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Abstract. The purpose of this paper is to investigate the exten- 
sion problem for the category of commutative hypergroups. In fact, by 
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1. INTRODUCTION 

The concept of convolution of measures on a locally compact group has 
been generalized in various directions. One direction is based on the notion 
of generalized convo1utions of probability measures on R+ introduced by 
K. Urbanik in his pioneering work [lo] of 1964. Another direction of 
extending convolutions of measures beyond the group case culminated in the 
axiomatic setting of a hypergroup due to C. F. Dunkl, R. I. ~ e g t t ,  and 
R. Spector around 1975. 

Roughly speaking, the hypergroup convolution is a probabilistic extension 
of the group convolution. In fact, it is possible to consider random walks on 
groups in terms of Pontryagin hypergroups. For example, there exists a ran- 
dom walk on Z with transition probabilities 

which can be associated with the discrete Pontryagin hypergroup D : = (lo, I,, 
Z2, . . ., I,,, . . .) equipped with the convolution 
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Since the hypergroup dual of D is isomorphic to the compact hypergroup 
C : = [- 1, 11 equipped with the convolution 

it corresponds to a random walk on the one-dimensional torus T. But then the 
product hypergroup C x D  corresponds to a random walk on T x Z. An ap- 
plication of the present discussion is the construction of sufficiently many 
models of random walks on T x Z in terms of Pontryagin hypergroups which 
are obtained via hypergroup extensions of D by C as shown in Example 7.3. 

Let H-and L be hypergroups. Then a hypergroup K is cded  an extension 
of L by H if the sequence 

is exact, If the quotient hypergroup KJH is defined, this is equivalent to the fact 
that K/H is isomorphic to L. Here the notions of subhypergroup, quotient hyper- 
group and isomorphism between hypergroups are taken from [I], a source 
from which all the basic knowledge on hypergroups needed in the sequel will 
be taken. 

There exist several methods of constructing extensions of hypergroups 
from given ones. These methods lead to an insight into the structure of hyper- 
groups. One of the methods is based on the notion of hypergroup join as 
introduced by Jewett 171 and further developed by Dunkl and Ramirez [2], 
Fournier and Ross [3f7 Voit [12], Vrem [14], and Zeuner [16]. The join H v L 
of a compact commutative hypergroup H and a discrete commutative hyper- 
group L can be interpreted as the minimal extension of L by H. On the other 
hand, the maximal extension of L by H is the product hypergroup H x L. The 
purpose of the present discussion is to construct, by generalizing the method of 
join, sufficiently many extensions which in some sense are larger than the join 
and smaller than the product. The method of substitution introduced by Voit 
1121 is another generalization of the join which provides extensions of hyper- 
groups. The relation between the construction presented in this work and the 
substitution will be clarified in Section 6. - 

In the course of the paper, for two commutative hypergroupswH and L such 
that each connected component of L is an open set, we shall give the definition 
of a field cp : L 3 1 H H (I) c H of compact subhypergroups H (I) of H based on L, 
and show that every field q gives rise to an extension K(H, cp, L) of L by H as 
described in Theorem 3.1. Moreover, for strong hypergroups H and L such that 
each connected component of both L and the dual I? of H is an open set, we 
shall introduce the dual 4 : A 3 x H Z (x) c of the field cp and show in Theo- 
rem 4.4 that the extension K(L, 4 ,  a of H by is isomorphic to the dual of 
K (H, q,  L). The latter property implies that if both H and L are Pontryagin 
hypergroups, then K(H, cp, L) is also a Pontryagin hypergroup. By applying 
the method of fields one can also obtain Pontryagin hypergroups not arising 
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from group-theoretic objects as for example orbital actions and Gelfand pairs. 
This new aspect is illustrated in Examples 7.2 and 7.3. 

In order to investigate the structure of hypergroups it wiII be essential to 
determine all extensions K of L by H for given commutative hypergroups 
H and L. In the corresponding discussion we give a characterization of exten- 
sions obtained by a field of compact subhypergroups. Those extensions will be 
called splitting extensions. If L is a discrete commutative hypergroup, it will be 
shown in Theorem 5.1 that all splitting extensions of L by H are determined by 
the construction via fields of compact subhypergroups, It is known that in 
general there are.extensions which do not split. It remains still an open prob- 
lem to determine all extensions of commutative hypergroups, a problem that 
waits for a solution. 

In this section we recapitulate the principal notions from the basic theory 
of hypergroups by stressing those definitions and properties which are essential 
in the course of the discussion. We start with the definition of a hypergroup 
along the axiomatics established by Dunkl, Jewett, and Spector. Further ele- 
ments of the theory can be taken from the monograph [I]. 

