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ON A NEW AFFINE INVARIANT AND
CONSISTENT TEST FOR MULTIVARIATE NORMALITY
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Abstract. We propose a new test for multivariate normality
based on the empirical characteristic function, We show that the test is
affine invariant and consistent against every non-normal alternative.
The test considered in this paper is also able to detect contiguous
alternatives that converge to the normal distribution at the rate n~ /2,
The results of an extensive Monte Carlo study show that the test has
power comparable with one of the best existing procedures.
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1. INTRODUCTION

Although there exist more than 50 procedures for testing multivariate
normality (for a recent review see [7]), Henze and Wagner [8] noted that only
BHEP test (introduced in the univariate case by Epps and Pulley [5] and
extended to the multivariate one by Baringhaus and Henze [2]) shares all of
the following desirable propertles

o affine invariance,

" o consistency against each fixed non-normal a}ternatlve distribution,
o asymptotic power against contiguous alternatives of order n~ 12,

o feasibility for any dimension and any sample size.

In this paper, we propose a new test having the foregoing properties.

Let X,, X,, ... be a sequence of d-dimensional, independent, identically
distributed random vectors with distribution P and characteristic function C (z).
By S, we denote the empirical covariance matrix

Su=t
n;

IIM=

(X —X)(X;— X",
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where X, stands for the sample mean, X, = n'lz X;. Let S‘” 2 denote
a symmetric, positive definite square root of S, * and deﬁne the scaled residuals
by ¥; =S, Y2(X;—X,). By C,() we denote the empirical characteristic func-
tion of the scaled residuals, i.e.

C.() = Z exp (i {t, Y;») = exp(—i<S, *t, X,») C,(S; 17 0),
Nj=1 .
where C, (t) is the empirical characteristic function of the sample X; ..., X,,
ie.

»

12 .

Ca(t) == ) exp(i<t, X))
ni<

and {-,-> denotes the inner product in R

For testing a hypothesis that the sample comes from a non-degenerate
d-dimensional normal distribution (P € .4;) we consider the following statistic:

T, = T,(X1, ..., X,) = \/n sup [W, ()],

le|<r

GO)—exp(=It7/2)
mw={ » -

where

1
0, t=0,
and || denotes the Euclidean norm in R

Note that the test statistic is defined only if S, is non-singular. But, if P is
the non-degenerate d-dimensional normal distribution, then S, is non-singular
with probability one.

The proposed statistic is a kind of distance between the emplncal charac-
teristic function of the scaled residuals and the theoretical characteristic func-
tion of the standard normal distribution. Two similar statistics have been con-
sidered before. The first, proposed by Csorgé [3], was as follows: '

J sup||C, @12 —exp (— )|

[t <r

and the statistic of the BHEP test was -

nj' C.()— exp(——u)

_ lt?
$p(t):= (2n %)~ exp (——)

2

¢p(t)dt,

where

22
In this paper we consider the weighted supremum distance. Since the most
important properties of a distribution are determined by the behaviour of
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its characteristic function in a neighbourhood of zero, we use the weight func-
tion 1/|t].

2. AFFINE INVARIANCE

As Szkutnik [9] pointed out, every full-rank affine transformation of the
sample is equivalent to an orthogonal transformation of the scaled residuals.
Therefore, to obtain the affine invariance of the test statistic, it is sufficient to
ensure that the value of the statistic T, does not change, when Y; is replaced by

HY; forj=1, ..., n where H is an arbitrary orthogonal matrix. To this end,

n=t Y7 exp(it, HY;))—exp(—[t%/2)|
sup Itl
|t|<r

[n=1 Y, exp(i<s, Y;))—exp(—|Hs|*/2)|

= sup

|Hs| <r |HS|
In= 1Y exp(ids, V) —exp(—Isi%/2)
T K :
Is|<r

which means that the test statistic is affine invariant.

3. THE ASYMPTOTIC BEHAVIOUR
OF THE TEST STATISTIC UNDER NORMALITY

Let r > 0 be fixed. By C(B,) we denote the space consisting of all com-
plex-valued continuous functions with domain B,, where B, denotes the closed
ball in R? with center in 0 and radius r, endowed with the supremum norm

I fllc@,) = suplf ().
teB,.
Define the process Z, by the formula

Z,(0) = /n (C.(t)—exp (—14%/2))

= L__ Zn: (cos<t, ;> —exp(—|t|*/2)+isin{t, Y;)).

nij=1

Under the null hypothesis, Z, converges weakly to a certain Gaussian process.
Due to the affine invariance of T,,, it is sufficient to consider the standardized
normal distribution of the sample.

