2 ,  . . . , X ,  be n independent geometric random 
variables. Then X = X, + X2 + . . . + X ,  has a characteristic function of type 

where Q and P are polynomials of degree n - 1 and n, respectively, and without 
zeros in the closed unit disk. 

For the proof of the proposition we need the following 

LEMMA 1. If P is a real polynomial of degree n, then there exist n complex 
numbers x,, . . . , x, with modulus greater than 1 and a positive number A such 
that 

i0 I ~ t e ' q l ~  = Alei"xll . . . le -xnl. 

Proof  of Lemma 1. If P = x;=,aixi ,  then 

We notice that if z is a root of the polynomial P (X) = z:;, aln- l i l l  Xi, then l/z 
is also a root of this polynomial. Consequently, we obtain the following fac- 
torisation: 

where the family ( x , ) ~ ~ ~ , . , . , , ~  is the set of roots of the polynomial P of modulus 
greater than 1. H 

COROLLARY 2. If P I ,  . . . , PI are r polynomials of degree n, Pk # PI for 
k # I ,  then there exist n complex numbers x l ,  . . ., x, of modulus greater than 1 
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and a positive number A such that 

Proof  of Coro l l a ry  2. Indeed, the sum ~ ~ = , E ~ J P ~ ( ~ ' B ) ~ ~  has the same 
structure as the right-hand side of the equation (14). 61 

P r o  of of P r o p o s i  ti on 5. By Proposition 4 it is sufficient to obtain the 
result for two - rqndom variables whose characteristic functions are of type 

l l ~ e i o 1 2  1:' " 1' and 11-e 
. - .  p,+1 ps+1 

where the polynomials Qi,  Qj,  Pk, P", have degree 1 and roots of modulus 
greater than 1. After a direct computation we observe that the sum of these two 
random variables has a characteristic function @ of the form 

where P = P1 ... P.,,, Q = Q ,,.. Q., s = PI ... Ps+,, 0 = 0, ... a. Hence 
deg P"Q = deg QP = deg (1 - X) QQ = 1 + r + s. Thus, using Corollary 2, we 
complete the proof. 

Remark. With the notation of Proposition 4, the roots of P and Q are 
complex numbers of modulus greater than 1. 

When X is the sum of two independent random variables with characteris- 
tic functions of type 

where H is a polynomial, the polynomials Q and P have only real roots. When 
X = X1 +X2,  where the characteristic function of Xk is 

- 

1-11 -eiaJ2 
1 1 

with P, = - 
IPk (ei8)12 

7 0 < P k  < 1, k € ( l ,  21, 
l-pkx 

from Corollary 2 we infer that X has a characteristic function of the form 

with IQ (ei8)[' = IP, (ei@)I2 + IP, (ei@)I2 - I1 - eiOlz. 

Hence 
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where 

The discriminant of 1 +(B/A) x + x2 has the same sign as a = B + 2A and, after 
some computations, we obtain 

Then we can put 

and we can conclude that the discriminant A of a(T) is 

It follows that either p ,  > (4,/?-5)/7 and a(T)  > 0 for all T or p, < 
(44'5-5)/7 and the sum and the product of the roots are 

P ~ + ~ P z -  1 and ( p 2 + 2 - , / S ) ( p 2 + 2 + ~ S )  
2~22 - PZ + 1 2 ~ :  -p, + 1 

7 

respectively. As pz + 2 - ,/? < 0 when p ,  < (4 JZ- 5v7, the sign of r (T) is 
nonnegative on 10, I[, which completes the considerations in the Remark. 

2.2. One example. Let p  and q be two positive real numbers such that 
p + q = 1. We consider the random variable X with law of type determined in 
Definition 1 with a = l -q  and a = 2. Hence we have for all k~ Z* 

4 P((X = k)) =-(1-q)lkl, P({X = 0)) = q .  - 
2  

.- . 

Then the characteristic function @ of X is defined by 

Consequently, we obtain 

where 
I .-, 
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Using the notation of Theorem 1, we obtain the following terms: 

It  is a direct consequence of the formula (9) that 

Since the difference d degrees of the two polynomials is 1, the formulas (25)  
and(l6)arevalidifk, 1 ~ { 0 ,  1, ..., N - l } . F o r k =  Nor  E=Nwehavetoadd 
to the previous terms a quantity c(k7 I )  = O(1) as in Proposition 1. 

Remark. Put lim,,, k/N = x and lim,,, E/N = y. Then 

where R (x, y) = min (x, y) -xy is the Green kernel associated with the dif- 
ferential equation y" +fly = 0 with the boundary conditions y (0) = y ( I )  = 0. 

2.21. Expectation of the numbe? of visits. 

PROPOSITION 6. For an integer k in [0 ,  N ]  the expected number of visits 
-Y(k) in [0, Nj of the process when So = k is 

Proof.  Using the formula (2) and Proposition 1 we have 
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From ( 1  1) we can easily conclude that C ~ , N  = 0. NOW to obtain the result it is 
sufficient to make the remaining elementary computations. 

PROPOSIT~ON 7. The expected number of visits '%'" in LO, q, if the process 
So is a random state in [ O ,  N ]  for the uniform case, is given by 

Pro of, The proposition is a direct consequence of (12). 

COROLLARY 3 . - - k t  x be a real number in [ O ,  11. If lim,,, k /N = x, then 
the explcted number of visits Y (k )  in [0, N ]  of the process when So = k is 

Y (k) = - q2 x(~-x)N~+o(N~). 
P ( P +  1) 

The expected number of visits V for the unijoform case is equal to 

2.23. The hitting probability. 

PROPOSITION 8. For k E [0, we have 

P - 
H,- (k) = - ol (k), 

4 

where ol- (k) is given by (17) in the sequel. 

Proof, For E < 0 we can write 

Since 

we obtain 
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which is the desired expression. 

The following coroIlary is a direct consequence of (17): 

COROLLARY -4. Let XE [0, 11. Assume that k/N + x when N 4 + co. Then 
L 

H N ( k )  = 1-x+o(l),  lirn o( i )  = 0. 
H- + m 

Remark. For a right hitting probability we have also a formula analo- 
gous to that in Proposition 8: 

pN+l HN+ (k) = P o ! +  (k) .  
1-P 

Consequently, we obtain the asymptotic expression: WG (k) = x + o (1 ). 
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