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ON THE APPROXIMATION OF A RANDOM VARIABLE 
BY A CONDITIONAL EXPECTATION 

-. =OF ANOTHER RANDOM VARIABLE 

KRZYSZTOF K A N 1 0  W SKI ( L b ~ k )  

Abstract. Let X and Y be R-valued random variables on a non- 
atomic probability space (8, 5, P). We give conditions under which 
Y can be approximated by a conditional expectation of X. In par- 
ticular, we prove the following theorem: 

Let X be an R-valued random variable such that EX' = 
EX- = w. Then for each random variable Y and arbitrary e > 0 there 
exist  BE^ and a sub-u-field P[ of 5 such that P(B) < 8 and 
E [X 1 er) = Y as. on 3'. 

We also review some facts on the conditional expectation of 
unintegrable random variables. 
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0. INTRODUCTION 

Let X be an R-valued random variable on a non-atomic probability space 
(52, 8,  P). The paper is devoted to the question: which random variables can be 
obtained by conditioning of X with respect to sub-a-fields of 8. In general, it 
seems to be impossible to give any detailed characterization of the family of 
such random variables. Nevertheless we can give some sufficient conditions 
under which there exists a sub-a-field 2l of 8 such that Y = E(X I%) outside 
a fixed set BE 8. The following lemma has been proved and used in 131 and [4]. 

0.1. LEMMA. Let X be an integrable random variable and Y a random var- 
iable of the form 

k 

such that B, A,, A,, .. ., A, are pairwise disjoint, 
k 

Bu U Ai = 52, 
i =  1 
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and 

lad P(Ai)+ max lad P ( B )  < min {EX+ I 8 - E X -  I,,, Ex- 1 , - E X +  I,.}. 
i = l  i =  1, ..., k 

Then there exists a sub-a-field 5!l of .f such that 

A generalization of this theorem is the main result of the paper. It is 
proved- in Section 2;-Corollaries to this theorem concern unintegrable random 
variables. The concept of the conditional expectation of unintegrable random 
variable is not new (see e.g. [I]). It seems, however, that the idea of the domain 
of conditional expectation lacks precise treatment in the literature. This topic is 
covered in Section 1. 

1. CONDITIONAL EXPECTATION OF AN ARBITRARY RANDOM VARKABLE 

Here and subsequently (Q, 8, P) denotes a non-atomic probability space. 
Let us recall now the definition of the conditional distribution. 

1.1. DEFINITION. Let X be an Rn-valued random variable on (0, 5, P), 
and 2l be a sub-a-field of 8. A function 

is called a version of the conditional distribution of X given 2l if 
(i) for each B E 23 (R") the map Q 3 w I-, P (X E 3 I a )  (w) is %-measurable, 

(ii) for each w E B the map 23 (R") 3 B H P (X E 3 ( %) (w) is a probability 
distribution on (R", 23 (R*)), 

(iii) for each AE% and B E B  (Rn) we have 

.- - The existence of P (X E- I %) (.) is guaranteed by the following 

8.2. THEOREM. Let X be an Rn-valued random variable on (a, 5,  P), and 
M be a sub-a-field of 8. Then there exists a version P(X E . I 2l) (.) of the con- 
ditional distribution of X given %. Moreover, if P I  (X E - I 2l) (-) is any other 
version of the conditional distribution of X giuen %, then 

P r o  of. See for instance [2]. 

In the expressions involving integrals with respect to P (X E - I %) (w)  we 
shall often use the following, more convenient notation: dpxla(o) or dpxlrrr. 
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1.3. THEOREM. Let X be an Rn-valued random uariable on (a, 3, P), 
% a sub-c-$eld of 8, f: Rn + W a Bore1 function, and A EN. if the integral 
J, f (X) dP exists (and is finite), then for almost every w E A the following inte- 
4raI exists (and is Jinite): 

moreover, 

J f (XI dP = j j f (x) d ~ x l a  (4 (4 dP (4. 
A A R K  -- 

P rb  of. .The theorem can be obtained by the standard "Lebesgue proce- 
dure". H 

1.4. DEFINITION. Let X be an R-valued random variable on (a, 5, P), 
% a sub-a-field of 5, and pXlu a version of the conditional distribution of 
X given %. Let us put 

whenever the right-hand integral exists. By D ( E ( X  I %)) we shall denote the set 
of points for which this integral exists. 

By the equality Y = E (X I2lJ we mean that the random variable Y is 
a version of the conditional expectation of X given %. Usually, when no 
confusion can arise, we shall simply write E(X I %) to denote a version of the 
conditional expectation of X given a .  