THEOREM 3.1. Let X, X,, ... be a sequence of d-dimensional independent,
identically distributed random vectors with distribution N4(0, I;). Then there
exists a centered, complex-valued Gaussian process Z in C(B,), with the covariance
4 — PAMS 25.1
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kernel

K(s, 1) = exp (_ It+2s|2>_(1 s <s,2t>2) - (_ 152 ,; |t|2)

for all t, se B, such that
Z,%Z in C(B),
where % denotes weak convergence.

Singce the proof of this theorem is analogous to the proof 2.1 in [8], we give
only its main steps (the process considered in [8] is of the form RZ,+3Z,,
where RZ, and 3IZ, stand for the real and imaginary part of the complex-
valued process Z, defined above).

Sketch of the proof. Define the auxiliary processes Z* and Z, as
follows: :

Z:, (t) = %jél ((COS <t, Xj> —exp(-%)) +(% <t, Xj>2 _g) exp(_l_gj))

+\/i_ Y (sin <t X+t X exp(—g))

nij=1

and

Z. () = L_ i <cos {t, Xj>—exp<—w>>—<t, 4;)sint, X;»
‘ Jni=1 2

n

+L_ Y (sint, X;>+<t, 4;) cos{t, X)),

nj=1

where 4; = (S; Y2 —1,)X;—S,;'?X, for j=1, ..., n. By straightforward cal-
culations it is easy to prove that

E(Z¥()) =0 and E(ZF (s)Z,’{fA(t)) = K(s,t).
"In a way analogous to that in [8], one can obtain
1Za~Zllewy >0, 1Z¥~Zllew,y > 0

as well as the existence of a complex-valued Gaussian process Z e C(B,) such
that E(Z(t)) =0, E(Z(s)Z(z)) = K(s, t) and

Z*%7Z in CB). =
Before formulating the next theorem we introduce the following notation:

SO, Jf@M, t#0,
W(t) a {_0, t=0.
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THEOREM 3.2. Under the conditions of Theorem 3.1,
Z,()a Z()
T

Proof. In order to prove the theorem, we show that

in C(B,).

1) Zl (')Li? n C(B),
@) B .. . ~n.(')_ n() B :
- . l | lles,y
and
" 2.0 70|,
1 lews

To show (2), one can notice that (cf. [8])

|2, ()~ Z, (@) < 1) 0p (1),

To obtain (3), one can estimate

Zn(t)_‘zz= (t) 1 z (X XT Id)
I¢l l¢l n =1

1
<

I

A (t)+texp(——7>

‘| B, (t)—lexp( I IZ)

+14, ()] 0p (1)++/n (IS4

b

3 where |
A, () = . Y Xj(icos(t, X;»—sin {t, X;»),
j=1
1 n .
B.(t) = ; Z icos {t, X;»>—sin {t, X;>).
Now, using -
|t]? . It
sup |4, (t)+texp — —0 as., sup|B,(f)+iexp —5 -0 as.,
|t] <r Jt|<r
we have (3). '

In order to prove (1), one should obtain weak convergence of finite-
dimensional distributions (which is a consequence of Theorem 3.1) and tight-
ness of the process Zj (')/||.

The tightness of this process can be proved by applying Corollary 7.17
from [1] to the real and imaginary part of this process. The entropy condition
used in that corollary is shown in [8].
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We define the following auxiliary functions:

g(t, 9 = 22 -|;Xp(—|tt2/2)+(% <t’1;>2—g) exP(*g),
h(t’ x) — sin <t, x>—<t, x> exp(_ltlz/Z)‘

l£]

Now, we ought to show that there exist real-valued random vanables M, and
M, such that E(M% < oo, E(M3) < o0, and

Ig(tX) gls, X) < Mylt—sl,  |h(t, X)—h(s, X)| < M, |t—s].

Straightforward (but somewhat lengthy) calculations show that these inequali-
ties hold for

M, =243 X242 +52X], M, =% X2+2r|X|+7 | X|+3 X =

Theorem 3.2 and continuity of the norm yield

COROLLARY 3.3. Under the assumptions of Theorem 3.1,

sup Y ICuO—exp (=172 4 || 20
le] <r el ’ IC(B,)

Unfortunately, there are no results about the distribution of the limit
random variable, since it is the supremum of modulus of non-stationary com-
plex-valued d-dimensional Gaussian random process.

