BACKWARD STOCHASTIC NONLINEAR VOLTERRA INTEGRAL EQUATIONS WITH LOCAL LIPSCHITZ DRIFT

BY

AUGUSTE AMAN and MODESTE N'ZI (Abidjan, Côte D'Ivoire)

Abstract

In this paper, we study backward stochastic nonlinear Volterra integral equations. Under a local Lipschitz continuity condition on the drift, we prove the existence and uniqueness result. We also establish a stability property for this kind of equations.

AMS Subject Classification: $60 \mathrm{H} 20,60 \mathrm{H} 05$.
Key words and phrases: Backward stochastic differential equation; Volterra integral equation; adapted process.

1. INTRODUCTION

A linear version of backward stochastic differential equations (BSDE's in short) was first considered by Bismut ([7], [8]) in the context of optimal stochastic control. Nonlinear BSDE's have been independently introduced by Pardoux and Peng [23] and Duffie and Epstein [10]. These equations were intensively investigated in the last years. The main reason for this great interest in these equations is because of their connections with many other fields of research such as: mathematical finance (see El Karoui et al. [13]), stochastic control and stochastic games (see Hamadène and Lepeltier [17]). These equations also provide probabilistic interpretation for solutions to both elliptic and parabolic nonlinear partial differential equations (see Pardoux and Peng [24], Peng [26]). Indeed, coupled with a forward SDE, such BSDE's give an extension of the celebrate Feynman-Kac formula to the nonlinear case.

The classical condition on the drift for proving the existence and uniqueness result is a global Lipschitz one. Many authors have attempted to relax this condition. For instance, several works treat BSDE's with continuous or local Lipschitz drift (see Hamadène [15], [16], Lepeltier and San Martin [20], N'Zi and Ouknine [22] and the references therein). In the one-dimensional case, the essential tool is the comparison-theorem technique. In the multidimensional case, the improvements of the Lipschitz condition on the generator concern,
generally, the variable y only and the conditions considered are global. It seems that the first works treating multidimensional BSDE's with both local conditions on the drift and only square-integrable terminal data are Bahlali [2], [3]. This author considered BSDE's with locally Lipschitz coefficients both in y and z. This study has been continued by Bahlali et al. [4], Aman and N 'Zi [1] and Essaky et al. [14].

Recently, backward stochastic nonlinear Volterra integral equations (BSNVIE's in short) have been studied by Lin [21] under the global Lipschitz condition on the drift. His work is a continuation of a previous one of Hu and Peng [18] where backward semilinear stochastic evolution equations with values in a complete separable Hilbert space have been considered. More precisely, Lin [21] gives an existence and uniqueness result for the following nonlinear BSDE of Volterra type:

$$
\begin{equation*}
Y(t)+\int_{t}^{T} f(t, s, Y(s), Z(t, s)) d s+\int_{t}^{T}[g(t, s, Y(s))+Z(t, s)] d W(s)=\xi \tag{1.1}
\end{equation*}
$$

On the other hand, ordinary stochastic Volterra integral equations have been investigated by Berger and Mizel [5], [6], Pardoux and Protter [25], Protter [27], Kolodh [19] and have found applications in mathematical finance (see [9] and [11]).

In this paper, we are concerned with equation (1.1) and our aim is to weaken the global Lipschitz condition on the drift to a local one. The paper is organized as follows. In Section 2, we give essential notions on backward stochastic nonlinear Volterra equations and Section 3 deals with the main result. Finally, Section 4 is devoted to a stability result.

2. ASSUMPTIONS AND FORMULATION OF THE PROBLEM

Let $\left(\Omega, \mathscr{F},\left\{\mathscr{F}_{t}\right\}_{0 \leqslant t \leqslant T}, \boldsymbol{P}\right)$ be a filtered probability space satisfying the usual conditions and $\{W(t), t \in[0, T]\}$ the d-dimensional standard Brownian motion defined on it.

Define $\mathscr{D}=\left\{(t, s) \in \boldsymbol{R}_{+}^{2} ; 0 \leqslant t \leqslant s \leqslant T\right\}$ and denote by \mathscr{P} the $\bar{\sigma}$-algebra of $\mathscr{F}_{t \vee s}$-progressively measurable subsets of $\Omega \times \mathscr{D}$.

Let $M^{2}\left(t, T ; \boldsymbol{R}^{k}\right)$ (resp. $M^{2}\left(\mathscr{D} ; \boldsymbol{R}^{k \times d}\right)$) be the set of \boldsymbol{R}^{k}-valued (resp.
 grable with respect to $\boldsymbol{P} \otimes \lambda \otimes \lambda$ (here λ denotes Lebesgue measure over [0,T]). For $X \in \boldsymbol{R}^{k},|X|$ will denote its Euclidean norm. An element $Y \in \mathbb{R}^{k \times d}$ will be considered as a $k \times d$-matrix; its Euclidean norm is given by $|Y|=\sqrt{\operatorname{Tr}\left(Y Y^{*}\right)}$ and $\langle Y, Z\rangle=\operatorname{Tr}\left(Y Z^{*}\right)$.
\mathscr{B}_{k} stands for the Borel σ-algebra of $\boldsymbol{R}^{\boldsymbol{k}}$.
Moreover, we are given the following objects and assumptions:
(A1) $f: \Omega \times \mathscr{D} \times \boldsymbol{R}^{k} \times \boldsymbol{R}^{k \times d} \rightarrow \boldsymbol{R}^{k}$ is a $\left(\mathscr{P} \otimes \mathscr{B}_{k} \otimes \mathscr{B}_{k \times d} / \mathscr{B}_{k}\right)$-measurable function satisfying:
(i) $f(\cdot, \cdot, 0,0) \in M^{2}\left(\mathscr{D} ; \boldsymbol{R}^{k}\right)$;
(ii) there exist two constants $K>0$ (K sufficiently large) and $0 \leqslant \alpha<1$ such that

$$
|f(t, s, y, z)| \leqslant K(1+|y|+|z|)^{\alpha}, \text { P-a.s., a.e. }(t, s) \in \mathscr{D} ;
$$

(iii) for every $N \in N$, there exists a constant $L_{N}>0$ such that

$$
\left|f(t, s, y, z)-f\left(t, s, y^{\prime}, z^{\prime}\right)\right| \leqslant L_{N}\left|y-y^{\prime}\right|+K\left|z-z^{\prime}\right|
$$

for all $|y| \leqslant N,\left|y^{\prime}\right| \leqslant N$, for all $(t, s) \in \mathscr{D}, z \in \boldsymbol{R}^{k \times d}, z^{\prime} \in \boldsymbol{R}^{k \times d}$, where K is the constant in-(A1) (ii).
(A2) $g: \dot{\Omega} \times \mathscr{D} \times \boldsymbol{R}^{k} \rightarrow \boldsymbol{R}^{k \times d}$ is a $\left(\mathscr{P} \otimes \mathscr{B}_{k} / \mathscr{B}_{k \times d}\right)$-measurable function which satisfies:
(i) $g(\cdot, \cdot, 0) \in M^{2}\left(\mathscr{D} ; R^{k \times d}\right)$;
(ii) $\left|g(t, s, y)-g\left(t, s, y^{\prime}\right)\right| \leqslant K\left|y-y^{\prime}\right|$ for all $y, y^{\prime} \in \boldsymbol{R}^{k}$ and for all $(t, s) \in \mathscr{D}$, where K is the constant in (A1) (ii).
(A3) ξ is a square-integrable k-dimensional \mathscr{F}_{T}-measurable random vector.
Remark 2.1. Note that (A1) and (A2) imply

$$
f(\cdot, \cdot, Y(\cdot), Z(\cdot, \cdot)) \in M^{2}\left(\mathscr{D} ; \boldsymbol{R}^{k}\right) \quad \text { and } \quad g(\cdot, \cdot, Y(\cdot)) \in M^{2}\left(\mathscr{D} ; R^{k \times d}\right)
$$

whenever $Y \in M^{2}\left(t, T ; R^{k}\right), Z \in M^{2}\left(\mathscr{D} ; R^{k \times d}\right)$.
Definition 2.2. A solution to BSDE of Volterra type with data (ξ, f, g) is a pair of $\mathscr{F}_{t \vee s}$-adapted processes $\{(Y(s), Z(t, s)) ;(t, s) \in \mathscr{D}\}$ with values in $M^{2}\left(t, T ; R^{k}\right) \times M^{2}\left(\mathscr{D} ; R^{k \times d}\right)$ which solves (1.1).

3. EXISTENCE AND UNIQUENESS

Before stating the main result, let us give some preliminaries.
Lemma 3.1. Let f denote a process satisfying assumption (A1). Then there exists a sequence of processes $\left(f_{n}\right)_{n \geqslant 1}$ such that, for every $n \geqslant 1, f_{n}$ is $\left(\mathscr{P} \otimes \mathscr{B}_{k} \otimes \mathscr{B}_{k \times d} / \mathscr{B}_{k}\right)$-measurable, Lipschitzian, satisfies (A1) (i), (A1) (ii) and $\varrho_{N}\left(f_{n}-f\right) \rightarrow 0$ as $n \rightarrow+\infty$ for every fixed N, where

$$
\varrho_{N}(f)=E\left(\int_{\mathscr{D}} \sup _{|y| \leqslant N} \sup _{z \in \mathbb{R}^{k \times d}}|f(t, s, y, z)|^{2} d t d s\right)^{1 / 2}
$$

Proof. Let ψ_{n} be a sequence of smooth functions with support in the ball $B(0, n+1)$ such that $\psi_{n}=1$ in the ball $B(0, n)$ and $\sup \psi_{n}=1$. One can easily show that the sequence $\left(f_{n}\right)_{n \geqslant 1}$ of truncated functions defined by $f_{n}=f \psi_{n}$ satisfies all the properties quoted above.