Definition 1.1 implies easily that D (E (X I a)) E %. By 211D(E~,la,~ we shall 
denote the restriction of the a-field 2€ to D (E(X I a)), that is 

Obviously, c %. From Definition 1.1 we also conclude that any 
version of E (X I %) is ~,,~,~xI~,~-measurable.  Let p i lg  and pglE be two versions 
of the conditional distribution of X given %. Denote by Di (E (X I a)) the do- 
main of the version of E (X I %) derived from pklM. The second part of Theo- 
rem 1.3 implies 

~ ( D , ( E ( x I ~ ~ ) ) A D ~ ( E ( x I w ) )  = 0 

and 

These equalities imply that any two versions of E(X I fl) are actually indistin- 
guishable. This is why we do not have to indicate from which version of 
pXla a version of the conditional expectation is derived. 
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1.5. PROPOSITI~N. Let E ( X  J 5!C) be a version of the conditional expectation 
of X given 8. Suppose that Y :  D (E  ( X  I 55)) + R is NID(E(xla,,-measurable and is 
almost surely equal to E ( X  I !?I). Then Y is another version of the conditional 
expectation of X given a. 

. Proof. Suppose that both E (X I a) and D (E (X ] %)} are derived from 
pxlw Let us put 

A, = ( ~ E D ( E ( x I ~ ) ) :  Y ( W )  # E ( X I W U ) )  
. . 

and define 
- - -- 

for o $ A , ,  

J[Y(,,) (31 for E Ao - 

It is easily seen that fixla i.s a version of the conditional distribution of X given 
3 and that 

Y (w)  = 1 xdfiXla (o) (x) for each w E D (E ( X  I a)). 
R 

This completes the proof. a 

1.6. LEMMA. I f  A E % and the integral j, XdP exists, then A c D (E(X  1 W). 
Proof,  The lemma follows from Theorem 1.3. rn 

1.7. LEMMA. Let X be an R-valued random variable on (a, 5,  P), and 2.l be 
a sub-a-Jield of 5. Then there exist pairwise disjoint sets Ai, Bi, C i € 3 ,  i 2 1, 
such that 

(i) U i a I A i =  { ~ E Q :  I E ( X I g ) l <  a), 
(ii) U i , , B i  = { w ~ f i :  E ( X I W )  = a), 
(iii) U i , , C i  = (oEO:  E(XI2I) = -m) ,  
(iv) integrals L i X d P  and JCiXdP exist and j,, ]XI dP < co. 
Proof.  For i 2 1 we set 

Ai  =  WE^: i -1  $ JIxldpxla(w)(x)  < i ) ,  
R 

Bi = { w ~ f i :  jxdpxlpI(m)(x)  = c ~ ,  i -1 < S X - ~ P ~ ~ ~ ( ~ ) ( X )  < i } ,  
R R 

Ci = (o E 9: S xdpxla (a) ( x )  = - oo , i - 1 $ j x+ dpxlru. (a) ( x )  < i) . 
R R 

Now it is enough to use Theorem 1.3 to see that the above sets have the desired 
properties. H 

From Lemma 1.7 we deduce 

1.8. LEMMA. Let X be an R-valued random variable on (51, 8 ,  P), and 
2.l be a sub-a-field of 8. Then there exist pairwise disjoint sets Di€ a, i 2 1, 
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such that 
(i) U i 3 , D ,  = D(EWIW), 
(ii) integrals SDtXdP exist. 

The following lemma is elementary and we shall leave it without proof. 

1.9. LEMMA. Let X and Y be R-valued random variables on (a, 8, P).  If the 
equality 

Jxdp = j Y ~ P  
A A 

holds for aach A E @  for. which both integrals exist, then X = Y a.s. 

The follbwing characterization of the conditional expectation is analogous 
to the one for integrable random variables, 

1.10. THEOREM. Let X be an R-valued random variable on ( a7  5, P), !!I 
a sub-a-field of 5, and Y an R-valued random variable on D  (E ( X  ( a)). If Y is 
a version of E (X I 2l), then 

(i) Y is !!IID(E(xls,-measurabEe, 
(ii) for each A E a, if the integral 1, XdP exists, then 1, YdP also exists and 

1 XdP = j YAP. 
A A 

On the other hand, if Y is '%ID(E(xl(u,,-measurabEe and the above equality 
holds for each A ~ 2 l ~ ~ ( ~ ( ~ ~ ~ ) )  for which the above integrals exist, then Y is 
a version of E(X 1 a). 

