PROBABILITY AND MATHEMATICAL STATISTICS Vol. 25, Fasc. 2 (2005), pp. 393–403

ON THE APPROXIMATION OF A RANDOM VARIABLE BY A CONDITIONAL EXPECTATION OF ANOTHER RANDOM VARIABLE

Krzysztof Kaniowski

Abstract: Let X and Y be \mathbb{R} -valued random variables on a non-atomic probability space (Ω, \mathcal{F}, P) . We give conditions under which Y can be approximated by a conditional expectation of X. In particular, we prove the following theorem:

Let X be an \mathbb{R} -valued random variable such that $EX^+ = EX^- = \infty$. Then for each random variable Y and arbitrary $\epsilon > 0$ there exist $B \in \mathcal{F}$ and a sub- σ -field \mathcal{S} of \mathcal{F} such that $P(B) \leq \epsilon$ and $E(X|\mathcal{S}) = Y$ a.s. on B^c .

We also review some facts on the conditional expectation of unintegrable random variables.

2000 AMS Mathematics Subject Classification: 60A10.

Key words and phrases: Conditional expectation.

THE FULL TEXT IS AVAILABLE HERE