Let $\left(f_{n}\right)_{n \geqslant 1}$ be associated with f by Lemma 3.1. By the results of Lin [21], for every $n \geqslant 1$, there exists a unique couple of processes $\left\{\left(Y_{n}(s), Z_{n}(t, s)\right)\right.$: $(t, s) \in \mathscr{D}\}$, an element of $M^{2}\left(t, T ; \boldsymbol{R}^{k}\right) \times M^{2}\left(\mathscr{D} ; \boldsymbol{R}^{k \times d}\right)$ solution to the BSDE of

Volterra type with data $\left(\xi, f_{n}, g\right)$. We build the unique solution to equation (1.1) by studying convergence of the sequence $\left\{\left(Y_{n}(s), Z_{n}(t, s)\right):(t, s) \in \mathscr{D}\right\}$.

Lemma 3.2. Assume (A1)-(A3) hold true. Then there exists a constant $C>0$, depending only on T, K and ξ such that for every $n \geqslant 1$

$$
E \int_{t}^{T}\left|Y_{n}(s)\right|^{2} d s+E \int_{t}^{T} d s \int_{s}^{T}\left|Z_{n}(s, u)\right|^{2} d u \leqslant C \quad \text { for all } t \in[T-\eta, T]
$$

where $\eta<1 / 24 K^{2}$.
$\operatorname{Pr} \oplus$ of. Since $\left\{\left(Y_{n}(s), Z_{n}(t, s)\right):(t, s) \in \mathscr{D}\right\}$ is the unique solution to the BSDE of Volterra type with data $\left(\xi, f_{n}, g\right.$), we have

$$
\begin{align*}
& Y_{n}(t)+\int_{t}^{T} f_{n}\left(t, s, Y_{n}(s), Z_{n}(t, s)\right) d s \tag{3.1}\\
&+\int_{t}^{T}\left[g\left(t, s, Y_{n}(s)\right)+Z_{n}(t, s)\right] d W(s)=\xi
\end{align*}
$$

Let $\mathscr{D}_{\eta}=\{(t, s): T-\eta \leqslant t \leqslant s \leqslant T\}$, where η will be precised later. By Lemma 2.1 of [21], for every $(t, s) \in \mathscr{D}_{\eta}$, we have

$$
\begin{align*}
E\left|Y_{n}(s)\right|^{2}+ & E \int_{s}^{T}\left|Z_{n}(s, u)\right|^{2} d u \tag{3.2}\\
= & E|\xi|^{2}-2 E \int_{s}^{T}\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right), Y_{n}(u)\right\rangle d u \\
& -2 E \int_{s}^{T}\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right), A_{n}(s, u)\right\rangle d u \\
& -2 E \int_{s}^{T}\left\langle g\left(s, u, Y_{n}(u)\right), Z_{n}(s, u)\right\rangle d u-E \int_{s}^{T}\left|g\left(s, u, Y_{n}(u)\right)\right|^{2} d u \\
\leqslant & E|\xi|^{2}+2 E \int_{s}^{T}\left|\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right), Y_{n}(u)\right\rangle\right| d u \\
& +2 E \int_{s}^{T}\left|\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right), A_{n}(s, u)\right\rangle\right| d u \\
& +2 E \int_{s}^{T}\left|\left\langle g\left(s, u, Y_{n}(u)\right), Z_{n}(s, u)\right\rangle\right| d u,
\end{align*}
$$

where

$$
A_{n}(s, u)=\int_{u}^{T}\left(f_{n}\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)-f_{n}\left(s, v, Y_{n}(v), Z_{n}(s, v)\right)\right) d v
$$

Using assumptions (A1), (A2) on f_{n} and g, and the Young inequality $2 a b \leqslant \beta a^{2}+b^{2} / \beta$ for every $\beta>0$, we derive the following inequalities:

$$
\begin{align*}
& 2\left|\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right), Y_{n}(u)\right\rangle\right| \leqslant 2\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|\left|Y_{n}(u)\right| \tag{3.3}\\
& \leqslant \frac{1}{\beta_{1}}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2}+\beta_{1}\left|Y_{n}(u)\right|^{2} \\
& \leqslant \frac{3 K^{2}}{\beta_{1}}\left(1+\left|Y_{n}(u)\right|^{2}+\left|Z_{n}(s, u)\right|^{2}\right)+\beta_{1}\left|Y_{n}(u)\right|^{2} \\
& \leqslant\left(\beta_{1}+\frac{3 K^{2}}{\beta_{1}}\right)\left|Y_{n}(u)\right|^{2}+\frac{3 K^{2}}{\beta_{1}}\left|Z_{n}(s, u)\right|^{2}+\frac{3 K^{2}}{\beta_{1}}
\end{align*}
$$

Since

$$
\begin{aligned}
2 \mid\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right),\right. & \left.A_{n}(s, u)\right\rangle \mid \\
& \leqslant \frac{1}{\beta_{2}}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2}+\beta_{2}\left|A_{n}(s, u)\right|^{2} \\
& \leqslant \frac{3 K^{2}}{\beta_{2}}\left(1+\left|Y_{n}(u)\right|^{2}+\left|Z_{n}(s, u)\right|^{2}\right)+\beta_{2}\left|A_{n}(s, u)\right|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{2}\left|A_{n}(s, u)\right|^{2} \leqslant & 2 \beta_{2}(T-u) \int_{u}^{T}\left|f_{n}\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)\right|^{2} d v \\
& +2 \beta_{2}(T-u) \int_{u}^{T}\left|f_{n}\left(s, v, Y_{n}(v), Z_{n}(s, v)\right)\right|^{2} d v \\
\leqslant & 6 \beta_{2}(T-u) K^{2} \int_{u}^{T}\left(1+\left|Y_{n}(v)\right|^{2}+\left|Z_{n}(u, v)\right|^{2}\right) d v \\
& +6 \beta_{2}(T-u) K^{2} \int_{u}^{T}\left(1+\left|Y_{n}(v)\right|^{2}+\left|Z_{n}(s, v)\right|^{2}\right) d v
\end{aligned}
$$

we have
(3.4) $2\left|\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right), A_{n}(s, u)\right\rangle\right|$

$$
\begin{aligned}
\leqslant & \frac{3 K^{2}}{\beta_{2}}\left(1+\left|Y_{n}(u)\right|^{2}+\left|Z_{n}(s, u)\right|^{2}\right) \\
& +12 \beta_{2}(T-u)^{2} K^{2}+12 \beta_{2}(T-u) K^{2} \int_{u}^{T}\left|Y_{n}(v)\right|^{2} d v \\
& +6 \beta_{2}(T-u) K^{2} \int_{u}^{T}\left(\left|Z_{n}(u, v)\right|^{2}+\left|Z_{n}(s, v)\right|^{2}\right) d v
\end{aligned}
$$

Now,

$$
\begin{align*}
2\left|\left\langle g\left(s, u, Y_{n}(u)\right), Z_{n}(s, u)\right\rangle\right| \leqslant & 2 \beta_{3} K^{2}\left|Y_{n}(u)\right|^{2}+\frac{1}{\beta_{3}}\left|Z_{n}(s, u)\right|^{2} \tag{3.5}\\
& +2 \beta_{3}|g(s, u, 0)|^{2}
\end{align*}
$$

Combining (3.2)-(3.5), we get
(3.6) $\quad E\left|Y_{n}(s)\right|^{2}+E \int_{s}^{T}\left|Z_{n}(s, u)\right|^{2} d u$

$$
\begin{aligned}
\leqslant & E|\xi|^{2}+\left(\beta_{1}+\frac{3 K^{2}}{\beta_{1}}+\frac{3 K^{2}}{\beta_{2}}+2 \beta_{3} K^{2}\right) E \int_{s}^{T}\left|Y_{n}(u)\right|^{2} d u \\
& +12 \beta_{2} K^{2} E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left|Y_{n}(v)\right|^{2} d v
\end{aligned}
$$

$$
+6 \beta_{2} K^{2} E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left(\left|Z_{n}(u, v)\right|^{2}+\left|Z_{n}(s, v)\right|^{2}\right) d v
$$

$$
+\left(\frac{3 K^{2}}{\beta_{1}}+\frac{3 K^{2}}{\beta_{2}}+\frac{1}{\beta_{3}}\right) E \int_{s}^{T}\left|Z_{n}(s, u)\right|^{2} d u+12 \beta_{2} K^{2} E \int_{s}^{T}(T-u)^{2} d u
$$

$$
+\left(\frac{3 K^{2}}{\beta_{1}}+\frac{3 K^{2}}{\beta_{2}}\right)(T-s)+2 \beta_{3} E \int_{s}^{T}|g(s, u, 0)|^{2} d u
$$