P r o  of. Let Y be a version of E (X I 2€). We have already observed that Y is 
~ID(E(xlan-measurable. Part (ii) follows from Theorem 1.3. 

Take an kvalued random variable Y satisfying the assumptions of the 
converse implication. Theorem 1.3 again implies 

for each A E NID(e(xlBI) such that both integrals exist. Take A E %ln(E(xlPI)) such 
that the integrals J A  YdP and j,E (X  I a) dP exist. Let Di7 i 2 1, be a sequence 
of sets whose existence has been proved in Lemma 1.8. Now we have 

A i3 1 AnDi i 3 l  AnDi i2 1 AnDi 

The second equality is a consequence of our assumptions on Y and the third 
one follows from (1). It is worth mentioning at the moment that the third 
equality is the place where we have taken advantage of the existence of sets 
Di on which integrals Li XdP exist. Now Lemma 1.9 gives Y = E (X I a) a.s. 
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Since Y is %l,~E~,lE,,-measurable, it follows from Proposition 1.5 that Y is 
a version of E (X I W). rn 

Basic properties of the conditional expectation of integrable and uninte- 
grable random variables are similar and we shall not discuss them here. How- 
ever, some properties of the conditional expectation of X in the case when both 
EX' and EX- are infinite seem to be pathological. The following theorem has 
been proved in [5] .  

1.11. THEOREM. Let {Xn),3 be a sequence of independent random variables 
with non-atomic -. distrributions and such that 

EX: = EX' = co for n 2 I .  

Then there exists an increasing sequence (a,), of sub-ci-fields of 8 ssuh that 

but 
D ( ~ x ~ + ) = ~  f o r n 2 1 a n d k 2 2 .  

2. THE MAIN RESULTS 

2.1. THEOREM. Let X be an integrable random variable on (a, 8, P), and 
 BE^. For any random variable Y satisfying 

(2) E I Y [  I,, + sup ess I Y (wjl. P (B) 
cu€BC 

< min {EX' 1,-EX- I,, E X -  I,-EX+ I,.] 

there exists ca sub-c-field Ql of 5 such that 

Proof.  Let Y be a random variabIe satisfying (2). Let us suppose that (Y,) 
is a sequence of simple random variables such that 

.- . 
lim Y, = Y a.s. on Bc 

n-r ao 

and that ('ill,) is an increasing sequence of sub-a-fields of 8 satisfying 

Putting 
a = c('illl, ' i l l2, ...) 

we get 
E(X121)=IimE(X~91n)=limY,=Ya.s .  onBc .  

n+ m n+ m 

To complete the proof we shall construct sequences ( x )  and (an). 
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Let N be an integer such that 

IY (w)l < N ass. on 3'. 

For n 2 1 and i EZ we write 

(4) = i2-", 

E p )  = Y - (up! m y ) ]  n (X a Y) n Bc, 
(5) Frl = Y - l ( ~ ~ 2 ~ ,  cry)]n{X > Y)nBc. 

We can easily notice that .. , 

Let (Y,) be a sequence of random variables given by 

It can be easily seen that 

lim Y, = Y a.s. on Bc, 
A - c O  

and 

(6) EX lE!n) < ~ly' P (EI")), EX IF!") 2 ap2 P (FI")). 

Let us also observe that 

(7) lim sup ess I Y, (w)l = sup ess I Y (w)l 
n+ m m€BC ~ E B C  

and 

@I lim EX 1,. = EY1,c. 
n-t m 

From (2), (7) and (8) it follows that there exists an integer m such that for n 2 m 
we have 

E[Y,IlBC+supessIY,(o)l.P(B) < min(EXf lB-EX-l, ,  EX-1,-EX+ I,,}. 
~ E W  

Take an arbitrary random variable Z with a non-atomic distribution on [0, 11, 
defined on (a, 8, P), and put 

B+ = B n ( Z  > 0), B-  = B n ( Z  < 0). 

Now, using the same arguments as in the proof of Lemma 2.1 in [3] we find 
real numbers 
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I 

I and 
I 0 < S F L , ~  6 ... g $1 < ... < stdm 6 1 
! 
i satisfying 

and 

We set- 
-- 

Putting 

from (9) and (10) we obtain 

I E (X I !!Irn) = Ym a.s. on 3'. 

Now we shall construct a a-field It is easy to see that 

For i ~ { - N 2 " ,  .. ., N2") and t E [tj!)),, tim)] we put 

Then by (6) we have 

T2i(t{!!!'l) 6 0. 