4. CONSISTENCY

Conéistency of the test based on the statistic 7, for every non-normal
alternative is implied by Corollary 3.3 and the following theorem:

" THEOREM 4.1. If P is not a d-dimensional nén-degenerate normal distribu-
tion, then there exists a constant D > 0 such that

lim inf e —eXP (= 112/2)]

n~oo ltl

2D as

Proof. Csorgd [4] has showed the existence of a constant Dy > 0 such
that for every teR?

lim inf |G, (£} —exp (—113)| = D, as.
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Since, almost surely
|C. () —exp (—1t1%/2)| S €. () —exp (—11%/2)|
|t - l¢]
_ G (0)* —exp (—I¢1%)] >Ilén(t)lz—e><13(—~ltlz)|
|1+ |Co (&) +exp (—4/2)| 2r ’

the conclusion follows immediately. =

_‘5. AS-fMPTOTIC BEHAVIOUR OF THE TEST STATISTIC
UNDER CONTIGUOUS ALTERNATIVES

Consider a triangular array X,, ..., X, 1 = d+1, of rowwise indepen-
dent and identically distributed random vectors with probability density func-
tion f,(x) = @4(x)(1 +n~ 2 p(x)), where @, is the density of a d-dimensional
standard normal vector and p is a bounded measurable function such that
de p(x) @4(x)dx = 0. We assume that n is large enough to guarantee that f;,(x)
is non-negative.

From the following theorem we deduce that the considered test is able to
detect alternatives that converge to the normal distribution at the rate n~ /2.

THEOREM 5.1. If all the above assumptions hold, we have

ap! 2201 | Z0+CE)
wer I o
where the function C is defined by

C(t) = [g(x, ) p(x) Pa(x) dx+i [ h(x, 1) p(x) P, (x) dx,

and g and h are defined in Section 3.

2

C(8,)

-Proof. Analogously to [8], one can show that
Zu) 4 ZO+CO
H I

Thus, the continuous mapping theorem completes the proof.

in C(B,).

6. SIMULATIONS*

In this section, we present the results of a simulation study in which we
computed the empirical power of the test for some specified alternatives. Since
in some recent studies (see [7] and [6]) the BHEP test was recommended as

* All the computations were performed in ACK Cyfronet AGH in Krakéw under Grant
KBN/SGI/2800/PK/029/2003 using Mathematica 4.2.
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a reasonable choice for the omnibus test for multivariate normality, we com-
pare the estimated powers with the estimated powers of this test.

We simulated the critical values and powers of the tests for the sample
sizes n = 20, 50 and 100 upon 10000 runs in each case. The significance level
was o = 0.05.

In Table 1, we present the empirical critical values for the test sta-
tistic. Table 2 and Table 3 contain the empirical powers for the test based
on statistic 7, with radius r =1, 2, 5 and the BHEP test withparameter
B =0.5,1, 2, respectively. Table 2 presents the powers for the case d =1,
whereas»Table 3 contains the results for the case d =2. In these tables
we have used the following symbols: N (0, 1) and Ex(1) denote the stan-
dard normal and exponential distribution, U(0, 1) is the uniform distri-
bution on the unit interval, LN (0, 1) is the lognormal distribution cor-
responding to the standard normal distribution, and Log(a, b), B(a, b} and
G(a, b) stand for the logistic, beta and gamma distributions, respectively.

TasLE 1. Empirical critical values

o = 0.01
n=20 n=>50 n =100 n=20 n=>50 n= 100
r=10 0.6762 0.6521 0.6594 0.8329 0.8417 0.8395
r=20 0.9811 0.9750 0.9666 1.1888 1.2139 1.2022
r=350 0.9847 0.9525 0.9761 1.1940 1.2151 1.2074
o =0.05
n=20 n=>50 n=100 n=20 n_=_§0 n =100
r=10 0.5032 0.4933 0.4997 0:6710 0.6939 |- 0.6917
r=20 0.8021 0.7959 0.7968 1.0087 1.0279 1.0384
r=50 0.8137 0.8083 0.8085 1.0172 1.0362 1.0526
a=0.1
d=1 d=2
n=20 n =50 n =100 n=20 n=>50 n=100
r=10 0.4180 0.4155 0.4158 0.5928 0.6236 0.6211
r=20 0.7058 0.6964 0.7027 0.9219 0.9426 09517
r=250 0.7263 0.7152 0.7219 0.9393 0.9545 0.9642
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TABLE 2. Estimated powers for d = 1, o = 0.05

n=20
Alternatives T BHEP
r=1 r=2 r=5 |p=05 f=1 f=2

LN, 1) 90 90 90 91 91 87
Ex(1) 73 75 74 74 75 69
v,y . 1 15 18 2 11 21
Log(0,0.6) » 12 10 10 12 10 7
2o 24 22 21 24 ) 16
ts 26 23 23 26 23 17
te 17 13 13 17 14 10
G2, 1) 49 48 47 49 48 38
B(25, 1.5) 6 12 12 7 11 13

n=>50
LN(0, 1) 100 100 100 100 100 100
Ex(1) 100 99 99 100 100 99
U@, 1) 3 63 62 5 53 60
Log (0, 0.6) 21 17 16 21 16 12
3o 64 53 52 63 54 37
ta 47 44 43 47 44 35
te 29 25 24 29 24 17
G2, 1) 94 90 90 94 91 82
B(2.5, 1.5) 2 37 36 24 36 32