Moreover, it is not difficult to show that for every process $\{h(s): s \in[0, T]\}$ we have

$$
\begin{equation*}
E \int_{s}^{T}(T-u) d u \int_{u}^{T}|h(v)|^{2} d v \leqslant \frac{1}{2}(T-s)^{2} E \int_{s}^{T}|h(u)|^{2} d u . \tag{3.7}
\end{equation*}
$$

So, by integrating (3.6) from t to T, we have

$$
\begin{aligned}
& E \int_{t}^{T}\left|Y_{n}(s)\right|^{2} d s+\int_{t}^{T} d s E \int_{s}^{T}\left|Z_{n}(s, u)\right|^{2} d u \\
& \leqslant \\
& \quad T E|\xi|^{2}+\left(\beta_{1}+\frac{3 K^{2}}{\beta_{1}}+\frac{3 K^{2}}{\beta_{2}}+2 \beta_{3} K^{2}+6 \beta_{2} K^{2} \eta^{2}\right) \int_{t}^{T} d s E \int_{s}^{T}\left|Y_{n}(u)\right|^{2} d u \\
& \quad+\left(\frac{3 K^{2}}{\beta_{1}}+\frac{3 K^{2}}{\beta_{2}}+\frac{1}{\beta_{3}}+3 \beta_{2} K^{2} \eta^{2}\right) \int_{t}^{T} d s E \int_{s}^{T}\left|Z_{n}(s, u)\right|^{2} d u \\
& \quad+6 \beta_{2} K^{2} T \int_{t}^{T} d s \int_{s}^{T} d u E \int_{u}^{T}\left|Z_{n}(u, v)\right|^{2} d v+\beta_{2} K^{2} T^{4}+\left(\frac{3 K^{2}}{\beta_{1}}+\frac{3 K^{2}}{\beta_{2}}\right) T^{2} \\
& \quad+2 \beta_{3} E \int_{t}^{T} d s \int_{s}^{T}|g(s, u, 0)|^{2} d u .
\end{aligned}
$$

Let us put

$$
U_{n}(t)=E \int_{t}^{T}\left|Y_{n}(s)\right|^{2} d s \quad \text { and } \quad V_{n}(t)=E \int_{t}^{T}\left|Z_{n}(t, s)\right|^{2} d s
$$

By choosing $\beta_{1}=\beta_{2}=24 K^{2}, \beta_{3}=8$ and $\eta<1 / 24 K^{2}$, we deduce that there exist K_{1} and K_{2} depending only on ξ, T and K such that

$$
\begin{equation*}
U_{n}(t)+\frac{1}{2} \int_{t}^{T} V_{n}(s) d s \leqslant K_{1} \int_{t}^{T} U_{n}(s) d s+K_{2}\left(1+\int_{t}^{T} d s \int_{s}^{T} V_{n}(u) d u\right) . \tag{3.8}
\end{equation*}
$$

From now on let $C=C(K, T, \xi)$ be a constant depending only on K, T, ξ which may vary from line to line. By virtue of (3.8), we have

$$
\begin{equation*}
-\frac{d}{d t}\left(\exp \left(K_{1} t\right) \tilde{U}_{n}(t)\right)+\frac{1}{2} \exp \left(K_{1} t\right) \tilde{V}_{n}(t) \leqslant C\left(1+\int_{t}^{T} \exp \left(K_{1} s\right) \tilde{V}_{n}(s) d s\right), \tag{3.9}
\end{equation*}
$$

where

$$
\tilde{U}_{n}(t)=\int_{t}^{T} U_{n}(s) d s \quad \text { and } \quad \tilde{V}_{n}(t)=\int_{t}^{T} V_{n}(s) d s
$$

Integrating (3.9) from t to T, we obtain

$$
\tilde{U}_{n}(t) \exp \left(K_{1} t\right)+\frac{1}{2} \int_{t}^{T} \exp \left(K_{1} s\right) \tilde{V}_{n}(s) d s \leqslant C\left(1+\int_{t}^{T} d s \int_{s}^{T} \exp \left(K_{1} r\right) \tilde{V}_{n}(r) d r\right) .
$$

Consequently, by the Gronwall inequality, we infer that for every $n \geqslant 1$, $t \in[T-\eta, T]$

$$
\begin{equation*}
\int_{t}^{T} \widetilde{V}_{n}(s) d s \leqslant C \quad \text { and } \quad \tilde{U}_{n}(t) \leqslant C . \tag{3.10}
\end{equation*}
$$

Putting (3.10) in (3.8), we obtain again from the Gronwall inequality that there exists a constant $C=C(\xi, T, K)$ such that for every $n \geqslant 1, t \in[T-\eta, T]$

$$
E \int_{t}^{T}\left|Y_{n}(s)\right|^{2} d s+E \int_{t}^{T} d s \int_{s}^{T} \mid Z_{n}\left(s,\left.u\right|^{2} d u \leqslant C .\right.
$$

Theorem 3.3. Assume (A1)-(A3) hold true. If

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \frac{1}{\left(2 L_{N}+2 L_{N}^{2}\right) N^{2(1-\alpha)}} \exp \left[\left(2 L_{N}+2 L_{N}^{2}\right) T\right]=0 \tag{A}
\end{equation*}
$$

then there is a unique process $\{(Y(s), Z(t, s)):(t, s) \in \mathscr{D}\}$ with values in $M^{2}\left(t, T ; \mathbb{R}^{k}\right) \times M^{2}\left(\mathscr{D} ; \mathbb{R}^{k \times d}\right)$ solution of equation (1.1).

Before proving Theorem 3.3, let us make the following
Remark 3.4. The condition (A) is fulfilled if there exists $L \geqslant 0$ such that

$$
\left(2 L_{N}+2 L_{N}^{2}\right) T \leqslant L+(1-\alpha) \log N .
$$

Proof of Theorem 3.3.

Uniqueness. Let $\{(Y(s), Z(t, s)):(t, s) \in \mathscr{D}\}$ and $\left\{\left(Y^{\prime}(s), Z^{\prime}(t, s)\right):(t, s) \in \mathscr{D}\right\}$ be two solutions of equation (1.1). Define

$$
\begin{gathered}
\Delta Y(s)=Y(s)-Y^{\prime}(s), \quad \Delta Z(t, s)=Z(t, s)-Z^{\prime}(t, s) \\
\Delta f(t, s)=f(t, s, Y(s), Z(t, s))-f\left(t, s, Y^{\prime}(s), Z^{\prime}(t, s)\right) \\
\Delta g(t, s)=g(t, s, Y(s))-g\left(t, s, Y^{\prime}(s)\right)
\end{gathered}
$$

For every $N \geqslant 1$, we set

$$
\begin{aligned}
& A^{N}=\left\{(\omega, s, u) \in \Omega \times \mathscr{D}_{\eta},|Y(s)|+|Z(s, u)|+\left|Y^{\prime}(u)\right|+\left|Z^{\prime}(s, u)\right| \geqslant N\right\}, \\
& \bar{A}^{N}=\left(\Omega \times \mathscr{D}_{\eta}\right) \backslash A^{N} .
\end{aligned}
$$

In the sequel C is a positive constant depending only on K, T, and ξ which may vary from line to line.

We have

$$
\Delta Y(s)+\int_{s}^{T} \Delta f(s, u) d u+\int_{s}^{T}[\Delta g(s, u)+\Delta Z(s, u)] d W_{u}=0 .
$$

Therefore, Lemma 2.1 in [21] yields

$$
\begin{align*}
\boldsymbol{E}|\Delta Y(s)|^{2} & +E \int_{s}^{T}|\Delta Z(s, u)|^{2} d u \tag{3.11}\\
= & -2 E \int_{s}^{T}\langle\Delta f(s, u), \Delta Y(u)\rangle d u-2 E \int_{s}^{T}\langle\Delta f(s, u), A(s, u)\rangle d u \\
& -2 E \int_{s}^{T}\langle\Delta g(s, u), \Delta Z(s, u)\rangle d u-E \int_{s}^{T}|\Delta g(s, u)|^{2} d u \\
\leqslant & 2 E \int_{s}^{T}|\Delta f(s, u)||\Delta Y(u)|\left(\mathbb{1}_{A^{N}}(s, u)+\mathbf{1}_{\bar{A}^{N}}(s, u)\right) d u \\
& +2 E \int_{s}^{T}|\Delta f(s, u)||A(s, u)|\left(\mathbb{1}_{A^{N}}(s, u)+\mathbb{1}_{\bar{A}^{N}}(s, u)\right) d u \\
& +2 E \int_{s}^{T}|\Delta g(s, u)||\Delta Z(s, u)| d u \\
= & J_{1}+J_{2}+J_{3}+J_{4}+J_{5}
\end{align*}
$$

where

$$
A(s, u)=\int_{u}^{T}(\Delta f(u, v)-\Delta f(s, v)) d v
$$

In view of the assumptions (A1)-(A3), the Hölder inequality and the Young inequality, we derive the following inequalities:

$$
\begin{aligned}
J_{1}= & 2 E \int_{s}^{T}|\Delta f(s, u)||\Delta Y(u)| \mathbb{1}_{A^{N}}(s, u) d u \\
\leqslant & E \int_{s}^{T}|\Delta Y(u)|^{2} d u+E \int_{s}^{T}|\Delta f(s, u)|^{2} \mathbb{1}_{A^{N}}(s, u) d u \\
\leqslant & E \int_{s_{s}}^{T}|\Delta Y(u)|^{2} d u \\
& +4 K^{2} E \int_{s}^{T}\left(1+|Y(u)|+|Z(s, u)|+\left|Y^{\prime}(u)\right|+\left|Z^{\prime}(s, u)\right|\right)^{2 \alpha} 1_{A^{N}}(s, u) d u .
\end{aligned}
$$