From (3H5) and (9) we obtain 
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Therefore there exists t\.+l)~[ti'!!),, tl")] such that 

( I 1 )  E X ' ~ $ ~ f  1)u[B+nZ- l [ r$~) , , t~7 t11)1  

= aLTt1) P(E$?+ ')u[B+ n Z - I  t$T+ll)]). 

Now for t E [t$y+ I), tlrn)] we put 

Tzi-l ( t )  = EXIE$Ty+:)uEB+,Z- l[t iT+l~,t)l-u$T?~) P (EL?? [ B +  n Z -  [t\7+11', t ) ] ) .  

By (6) we get 
-- > .  .- - 

Zi - ,  (t$"+l)) 6 0. 

From (5), (91, (1  1) and the inequality < &by + l )  we have 

So we conclude that there exists t $ y? , l )~  [ t i ! + f ) ,  ti")] such that 

-aiT?,') P(E$??:]u [B+  n Z - '  [t$?+l1, t$;?,l))]) = 0. 

Now we write 

G\:?:) = E$y_+,l)u [B+ n Z - I  [tL?+l), t&?i,l))], 

G$?+l) = E $ " + ~ ) u [ B +  n Z - I  [t!?,, t\T+l))]. 

It is easily seen that 

(12) G$y2t)n ~ \ y + l )  = 

and 

( I 3 )  G$i-1 m + l ) n ~ ( m + l )  2i GI"). 
Similarly we find sets HkTZ,1) and H$y+l) satisfying 

E X  = u P ( H )  EX~,$; .+I)  = 2 i - 1  P 
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(14) (mf l),+,@?f 1) = Hzi - I 0, 

(151 H $ ? + ~ I ~ H ~ +  1-1 1) ~ 1 " ) .  
Finally, we put 

I = a(Gi'?,"), G$Tf I), G I ~ ] \ ( G $ ~ ; ~ ' - ~ ; ) U  G$")), 

I H\??:), H'ztl), H~"' \ (H&~?~'uH&~'~)) ,  i ~ { - N 2 " ,  . . ., ~2")). 
From (12H15) we conclude that 

-- + and E(X15!l,+l)=Ym+, a.s.B: 

Continuing inductively the above construction we find an increasing sequence 
(an) of sub-w-fields of 5 satisfying (3). This completes the proof. H 

2.2. COROLLARY. Let X be an R-valered random variable on (8, 8, P)  and 
B E @ .  If 

then for each random variable Y there exists a sub-u-field 9.l of 5 such that 

Proof. Let q~ = (ql, q,) be a one-to-one mapping from N onto N x N .  
For n 2 1 we put 

It is easily observed that 

By (16) there exists a positive number kl such that 

f17) E I Y ]  lc, + sup ess I Y (o)l. P (Dl) 
m ~ C l  

< min {EXt I,, -EX- I,,, EX- ID, -EX_+ l,,), 

where Dl = Bn(lX1 < kl). Similarly we can inductively define an increasing 
sequence (k3 of real numbers such that (k,) goes to infinity and 

E 1 YI 1," + SUP ess 1 Y (o)l- P(D,) 
~ E C .  

< min{EXf lDn-EX- I,,, EX- lDn-EXf lC,), 

where D, = B n {k, - < 1x1 < k,). 
Now let us consider probability spaces (a,, g,, P,) defined in the foIlow- 

ing way: 
Qn=DnuC,,  g , , = { G , n ~ :  F E ~ ) ,  P,=P/Pn(Qn). 
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It can be easily seen that 

(18) 9,n9,=0 for n # m  

and 

(19) 

From (17) and Theorem 2.1 we conclude that for each n 3 1 there exists 
a n-field (2I, c 5, such that 

- - -- - 

I201 E{fi,,,~,,~~,,)(xl~n)=Y a-s. on Cn. 

Finally, we set 
4, 

% =  { U A,: A,E%,, n 2  1). 
n =  1 

By (19) and (20) we obtain 

E (X I ill) (LO) = Y (w) a.s. on B', 

which completes the proof. rn 

2.3. COROLLARY. Let X be an R-valued random variable on (Q, 8, P)  such 
that 

(21) EX+ =EX- = CO. 

Then for each random variable Y and arbitrary E > 0 there exist  BE^ and 
a a-field 2l c 8 such that 

Proof. Fix E > 0. It follows from (21) that there exists B E  8 such that 
P ( B )  < E and EX' 1, = EX- 1, = co. Now we apply Corollary 2.2. -a 
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