n =100
LN(0, 1) 100 100 100 ‘[ 100 100 _ 100
Ex(l) 100 100 100 100 100 100
U, 1) 10 97 97 30 94 94
Log (0, 0.6) 28 25 25 28 2% 18
o 91 84 83 91 84 68
t 67 67 67 68 67 57
te 43 39 38 43 39 28
G2,1) 100 100 100 100 100 99
B(2.5, 1.5) 53 74 73 59 73 65
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TaBLE 3. Estimated powers for d = 2, a = 0.05

n=20
Alternatives T, BHEP
r=1  r=2 r=5 |f=05 p=1 p=2
1LN(, 1)? 93 9 95 97 97 94
Ex(1)? 76 81 80 85 88 79
U(o, 1) 1 4 8 1 8, . 19
Log (0, 0.6)2 15 13 13 6 13 9
(7 24 22 22 28 26 16
() 32 29 29 34 30 20
(ts)? 20 17 17 21 17 11
G(2, 1) 50 52 51 58 60 43
B(2.5, 1.5) 3 6 7 4 9 11
LN, )®N (0, 1) 76 79 79 75 76 65
Ex()®N(0, 1) 52 57 56 53 55 42
U0, D®N (0, 1) 2 4 6 3 11
Log (0, 0.6)®N (0, 1) 9 8 8 10 8 6
22o®N(0, 1) 15 14 14 15 15 10
ta®N (0, 1) 20 18 17 20 17 11
t®N (0, 1) 13 11 11 13 11 8
G2, HDON(, 1) 31 31 31 32 31 21
B(2.5, 1.5 ®@N (0, 1) 4 5 6 4 6 8
n=>50

LN(0, 1)? 100 100 100 100 100 100
Ex(1)? 100 100 100 100 100 100
U0, 1) 0 35 44 1 48 57
Log (0, 0.6)> 23 19 18 25 19 12
2,) 64 56 55 7 62 38
(ta)? 57 53 53 61 56 4
(te)? 35 29 29 37 30 18
G2, 1) 95 94 94 98 97~ 88
B(25, 1.5 9 26 27 16 34 29
LN(©, DN (0, 1) 100 100 100 100 100 - 99
Ex(D®N (0, 1) 97 97 97 96 95 87
U0, YN (0, 1) 2 22 28 3 18 26
Log(0, 0.6)@N (0, 1) 15 12 12 14 11 7
1o®N(O, 1) 41 36 35 41 33 19
t,®N(0, 1) 36 34 33 36 31 20
ts®N (0, 1) 22 18 18 21 17 10
1GE, HON(0, 1) 78 76 76 77 71 51
B(2.5, L5)®N(0, 1) 7 15 16 9 15 13
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n=100
Alternatives T, BHEP

r=1 r=2 r=35 =05 p=1 =2
LN (0, 1)? 100 100 100 100 100 100
Ex (1) 100 100 100 100 100 100
U (0, 1)? 0 94 94 13 96 96
Log (0, 0.6)? 30 27 25 35 30 19
(02,)? .. . 94 89 88 97 93 T4
P - . 79 78 71 85 82 69
(te)® 50 45 43 56 48 33
G(2, 1) 100 100 100 100 100 100
B(2.5, 1.5? 28 67 65 55 77 66
LN@©, D®N(0, 1) 100 100 100 100 100 100
Ex(1)®N (0, 1) 100 100 100 100 100 100
U@©, D®N (0, 1) 2 78 78 6 57 62
Log (0, 0.6)®N (0, 1) L 19 17 16 19 16 11
X2,®N (0, 1) 78 68 66 74 61 38
L®N(, 1) 55 54 52 55 50 37
ts®N (0, 1) 31 27 26 31 25 16
G, HYRN (0, 1) 99 98 98 98 97 87
B(2.5, L5®N(0, 1) 18 - 44 42 23 38 . 31

x7 and 1, are the chi-square and t-Student distributions with k degrees of
freedom. v

P;®P, is the distribution having independent marginals P, and P,, and
by P? we denote P®P.

- It might be observed from the simulations that in one dimension both tests
behave much the same. In case of d =2, the resuits depend on the type of
alternative distribution. When both marginals are the same, the BHEP test is
slightly superior, while in the case when one of the marginals is normal, the test
based on T, behaves slightly better.

It must be noticed that the power performance of both procedures heavily
depend on the choice of test parameters. :

It is worth noticing that the tests based on the empirical characteristic
function behave poorly when the alternative is the uniform distribution. For
instance, the most powerful invariant test (specialized against the uniform dis-
tribution) has power 60 in the case d =2, n =20 (see [10]).
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