By virtue of the Hölder inequality and the Chebyshev inequality, we deduce that

$$
\begin{align*}
J_{1} & \leqslant E \int_{s}^{T}|\Delta Y(u)|^{2} d u+\frac{C}{N^{2(1-\alpha)}}, \tag{3.12}\\
J_{2} & =2 E \int_{s}^{T}|\Delta f(s, u)||\Delta Y(u)| \mathbf{1}_{A^{N}}(s, u) d u \\
& \leqslant 2 E \int_{s}^{T}\left(L_{N}|\Delta Y(u)|+K|\Delta Z(s, u)|\right)|\Delta Y(u)| \mathbf{1}_{\bar{A}^{N}}(s, u) d u \\
& \leqslant\left(2 L_{N}+\beta_{1}\right) \int_{s}^{T}|\Delta Y(u)|^{2} d u+\frac{K^{2}}{\beta_{1}} E \int_{s}^{T}|\Delta Z(s, u)|^{2} d u \\
J_{3} & =2 E \int_{s}^{T}|\Delta f(s, u)||A(s, u)| \mathbb{1}_{A^{N}}(s, u) d u \\
& \leqslant E \int_{s}^{T}|\Delta f(s, u)|^{2} \mathbb{1}_{A^{N}}(s, u) d u+E \int_{s}^{T}|A(s, u)|^{2} d u \\
& =I_{1}+I_{2}
\end{align*}
$$

We have

$$
\begin{aligned}
I_{1} & \leqslant 4 K^{2} E \int_{s}^{T}\left(1+|Y(u)|+|Z(s, u)|+\left|Y^{\prime}(u)\right|+\left|Z^{\prime}(s, u)\right|\right)^{2 \alpha} \mathbb{1}_{A^{N}}(s, u) d u \\
& \leqslant \frac{C}{N^{2(1-\alpha)}}, \\
I_{2} & =E \int_{s}^{T}|A(s, u)|^{2} d u \\
& \leqslant 2 E \int_{s}^{T}(T-u) d u \int_{u}^{T}|\Delta f(u, v)|^{2} d v+2 E \int_{s}^{T}(T-u) d u \int_{u}^{T}|\Delta f(s, v)|^{2} d v .
\end{aligned}
$$

Let $\eta<1 / 24 K^{2}$. By (3.7), for $(s, u) \in \mathscr{D}_{\eta}$, we have
(3.14) $\quad I_{2} \leqslant 2 E \int_{s}^{T}(T-u) d u \int_{u}^{T}|\Delta f(u, v)|^{2}\left(\mathbf{1}_{A^{N}}(u, v)+1_{\bar{A}^{N}}(u, v)\right) d v$

$$
\begin{aligned}
& +\eta^{2} E \int_{s}^{T}|\Delta f(s, u)|^{2}\left(\mathbf{1}_{A^{N}}(s, u)+\mathbf{1}_{A^{N}}(s, u)\right) d u \\
\leqslant & 8 K^{2} E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left(1+|Y(v)|+|Z(u, v)|+\left|Y^{\prime}(v)\right|\right. \\
& +\left.\left|Z^{\prime}(u, v)\right|\right|^{2 \alpha} \mathbf{1}_{A^{N}}(u, v) d v+4 K^{2} T E \int_{s}^{T} d u \int_{u}^{T}|\Delta Z(u, v)|^{2} d v \\
& +4 \eta^{2} K^{2} E \int_{s}^{T}\left(1+|Y(u)|+|Z(s, u)|+\left|Y^{\prime}(u)\right|+\left|Z^{\prime}(s, u)\right|\right)^{2 \alpha} \mathbf{1}_{A^{N}}(s, u) d u \\
& +4 \eta^{2} L_{N}^{2} E \int_{s}^{T}|\Delta Y(u)|^{2} d u+4 \eta^{2} K^{2} E \int_{s}^{T}|\Delta Z(s, u)|^{2} d u .
\end{aligned}
$$

Using the Hölder inequality and the Chebyshev inequality, we deduce that

$$
\begin{align*}
J_{3} \leqslant & 4 L_{N}^{2} \eta^{2} E \int_{s}^{T}|\Delta Y(u)|^{2} d u+4 K^{2} \eta^{2} E \int_{s}^{T}|\Delta Z(s, u)|^{2} d u \tag{3.15}\\
& +\frac{\left(1+\eta^{2}\right) C}{N^{2(1-\alpha)}}+4 K^{2} T E \int_{s}^{T} d u \int_{u}^{T}|\Delta Z(u, v)|^{2} d v
\end{align*}
$$

$$
\begin{aligned}
J_{4} & =2 E \int_{s}^{T}|\Delta f(s, u)||A(s, u)| \mathbb{1}_{\bar{A}^{N}}(s, u) d u \\
& \leqslant 2 E \int_{s}^{T}\left(L_{N}|\Delta Y(u)|+K|\Delta Z(s, u)|\right)|A(s, u)| \mathbb{1}_{A^{N}}(s, u) d u \\
& \leqslant L_{N}^{2} E \int_{s}^{T}|\Delta Y(u)|^{2} d u+\left(\beta_{2}+1\right) E \int_{s}^{T}|A(s, u)|^{2} d u+\frac{K^{2}}{\beta_{2}} E \int_{s}^{T}|\Delta Z(s, u)|^{2} d u .
\end{aligned}
$$

Therefore, by virtue of (3.14), we have

$$
\begin{align*}
J_{4} \leqslant & {\left[4\left(\beta_{2}+1\right) \eta^{2}+1\right] L_{N}^{2} E \int_{s}^{T}|\Delta Y(u)|^{2} d u } \tag{3.16}\\
& +\left[4\left(\beta_{2}+1\right) \eta^{2}+\frac{1}{\beta_{2}}\right] K^{2} E \int_{s}^{T}|\Delta Z(s, u)|^{2} d u \\
& +4\left(\beta_{2}+1\right) K^{2} T E \int_{s}^{T}\left(\int_{u}^{T}|\Delta Z(u, v)|^{2} d v\right) d u+\left(\beta_{2}+1\right) \eta^{2} \frac{C}{N^{2(1-\alpha)}}
\end{align*}
$$

Now,

$$
\begin{align*}
J_{5} & =2 E \int_{s}^{T}|\Delta g(s, u)||\Delta Z(s, u)| d u \tag{3.17}\\
& \leqslant \beta_{3} E \int_{s}^{T}|\Delta g(s, u)|^{2} d u+\frac{1}{\beta_{3}} E \int_{s}^{T}|\Delta Z(s, u)|^{2} d u \\
& \leqslant \beta_{3} E \int_{s}^{T}|\Delta Y(u)|^{2} d u+\frac{K^{2}}{\beta_{3}} E \int_{s}^{T}|\Delta Z(s, u)|^{2} d u .
\end{align*}
$$

By combining (3.11)-(3.17) and integrating from t to T, we obtain

$$
\begin{aligned}
& E \int_{t}^{T}|\Delta Y(s)|^{2} d s+\int_{t}^{T} d s E \int_{s}^{T}|\Delta Z(s, u)|^{2} d u \\
& \leqslant \\
& \quad\left(1+2 L_{N}+\beta_{1}+\left[4\left(\beta_{2}+2\right) \eta^{2}+1\right] L_{N}^{2}+\beta_{3}\right) E \int_{t}^{T} d s \int_{s}^{T}|\Delta Y(u)|^{2} d u \\
& \quad+\left(\frac{1}{\beta_{1}}+\frac{1}{\beta_{2}}+\frac{1}{\beta_{3}}+4\left(\beta_{2}+2\right) \eta^{2}\right) K^{2} E \int_{t}^{T} d s \int_{s}^{T}|\Delta Z(s, u)|^{2} d u \\
& \quad+\left(1+\eta^{2}\right)\left(1+\beta_{2}\right) \frac{C}{N^{2(1-\alpha)}}+\left(4\left(\beta_{2}+2\right) K^{2} T E \int_{t}^{T} d s \int_{s}^{T} d u \int_{u}^{T}|\Delta Z(u, v)|^{2}\right) d v .
\end{aligned}
$$

Let us choose $\beta_{1}=\beta_{2}=\beta_{3}=8 K^{2}$ and put

$$
U(t)=E \int_{t}^{T}|\Delta Y(s)|^{2} d s \quad \text { and } \quad V(t)=E \int_{t}^{T}|\Delta Z(t, s)|^{2} d s
$$