Let K be a locally compact (Hausdo@ space. We write C(K) for the space 
of continuous complex-valued functions on K. The space C(K) has various 
distinguished subspaces, Cb (K), Co (K) ,  and C,(K), the spaces of bounded con- 
tinuous functions, those that vanish at infinity, and those with compact sup- 
port, respectively. Both Cb ( K )  and C,, (K) are topologized by the uniform norm 
ll. l lm.  We denote by Mb(K), Mb+ (K) and M 1 ( K )  the spaces of bounded mea- 
sures, non-negative bounded measures and probability measures on K, respec- 
tively. For each p E Mb ( K )  the support of p is denoted by supp (p) and the norm 
of p is given by 

11~11:= SUP {I~(f) l :  f €Cc(K), llf flm 4 1) -  

The symbol E,  stands for the Dirac measure at x E K. By 99 (K) we daote  the 
space of non-empty compact subsets of K, furnished with the Michael-Haus- 
dorE topology. 

DEFINITION. A hypergroup K : = (K, *) consists of a locally compact space 
together with an associative product (called convolection) * on Mb (K) satisfying 
the following conditions: 

(I) The space Mb (K) admits a convolution * such that (Mb  ( K ) ,  *) is a Ba- 
nach algebra with respect to the norm II-II. 

(2) The mapping (p, v )  H p * v from M l  (K) x Mb+ (K) into M$ (K) is con- 
tinuous with respect to the weak topology in Mb(K).  
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(3) For x ,  ~ E K  the convolution product E ,  * E, belongs to M'(K)  and 
supp ( E ,  * E,)  is compact. 

(4) The mapping K x K 3 ( x ,  y) ++ supp (E, * 8,) E %? (K) is continuous. 
(5) There exisits a unit element e of K such that E,  * 8, = E ,  * E, = E ,  for all 

x E K. 
(6) There exists an involutive homeomorphism x - x -  in K such that 

( E ~  * cy) - = E; * E; and e E supp ( E ,  * E,) if and only if x = y - for all x, y E K .  

A hypergroup K is said to be comrnutatiue if the convolution * in Mb (K) is 
commutati+e, and hermitian if the involution - is the identity mapping. There 
are prominent classes of commutative hypergroups arising from orbital actions 
and Gelfand pairs, and also large classes of examples constructed on Z+ and 
W+ by polynomial and Sturm-Liouville methods, respectively. The reader is 
encouraged to check the details in fl]. 

For subsets A and B of K one defines 

If x E K, we write x * A or A * x instead of (XI* A or A a: { x ) ,  respectively. 
A non-empty closed subset H of K is called a subhypergroup if 

H *H = H = H - ,  where H-  = { x  EK: X -  E H ) .  A subhypergroup H is said to 
be normal if x * H = H * x, and supernormal if x -  * H * x c H for all x E K. 

Let (K, *) and ( L ,  o) be two hypergroups with units e~ and eL,  respec- 
tively. A continuous mapping cp: K -+ L is said to be a hypergroup hornornor- 
phism if cp (eK) = eL and 

& P I X )  0 &,(,) = CP ( E X  * &,I 
whenever x ,  y EK. A hypergroup homomorphism q : K + L is said to be an 
isomorphism if cp is a homeomorphism. If z: H -+ K is an injective hypergroup 
homomorphism and p : K + L is a surjective hypergroup homomorphism such 
that z(H) = p-I (L), one says that the sequence 

is exact And that K is an extension of L by H. We note that thgpduotient K / H  
does not necessarily have a hypergroup structure in this situation. 

Here we shall recall some facts on quotient hypergroups. Let p : K -, L be 
an open and surjective hypergroup homomorphism. Then H := p-'(L) is 
a normal subhypergroup of K, K / H  : = {x * H : x E K) is a locally compact 
space with respect to the quotient topology, and the formula 

for all x, y E K defines a hypergroup structure on K / H  such that K / H  is iso- 
morphic to L, where (*) is understood as an equality of linear functionals on 
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C, (#/HI. Conversely, if H is a normal subhypergroup of K such that (*) defines 
a hypergroup structure, then the mapping x o x * H from K onto K/H is an 
open hypergroup homomorphism. This statement is especially available if H is 
a compact normal subhypergroup. Moreover, if H is supernormal in K or 
a closed subgroup in K or if H is contained in a compact subgroup in K, then 
K / H  is always a hypergroup. For details see [9] and 1131. 

Next we shall review the notion of substitution introduced by Voit in [12]. 
Let H and M be hypergroups and 7~ : H + M be a proper and open hypergroup 
homomorphism. We put Q := a(H) c M and L := M/Q. Then Voit in [12] 
established a 1iyPergroup 

by substituting the open subhypergroup Q in M to H via x which is an exten- 
sion of L by H. It is clear that the hypergroup join H V  L of a compact 
hypergroup H and a discrete hypergroup L coincides with the substitution 
S(L, (e,) -, H) when the unit e~ of 1, is replaced by H and rc : H -t {eL) c L 
is the trivial hypergroup homomorphism. Both the substitution and the join 
will serve as motivating examples for the extensions to be discussed in this 
work. 