Then we have

$$
\begin{equation*}
U(t)+\frac{1}{2} \int_{t}^{T} V(s) d s \leqslant K_{1} \int_{t}^{T} U(s) d s+\frac{C}{N^{2(1-\alpha)}}+K_{2} \int_{t}^{T} d s \int_{s}^{T} V(u) d u \tag{3.18}
\end{equation*}
$$

where $K_{1}=1+16 K^{2}+2 L_{N}+2 L_{N}^{2}, K_{2}=4\left(8 K^{2}+2\right) K^{2} T$.
It follows that

$$
\begin{align*}
-\frac{d}{d t}\left(\exp \left(K_{1} t\right) \tilde{U}(t)\right)+ & \frac{1}{2} \exp \left(K_{1} t\right) \tilde{V}(t) \tag{3.19}\\
& \leqslant K_{2} \int_{t}^{T} \exp \left(K_{1} s\right) \tilde{V}(s) d s+\frac{C}{N^{2(1-\alpha)}} \exp \left(K_{1} t\right)
\end{align*}
$$

where

$$
\tilde{U}(t)=\int_{t}^{T} U(s) d s \quad \text { and } \quad \tilde{V}(t)=\int_{t}^{T} V(s) d s
$$

Integrating (3.19) from t to T, we get

$$
\begin{align*}
& \exp \left(K_{1} t\right) \tilde{U}(t)+\frac{1}{2} \int_{t}^{T} \exp \left(K_{1} s\right) \tilde{V}(s) d s \tag{3.20}\\
& \quad \leqslant K_{2} \int_{t}^{T} d s \int_{s}^{T} \exp \left(K_{1} u\right) \tilde{V}(u) d u+\frac{C \exp \left(K_{1} T\right)}{K_{1} N^{2(1-\alpha)}} .
\end{align*}
$$

Therefore, the Gronwall inequality implies that for $t \in[T-\eta, T]$

$$
\cdot \int_{t}^{T} \exp \left(K_{1} s\right) \tilde{V}(s) d s \leqslant \frac{C}{\left(2 L_{N}+2 L_{N}^{2}\right) N^{2(1-\alpha)}} \exp \left[\left(2 L_{N}+2 L_{N}^{2}\right) T\right]
$$

Passing to the limit on N, we deduce that for each $t \in[T-\eta, T]$ we have $\tilde{V}(t)=0$ and $\tilde{U}(t)=0$. Therefore, $Y(s)=Y^{\prime}(s)$ and $Z(t, s)=Z^{\prime}(t, s)$ for a.e. $(t, s) \in[T-\eta, T] \times[t, T]$.

For $t \in[T-2 \eta, T-\eta]$, we have

$$
\Delta Y(s)+\int_{s}^{T-\eta} \Delta f(s, u) d u+\int_{s}^{T-\eta}[\Delta g(s, u)+\Delta Z(s, u)] d W_{u}=0 .
$$

Using the above procedure, we can deduce that for a.e. $(t, s) \in[T-2 \eta, T-\eta] \times$ $[t, T], Y(s)=Y^{\prime}(s)$ and $Z(t, s)=Z^{\prime}(t, s)$ a.s. Hence, we can prove the uniqueness of (1.1).

Existence. For every $n, m \in N^{*}$ and $(t, s) \in \mathscr{D}_{\eta}$, let us set

$$
\begin{aligned}
& A_{m, n}^{N}=\left\{(\omega, s, u) \in \Omega \times \mathscr{D}_{\eta},\left|Y_{n}(u)\right|+\left|Z_{n}(s, u)\right|+\left|Y_{m}(u)\right|+\left|Z_{m}(s, u)\right| \geqslant N\right\}, \\
& \bar{A}_{m, n}^{N}=\left(\Omega \times \mathscr{D}_{\eta}\right) \backslash A_{m, n}^{N} .
\end{aligned}
$$

Let

$$
\begin{aligned}
B_{m, n}(s, u)= & \int_{u}^{T}\left(f_{n}\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)-f_{m}\left(u, v, Y_{m}(v), Z_{m}(u, v)\right)\right) d v \\
& -\int_{u}^{T}\left(f_{n}\left(s, v, Y_{n}(v), Z_{n}(s, v)\right)-f_{m}\left(s, v, Y_{m}(v), Z_{m}(s,-v)\right)\right) d v
\end{aligned}
$$

We have

$$
\begin{equation*}
E\left|Y_{n}(s)-Y_{m}(s)\right|^{2}+E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{m}(s, u)\right|^{2} d u \tag{3.21}
\end{equation*}
$$

$$
\begin{aligned}
= & 2 E \int_{s}^{T}\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right), Y_{n}(u)-Y_{m}(u)\right\rangle d u \\
& -2 E \int_{s}^{T}\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right), B_{m, n}(s, u)\right\rangle d u
\end{aligned}
$$

$$
\begin{aligned}
& -2 E \int_{s}^{T}\left\langle g\left(s, u, Y_{n}(u)\right)-g\left(s, u, Y_{m}(u)\right), Z_{n}(s, u)-Z_{m}(s, u)\right\rangle d u \\
& -E \int_{s}^{T}\left|g\left(s, u, Y_{n}(u)\right)-g\left(s, u, Y_{m}(u)\right)\right|^{2} d u \\
\leqslant & 2 E \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|\left|Y_{n}(u)-Y_{m}(u)\right| \\
& \times\left(\mathbf{1}_{A_{\bar{m}, n}^{N}}(s, u)+\mathbb{1}_{\bar{A}_{m, n}^{N-}}^{N-1}(s, u)\right) d u \\
& +2 E \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|\left|B_{m, n}(s, u)\right| \\
& \times\left(\mathbf{1}_{A_{m, n}^{N}}(s, u)+\mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u)\right) d u \\
& +2 E \int_{s}^{T}\left|g\left(s, u, Y_{n}(u)\right)-g\left(s, u, Y_{m}(u)\right)\right|\left|Z_{n}(s, u)-Z_{m}(s, u)\right| d u \\
= & J_{1}+J_{2}+J_{3}+J_{4}+J_{5} .
\end{aligned}
$$

By Lemma 3.2 and using the same calculations as in its proof, we have

$$
\begin{align*}
J_{1}= & 2 E \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right| \tag{3.22}\\
& \times\left|Y_{n}(u)-Y_{m}(u)\right| \mathbb{1}_{A_{m, n}^{N}}^{N}(s, u) d u \\
\leqslant & E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u+\frac{C}{N^{2(1-\alpha)}}, \\
J_{2}= & 2 E \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right| \\
& \times\left|Y_{n}(u)-Y_{m}(u)\right| \mathbb{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
\leqslant & 2 E \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right| \\
& \times\left|Y_{n}(u)-Y_{m}(u)\right| \mathbb{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& +2 E \int_{s}^{T}\left|f\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right| \\
& \times\left|Y_{n}(u)-Y_{m}(u)\right| \mathbf{1}_{\bar{A}_{m, n}}^{N}(s, u) d u
\end{align*}
$$

$$
\begin{aligned}
& +2 E \int_{s}^{T}\left|f\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right| \\
& \times\left|Y_{n}(u)-Y_{m}(u)\right| 1_{\bar{A}_{m, n}^{N}}(s, u) d u \\
= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

We have

$$
\begin{gathered}
I_{1} \leqslant E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u+E \int_{s}^{T}\left|\left(f_{n}-f\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \mathbb{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
I_{2} \leqslant\left(2 L_{N}+\beta_{1}\right) E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u+\frac{K^{2}}{\beta_{1}} E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{m}(s, u)\right|^{2} d u \\
I_{3} \leqslant E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u+E \int_{s}^{T}\left|\left(f_{m}-f\right)\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u) d u .
\end{gathered}
$$

Hence

$$
\begin{align*}
& J_{2} \leqslant\left(2 L_{N}+\beta_{1}+2\right) E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u \tag{3.23}\\
& +E \int_{s}^{T}\left|\left(f_{n}-f\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& +\boldsymbol{E} \int_{s}^{T}\left|\left(f_{m}-f\right)\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& +\frac{K^{2}}{\beta_{1}} E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{m}(s, u)\right|^{2} d u, \\
& J_{3}=2 E \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right| \tag{3.24}\\
& \times\left|B_{m, n}(s, u)\right| 1_{A_{m, n}^{N}}^{N}(s, u) d u \\
& \leqslant E \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|^{2} \mathbf{1}_{A_{m, n}^{N}}(s, u) d u \\
& +E \int_{s}^{T}\left|B_{m, n}(s, u)\right|^{2} d u \\
& =I_{4}+I_{5} .
\end{align*}
$$

Using the Hölder inequality, the Chebyshev inequality and Lemma 3.2, we have

$$
\begin{equation*}
I_{4} \leqslant \frac{C}{N^{2(1-\alpha)}} \tag{3.25}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
I_{5} \leqslant & 2 E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left|f_{n}\left(s, v, Y_{n}(v), Z_{n}(s, v)\right)-f_{m}\left(s, v, Y_{m}(v), Z_{m}(s, v)\right)\right|^{2} d v \\
& +2 E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left|f_{n}\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)-f_{m}\left(u, v, Y_{m}(v), Z_{m}(u, v)\right)\right|^{2} d v .
\end{aligned}
$$

By (3.7) we obtain

$$
\begin{aligned}
I_{5} & \leqslant \\
& \eta^{2} \dot{E} \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|^{2} \\
& \times\left(\mathbb{1}_{A_{m, n}^{N}}(s, u)+\mathbb{1}_{\bar{A}_{m, n}^{N}}(s, u)\right) d u+2 E \int_{s}^{T}(T-u) d u \\
& \times \int_{u}^{T}\left|f_{n}\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)-f_{m}\left(u, v, Y_{m}(v), Z_{m}(u, v)\right)\right|^{2} \\
& \times\left(\mathbb{1}_{A_{m, n}^{N}}(u, v)+\mathbb{1}_{\bar{A}_{m, n}^{N}}(u, v)\right) d v .
\end{aligned}
$$

Therefore, the Hölder inequality, the Chebyshev inequality and Lemma 3.2 yield

$$
\begin{align*}
& I_{5} \leqslant \eta^{2} \frac{C}{N^{2(1-\alpha)}}+3 \eta^{2} E \int_{s}^{T}\left|\left(f_{n}-f\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \tag{3.26}\\
& +3 \eta^{2} E \int_{s}^{T}\left|\left(f_{m}-f\right)\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& +6 E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left|\left(f_{n}-f\right)\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(u, v) d v \\
& +6 E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left|\left(f_{m}-f\right)\left(u, v, Y_{m}(v), Z_{m}(u, v)\right)\right|^{2} \mathbb{1}_{\bar{A}_{m, n}^{N}}(u, v) d v \\
& +12 \eta^{2} L_{N}^{2} E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u+6 \eta^{2} K^{2} E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{m}(s, u)\right|^{2} d u \\
& +12 K^{2} T E \int_{s}^{T} d u \int_{u}^{T}\left|Z_{n}(u, v)-Z_{m}(u, v)\right|^{2} d v, \\
& J_{4}=2 E \int_{s}^{T} \mid f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right) \\
& \quad-f_{m}\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)| | B_{m, n}(s, u) \mid \mathbb{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& \leqslant
\end{align*}
$$

$$
\begin{aligned}
& \quad+2 E \int_{s}^{T}\left|f\left(s, u, Y_{n}(u), Z(s, u)\right)-f\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right| \\
& \quad \times\left|B_{m, n}(s, u)\right| \mathbb{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& \quad+2 E \int_{s}^{T}\left|\left(f_{m}-f\right)\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|\left|B_{m, n}(s, u)\right| 1_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& \leqslant E E \int_{s}^{T}\left|\left(f_{n}-f\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \mathbb{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& \quad+E \int_{s}^{T}\left|\left(f_{m}-f\right)\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& \quad+L_{N}^{2} E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u+\left(\beta_{2}+3\right) E \int_{s}^{T}\left|B_{m, n}(s, u)\right|^{2} d u \\
& \\
& \quad+\frac{K^{2}}{\beta_{2}} E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{m}(s, u)\right|^{2} d u .
\end{aligned}
$$

Consequently, by (3.26) we have

$$
\begin{align*}
& \text { 7) } \begin{array}{l}
J_{4} \leqslant \eta^{2} \frac{C}{N^{2(1-\alpha)}} \\
+\left[3\left(\beta_{2}+3\right) \eta^{2}+1\right] E \int_{s}^{T}\left|\left(f_{n}-f\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
+\left[3\left(\beta_{2}+3\right) \eta^{2}+1\right] E \int_{s}^{T}\left|\left(f_{m}-f\right)\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
+6\left(\beta_{2}+3\right) E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left|\left(f_{n}-f\right)\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)\right|^{2} \mathbb{1}_{\bar{A}_{m, n}^{N}}(u, v) d v \\
+6\left(\beta_{2}+3\right) E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left|\left(f_{m}-f\right)\left(u, v, Y_{m}(v), Z_{m}(u, v)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(u, v) d v \\
+\left[12\left(\beta_{2}+3\right) \eta^{2}+1\right] L_{N}^{2} E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u \\
+\left[6\left(\beta_{2}+3\right) \eta^{2}+1 / \beta_{2}\right] K^{2} E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{m}(s, u)\right|^{2} d u \\
+12\left(\beta_{2}+3\right) K^{2} T E \int_{s}^{T} d u \int_{u}^{T}\left|Z_{n}(u, v)-Z_{m}(u, v)\right|^{2} d v .
\end{array} \$ l \tag{3.27}
\end{align*}
$$

We have

$$
\begin{equation*}
J_{5} \leqslant \beta_{3} E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u+\frac{K^{2}}{\beta_{3}} E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{m}(s, u)\right|^{2} d u \tag{3.28}
\end{equation*}
$$

Consequently, from (3.21)-(3.28) we deduce that

$$
\begin{aligned}
E \mid Y_{n}(s) & -\left.Y_{m}(s)\right|^{2}+E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{m}(s, u)\right|^{2} d u \\
\leqslant & \left(3+\beta_{1}+\beta_{3}+2 L_{N}+\left[1+12\left(\beta_{2}+4\right) \eta^{2}\right]\right) L_{N}^{2} E \int_{s}^{T}\left|Y_{n}(u)-Y_{m}(u)\right|^{2} d u \\
& +\left(\frac{1}{\beta_{1}}+\frac{1}{\beta_{2}}+\frac{1}{\beta_{3}}+6\left(\beta_{2}+4\right) \eta^{2}\right) K^{2} E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{m}(s, u)\right|^{2} d u \\
& +\left(2+3\left(\beta_{2}+4\right) \eta^{2}\right) E \int_{s}^{T}\left|\left(f_{n}-f\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \mathbf{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& +\left(2+3\left(\beta_{2}+4\right) \eta^{2}\right) E \int_{s}^{T}\left|\left(f_{m}-f\right)\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|^{2} \mathbb{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& +6\left(\beta_{2}+4\right)(T-s)\left[\varrho_{N}^{2}\left(f_{n}-f\right)+\varrho_{N}^{2}\left(f_{m}-f\right)\right] \\
& +12\left(\beta_{2}+4\right) K^{2} T E \int_{s}^{T} d u \int_{u}^{T}\left|Z_{n}(u, v)-Z_{m}(u, v)\right|^{2} d v \\
& +\frac{C}{N^{2(1-\alpha)}}\left(1+\eta^{2}\right) .
\end{aligned}
$$

Let us choose $\beta_{1}=\beta_{2}=\beta_{3}=8 K^{2}$ and define

$$
U_{m, n}(t)=E \int_{t}^{T}\left|Y_{n}(s)-Y_{m}(s)\right|^{2} d s, \quad V_{n, m}(t)=E \int_{t}^{T}\left|Z_{n}(t, s)-Z_{m}(t, s)\right|^{2} d s
$$

Then we have

$$
\begin{align*}
- & \frac{d}{d s}\left(\exp \left(K_{1} s\right) U_{m, n}(s)\right)+\frac{1}{2} \exp \left(K_{1} s\right) V_{m, n}(s) \tag{3.29}\\
\leqslant & K_{2} E \int_{s}^{T}\left|\left(f_{n}-f\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \exp \left(K_{1} s\right) 1_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& +K_{2} E \int_{s}^{T}\left|\left(f_{m}-f\right)\left(s, u, Y_{m}(u), Z_{m}(s, u)\right)\right|^{2} \exp \left(K_{1} s\right) \mathbb{1}_{\bar{A}_{m, n}^{N}}(s, u) d u \\
& +K_{3}\left[\varrho_{N}^{2}\left(f_{n}-f\right)+\varrho_{N}^{2}\left(f_{m}-f\right)\right] \exp \left(K_{1} s\right)+K_{4} \int_{s}^{T} \exp \left(K_{1} u\right) V_{m, n}(u) d u \\
& +\frac{C}{N^{2(1-\alpha)}} \exp \left(K_{1} s\right)
\end{align*}
$$

where $K_{1}=3+16 K^{2}+2 L_{N}+2 L_{N}^{2}, K_{2}, K_{3}, K_{4}$ and C are constants depending only on K, T, and ξ. Integrating (3.29) from t to T, we obtain

$$
\begin{equation*}
\exp \left(K_{1} t\right) U_{m, n}(t)+\frac{1}{2} \int_{t}^{T} \exp \left(K_{1} s\right) V_{m, n}(s) d s \tag{3.30}
\end{equation*}
$$

$$
\leqslant\left(K_{2}+K_{3} T\right)\left[\varrho_{N}^{2}\left(f_{n}-f\right)+\varrho_{N}^{2}\left(f_{m}-f\right)\right] \exp \left(K_{1} T\right)+K_{4} \int_{t}^{T} d s \int_{s}^{T} \exp \left(K_{1} s\right) V_{m, n}(r) d r
$$

$$
+\frac{C}{K_{1} N^{2(1-\alpha)}} \exp \left(K_{1} T\right)
$$

From the Gronwall inequality we deduce that

$$
\begin{align*}
& \text { (3.31) } \quad \int_{t}^{T} \exp \left(K_{1} s\right) V_{m, n}(s) d s \tag{3.31}\\
& \leqslant\left(\left(K_{2}+K_{3} T\right)\left[\varrho_{N}^{2}\left(f_{n}-f\right)+\varrho_{N}^{2}\left(f_{m}-f\right)\right] \exp \left(K_{1} T\right)+\frac{C}{K_{1} N^{2(1-\alpha)}} \exp \left(K_{1} T\right)\right) \\
& \quad \times \exp \left(K_{4} T\right) .
\end{align*}
$$

In view of the condition (A), passing to the limit successively for N, n and m in (3.30) and (3.31), we have

$$
\int_{t}^{T} \exp \left(K_{1} s\right) V_{m, n}(s) d s \rightarrow 0 \quad \text { and } \quad U_{m, n}(t) \rightarrow 0
$$

Therefore, $\left(Y_{n}, Z_{n}\right)_{n} \geqslant 1$ is a Cauchy sequence in the Banach space $M^{2}\left([t, T] ; R^{k}\right)$ $\times M^{2}\left([T-\eta, T] \times[t, T] ; \mathbb{R}^{k \times d}\right)$.

We put

$$
Y(s)=\lim _{n} Y_{n}(s) \quad \text { and } \quad Z(t, s)=\lim _{n} Z_{n}(t, s) .
$$

On the other hand, if we put

$$
\begin{aligned}
& A_{n}^{N}=\left\{(\omega, t, s) \in \Omega \times \mathscr{D}_{\eta}, 1+|Y(u)|+|Z(s, u)|+\left|Y_{n}(u)\right|+\left|Z_{n}(s, u)\right|>N\right\}, \\
& \bar{A}_{n}^{N}=\left(\Omega \times \mathscr{D}_{\eta}\right) \backslash A_{n}^{N},
\end{aligned}
$$

then

$$
\begin{aligned}
& \int_{t}^{T} d s E \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f(s, u, Y(u), Z(s, u))\right|^{2} d u \\
& \quad \leqslant \int_{t}^{T} d s E \int_{s}^{T}\left|f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f(s, u, Y(u), Z(s, u))\right|^{2} \mathbb{1}_{A_{n}^{N}}(s, u) d u \\
& \quad+2 \int_{t}^{T} d s E \int_{s}^{T}\left|\left(f_{n}-f\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \mathbb{1}_{A_{n}^{N}}(s, u) d u
\end{aligned}
$$

$$
\begin{aligned}
& +2 \int_{t}^{T} d s E \int_{s}^{T}\left|f\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f(s, u, Y(u), Z(s, u))\right|^{2} \mathbf{1}_{A_{n}^{N}}(s, u) d u \\
\leqslant & \frac{C}{N^{2(1-\alpha)}}+2 \varrho_{N}^{2}\left(f_{n}-f\right)+4 L_{N}^{2} E \int_{t}^{T}\left|Y_{n}(s)-Y(s)\right|^{2} d s \\
& +4 K^{2} E \int_{s}^{T} d s \int_{u}^{T}\left|Z_{n}(s, u)-Z(s, u)\right|^{2} d u .
\end{aligned}
$$

Passing to the limit successively for N and n, we obtain

$$
\begin{aligned}
& \int_{t}^{T} d s E \int_{s}^{T} \mid f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right) \\
& \quad-\left.f(s, u, Y(u), Z(s, u))\right|^{2} d u \rightarrow 0 \quad \text { for all } t \in[T-\eta, T] .
\end{aligned}
$$

Then, taking the limit in (3.1), we see that (Y, Z) solves equation (1.1) for $(t, s) \in$ $[T-\eta, T] \times[t, T]$.

From the above calculations we know that for $(t, s) \in[T-\eta, T] \times[t, T]$ there exists unique $Y(T-\eta)$. Now, for $(t, s) \in[T-2 \eta, T-\eta] \times[t, T-\eta]$, we consider the equation

$$
\begin{aligned}
Y_{n}(t)+\int_{t}^{T-\eta} f_{n}\left(t, s, Y_{n}(s),\right. & \left.Z_{n}(t, s)\right) d s \\
& +\int_{t}^{T-\eta}\left[g\left(t, s, Y_{n}(s)\right)+Z_{n}(t, s)\right] d W(s)=Y(T-\eta) .
\end{aligned}
$$

With the same argument as above, one can prove that $\left(Y_{n}, Z_{n}\right)_{n \in N}$ is a Cauchy sequence in the Banach space $M^{2}\left([T-2 \eta, T-\eta] ; \boldsymbol{R}^{k}\right) \times M^{2}([T-2 \eta, T-\eta] \times$ $\left.[t, T-\eta] ; \boldsymbol{R}^{k \times d}\right)$. One can prove that its limit is the unique solution of the Volterra equation with data (ξ, f, g) for $(t, s) \in[T-2 \eta, T-\eta] \times[t, T-\eta]$. Thus, we can prove the existence by continuing this procedure.

4. STABILITY RESULTS FOR BSNVIE WITH LOCAL LIPSCHITZ DRIFT

In this section, we prove a stability result for backard stochastic nonlinear Volterra integral equations assuming local Lipschitz drift. Let $\left(\xi_{n}\right)_{n \in N^{*}}$ be a sequence of random variables and $\left(f_{n}, g_{n}\right)_{n \geqslant 1}$ a sequence of processes which fulfill assumptions of Theorem 3.3. We denote by $\left(Y_{n}, Z_{n}\right)$ the unique solution of the BSDE of Volterra type with data (ξ_{n}, f_{n}, g_{n}). Moreover, we consider the following assumption:
(A4) For each $N \in N^{*} \backslash\{1\}$,
(i) $\varrho_{N}\left(f_{n}-f_{0}\right) \rightarrow 0$ as $n \rightarrow+\infty$,
(ii) $\pi\left(g_{n}-g_{0}\right) \rightarrow 0$ as $n \rightarrow+\infty$,
(iii) $E\left|\xi_{n}-\xi_{0}\right|^{2} \rightarrow 0$ as $n \rightarrow+\infty$,
where

$$
\pi\left(g_{n}-g_{0}\right)=E\left(\int_{\mathscr{D}} \sup _{y \in \mathbb{R}^{k}}\left|g_{n}(t, s, y)-g_{0}(t, s, y)\right|^{2} d s d t\right)^{1 / 2}
$$

Theorem 4.1. Assume (A1)-(A4) and (A) hold true. Then

$$
\left(Y_{n}, Z_{n}\right) \rightarrow\left(Y_{0}, Z_{0}\right) \text { in } M^{2}\left(t, T, R^{k}\right) \times M^{2}\left(\mathscr{D}, \mathbb{R}^{k \times d}\right) \quad \text { as } n \rightarrow+\infty .
$$

Proof. Let $\eta>0$ (to be precised later). For each $(t, s) \in[T-\eta, T] \times[t, T]$ it follows from Lemma 2.1 of [21] that

$$
\begin{aligned}
& E\left|Y_{n}(s)-Y_{0}(s)\right|^{2}+E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{0}(s, u)\right|^{2} d u=E\left|\xi_{n}-\xi_{0}\right|^{2} \\
& +2 E \int_{s}^{T}\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{0}\left(s, u, Y_{0}(u), Z_{0}(s, u)\right), Y_{n}(u)-Y_{0}(u)\right\rangle d u \\
& -2 E \int_{s}^{T}\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{0}\left(s, u, Y_{0}(u), Z_{0}(s, u)\right), I_{n, 0}(u)\right\rangle d u \\
& -2 E \int_{s}^{T}\left\langle g_{n}\left(s, u, Y_{n}(u)\right)-g_{0}\left(s, u, Y_{0}(u)\right), Z_{n}(s, u)-Z_{0}(s, u)\right\rangle d u \\
& -E \int_{s}^{T} \mid g_{n}\left(s, u, Y_{n}(u)\right)-g_{0}\left(s, u,\left.Y_{0}(u)\right|^{2} d u .\right.
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
& E\left|Y_{n}(s)-Y_{0}(s)\right|^{2}+E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{0}(s, u)\right|^{2} d u \\
\leqslant & E\left|\xi_{n}-\xi_{0}\right|^{2} \\
& +2 E \int_{s}^{T}\left|\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{0}\left(s, u, Y_{0}(u), Z_{0}(s, u)\right), Y_{0}(u)-Y_{0}(u)\right\rangle\right| d u \\
& +2 E \int_{s}^{T}\left|\left\langle f_{n}\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)-f_{0}\left(s, u, Y_{0}(u), Z_{0}(s, u)\right), I_{n, 0}(s, u)\right\rangle\right| d u \\
& +2 E \int_{s}^{T}\left|\left\langle g_{n}\left(s, u, Y_{n}(u)\right)-g_{0}\left(s, u, Y_{0}(u)\right), Z_{n}(s, u)-Z_{0}(s, u)\right\rangle\right| d u,
\end{aligned}
$$

where

$$
\begin{aligned}
I_{n, 0}(s, u)= & \int_{u}^{T}\left(f_{n}\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)-f_{0}\left(u, v, Y_{0}(v), Z_{0}(u, v)\right)\right) d v \\
& -\int_{u}^{T}\left(f_{n}\left(s, v, Y_{n}(v), Z_{n}(s, v)\right)-f_{0}\left(s, v, Y_{0}(v), Z_{0}(s, v)\right)\right) d u
\end{aligned}
$$

For each $N>1$, let us consider L_{N}, the Lipschitz constant of f in the ball $B(0, N)$ of R^{k}, and put

$$
\begin{aligned}
D_{n, 0}^{N} & =\left\{(\omega, s, u) \in \Omega \times \mathscr{D}_{\eta},\left|Y_{n}(s)\right|+\left|Z_{n}(s, u)\right|+\left|Y_{0}(u)\right|+\left|Z_{0}(s, u)\right| \geqslant N\right\}, \\
\bar{D}_{n, 0}^{N} & =\left(\Omega \times \mathscr{D}_{\eta}\right) \backslash D_{n, 0}^{N} .
\end{aligned}
$$

The same procedure as in the proof of the existence part in Theorem 3.3 yields

$$
\begin{aligned}
& \left|Y_{n}(s)-Y_{0}(s)\right|^{2}+E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{0}(s, u)\right|^{2} d u \\
\leqslant & E\left|\xi_{n}-\xi_{0}\right|^{2}+\left(2+\beta_{1}+\beta_{3}+2 L_{N}+\left(1+8\left(\beta_{2}+3\right)\right) \eta^{2}\right) L_{N}^{2} E \int_{s}^{T}\left|Y_{n}(u)-Y_{0}(u)\right|^{2} d u \\
& +\left[\left(\frac{1}{\beta_{1}}+\frac{1}{\beta_{2}}+\frac{1}{\beta_{3}}+4\left(\beta_{2}+3\right) \eta^{2}\right) K^{2}+\frac{1}{\beta_{4}}\right] E \int_{s}^{T}\left|Z_{n}(s, u)-Z_{0}(s, u)\right|^{2} d u \\
& +\left(3+2\left(\beta_{2}+3\right) \eta^{2}\right) E \int_{s}^{T}\left|\left(f_{n}-f_{0}\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \mathbb{1}_{\bar{D}_{n, 0}^{N}}(s, u) d u \\
& +4\left(\beta_{2}+3\right) E \int_{s}^{T}(T-u) d u \int_{u}^{T}\left|\left(f_{n}-f_{0}\right)\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)\right|^{2} \mathbb{1}_{\bar{D}_{n, 0}^{N}}(u, v) d v \\
& +\beta_{4} E \int_{s}^{T}\left|\left(g_{n}-g_{0}\right)\left(s, u, Y_{n}(u)\right)\right|^{2} d u \\
& +8\left(\beta_{2}+3\right) K^{2} T E \int_{s}^{T} d u \int_{u}^{T}\left|Z_{n}(u, v)-Z_{0}(u, v)\right|^{2} d v+\left(\eta^{2}+1\right) \frac{C}{N^{2(1-\alpha)}}
\end{aligned}
$$

Let us choose $\beta_{1}=\beta_{2}=\beta_{3}=12 K^{2}, \beta_{4}=8$, and $\eta<1 / 24 K^{2}$. If we define

$$
U_{n, 0}(t)=E \int_{t}^{T}\left|Y_{n}(s)-Y_{0}(s)\right|^{2} d s \quad \text { and } \quad V_{n, 0}(t)=E \int_{t}^{T}\left|Z_{n}(t, s)-Z_{0}(t, s)\right|^{2} d s
$$

then we obtain

$$
\begin{aligned}
& -\frac{d}{d s}\left(\exp \left(K_{1} s\right) U_{n, 0}(s)\right)+\frac{1}{2} \exp \left(K_{1} s\right) V_{n, 0}(s) \\
& \leqslant \\
& \leqslant\left(\exp \left(K_{1} s\right)\left|\xi_{n}-\xi_{0}\right|^{2}\right) \\
& \quad+4 E \exp \left(K_{1} s\right) \int_{s}^{T}\left|\left(f_{n}-f_{0}\right)\left(s, u, Y_{n}(u), Z_{n}(s, u)\right)\right|^{2} \mathbb{1}_{\overline{D_{n, 0}}}(s, u) d u \\
& \quad+4\left(12 K^{2}+3\right) E \exp \left(K_{1} s\right) \\
& \quad \times \int_{s}^{T}(T-u) d u \int_{u}^{T}\left|\left(f_{n}-f_{0}\right)\left(u, v, Y_{n}(v), Z_{n}(u, v)\right)\right|^{2} \mathbb{1}_{\overline{D_{n, 0}}}(u, v) d v
\end{aligned}
$$

$$
\begin{aligned}
& +8 \boldsymbol{E} \exp \left(K_{1} s\right) \int_{s}^{T}\left|\left(g_{n}-g_{0}\right)\left(s, u, Y_{n}(u)\right)\right|^{2} d u \\
& +8\left(12 K^{2}+3\right) K^{2} T E \exp \left(K_{1} s\right) \int_{s}^{T} V_{n, 0}(u) d u+\exp \left(K_{1} s\right) \frac{C}{N^{2(1-\alpha)}}
\end{aligned}
$$

where $K_{1}=2+24 K^{2}+2 L_{N}+2 L_{N}^{2}, K_{2}, K_{3}$ and C are constants depending only on K, T, and ξ_{0}. The rest of the proof is identical to that of the existence part of Theorem 3.3. ■

REFERENCES

[1] A. Aman and M. N'Zi, Backward stochastic differential equations with oblique reflection and local Lipschitz drift, J. Appl. Math. Stochastic Anal. 16 (4) (2003), pp. 295-309.
[2] K. Bahlali, Backward stochastic differential equations with locally Lipschitz coefficient, C.R. Acad. Sci. Paris, Sér. I, 33 (2001), pp. 481-486.
[3] K. B a hlali, Existence and uniqueness of solutions for BSDE's with locally Lipschitz coefficient, Electronic Comm. Probab. 7 (2002), pp. 169-179.
[4] K. Bahlali, M. Eddahbi and E. Essaky, BSDE associated with Lévy processes and application to PDEIE, J. Appl. Math. Stochastic Anal. 16 (1) (2003), pp. 1-17.
[5] M. Berger and V. Mizel, Volterra equations with Itô integrals. I, J. Integral Equations 2 (1980), pp. 187-245.
[6] M. Berger and V. Mizel, Volterra equations with Itô integrals. II, J. Integral Equations 2 (1980), pp. 319-337.
[7] J. M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl. 44 (1973), pp. 384-404.
[8] J. M. Bismut, An introductory approach to duality in stochastic control, J. Math. SIAM Rev. 20 (1978), pp. 62-78.
[9] J. Cox, J. Ingersoll and S. Ross, A temporal general equilibrium model of asset prices, Econometrica 53 (1985), pp. 353-384.
[10] D. Duffie and L. Epstein, Stochastic differential utility, Econometrica 60 (1992), pp. 353-394.
[11] D. Duffie and C. Huang, Stochastic production-exchange equilibria, Research. Graduate School of Business, Stanford University, 974 (1989).
[12] N. E1 Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's, Ann. Probab. 25 (2) (1997), pp. 702-737.
[13] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equation in finance, Math. Finance 7 (1997), pp. 1-71.
[14] E. H. Essaky, K. Bahlali and Y. Ouknine, Reflected backward stochastic differential equation with jumps and locally Lipschitz coefficient, Random Operator and Stochastic Equation 10 (4) (2002), pp. 335-350.
[15] S. H amadène, Equations différentielles stochastiques rétrogrades, le cas localement lipschitzien, Ann. Inst. H. Poincaré 32 (5) (1996), pp. 645-660.
[16] S. Hamadène, Multi-dimensional BSDE's with uniformly continuous coefficients, Bernoulli 9 (3) (2003), pp. 517-534.
[17] S. Hamadène and J. P. Lepeltier, Zero-sum stochastic differential games and BSDEs, Systems Control Lett. 24 (1995), pp. 259-263.
[18] Y. Hu and S. Peng, Adapted solution of backward stochastic evolution equation, Stochastic Anal. Appl. 9 (1991), pp. 445-459.
[19] A. M. Kolodh, On the existence of solutions of stochastic Volterra integral equations (in Russian), Theory Random Processes 11 (1983), pp. 51-57.
[20] J. P. Lepeltier and J. San Martin, Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett. 32 (4) (1997), pp. 425-430.
[21] J. Lin, Adapted solution of backward stochastic nonlinear Volterra integral equation, Stochastic Anal. Appl. 20 (1) (2002), pp. 165-183.
[22] M. N' Zi and Y. Ouknine, Backward stochastic differential equations with continuous coefficients, Random Operators and Stochastic Equations 5 (5) (1997), pp. 59-68.
[23] E. Pardoux and S. Peng, Adapted solution of backward stochastic differential equation, Systems Control Lett. 4 (1990), pp. 55-61.
[24] E. Pardoùx and S. Peng, Backward stochastic differential equation and quasilinear parabolic partial differential equations, in: Stochastic Partial Equations and Their Applications, B. L. Rozovski and R. B. Sowers (Eds.), Lecture Notes in Control Inform. Sci. 176, Springer, Berlin 1992, pp. 200-217.
[25] E. Pardoux and P. Protter, Stochastic Volterra equations with anticipating coefficients, Ann. Probab. 18 (4) (1990), pp. 1635-1655.
[26] S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics 37 (1991), pp. 61-74.
[27] P. Protter, Volterra equations driven by semi-martingales, Ann. Probab. 13 (2) (1985), pp. 519-530.

Auguste Aman and Modeste N'Zi
Laboratoire de Mathématiques Appliquées
UFR de Mathématiques et Informatique
Université de Cocody
22 BP 582 Abidjan 22, Côte d'Ivoire
E-mail: nzim@ucocody.ci; modestenzi@yahoo.fr

Received on 20.5.2005

$$
=
$$