Now we shall describe some facts from the duality theory of commutative 
hypergroups. Let K be a commutative hypergroup. For a Bore1 measurable 
function f on K and x, ~ E K  we write 

if this integraI exists. For each x E K the translation Tx on such functions f and 
on measures p is defined by 

A nonnegative measure o # 0 is called a Haar measure of K if it satisfies the 
equality T x o  = o for a1  X E  K. It is known that every commutative hyper- 
group K has a Haar measure oK which is unique up to a positive multiplicative 
constant. If K is compact, WK is finite, and hence can be normalized to .become 
a probability measure. 

A complex-valued function x on K is called a character of K if x is a bound- 
ed continuous function on K satisfying 

for all x, ~ E K .  The set k of all characters of K becomes a locally compact 
space with respect to the topology of uniform convergence on compact sets. 
One calls the dual of K. In general, the dual $? is not necessarily a hyper- 
group. If (g, 3) becomes a hypergroup with respect to a convolution F which 
is defined by the product of characters on K, then K is said to be a strong 
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A 4 
hypergroup. In this case k : = (K) is also defined as a locally compact space. If 
f is a hypergroup and is isomorphic to K, then K is called a Pontryagin 
hypergroup. 

Let Y and 9 be the symbols for the classes of strong and Pontryagin 
hypergroups, respectively. The classes 9 c Y are rather small as one can see 
from Zeuner's characterizations of Pontryagin hypergroups within the classes 
of polynomial hypergroups and Sturm-Liouville hypergroups (see [lq). Never- 
theless, there are the following hereditary properties of hypergroups in Y and 9. 

1. Let - K E Y  and let G (K) be the maximal subgroup of K .defined by 

If G ( K )  is open, then K €9. 

Consequently: 
2. If K E Y  is discrete, then K €9. 
3. If H is a compact subhypergroup of KEB, then H E B .  
4. If H is a subhypergroup of K E Y and K / H  E 9, then K E 9'. 

But: 
5. For a subhypergroup H of K such that H F 9 and K/H E 9, K 4 B even 

if in addition K E 9. 

Moreover, we quote the following facts. 
6. The class B is closed under the formation of inductive limits and pro- 

jective limits. 
7. If H, M E B ,  then S ( M ,  Q -, H ) E B .  

Proofs of the above properties 6 and 7 can be found in [11] and [4]. 

3. FIELDS OF COMPACT SUBHYPERGROUPS 

Let H = (H, *) and L = (L, 0)  be commutative hypergroups with units 
e, and e,, respectively. We assume that each connected component I > C  - of L  is an 
open set. 

DEFINITION. A family { H  (I) : I E  L} of subsets of H will be cajled a Jield of 
compact subhypergroups of H based on L and denoted by cp : L 3  1 I+ H (I) c H if 
it satisfies the following conditions: 

(1) Each H (1) is a compact subhypergroup of H  with H (eL) = { e H }  and 
H ( i - )  = H(Z) (EEL). 

(2) For I,, I,, and EEL such that IE supp ( E ~ , o  E ~ , )  we have 

where [ H  (El) * H (Z2)] is the closed hypergroup generated by H ( I , )  and HIE2). 
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(3) For E l  and E2 contained in a connected component of L, H ( l l )  = W (Iz) 
holds. 

Let w(1) denote the normalized Haar measure of H(I).  Then condition (2) 
is equivalent to 

(4) m(1 * w (1,) = w (I,) + w (I,) * w (1) whenever 1 E supp (.q10 QJ. 

Now let Q (1) denote the quotient hypergroup H/H (I), and let K denote the 
disjoint union of the hypergroups Q(2) (EEL), i.e. 

The topology of K is induced by the canonical mapping 

It is easy to deduce from conditions (1H3) that K is a locally compact space. 
The Dirac measure of an element (h * H (11, 1) E K is given as the measure 

and the convolution ;bg, in M,(H)@M,(L) is well defined by 

The set K together with the convolution *, associated with the field 
cp : L 3 E H H ( l )  c H will be denoted by K ( H ,  cp, L). We get the following 

THEOREM 3.1. Let H and L be commutative hypergroups such that every 
connected component of L is an open set, and let cp : L 3  Z I+ H (I) c H be a Jield 
of compact subhypergroups of H based on L. Then K (H, q, L) is a commutative 
hypergroup and an extension of L by H .  

Proof. Let X be the set of all connected components of L. We denote the 
connected component containing EEL by C(1). Then the induced topology of 
X defined by the mapping 

is discrete d ie  to the assumption that all connected components of ~ - & e  open. 
For C E X  put 

Q(C):= {(h*H(Z), I): ~ E H ,  IEC). 

By condition (2) of the field we observe that 

Q ( C ) = Q ( l ) x C  for ~ E C .  

Hence we see that K is the disjoint union U,,Q(C) of the locally compact 
spaces Q(C)  indexed by the discrete space X.  This implies that K is a locally 
compact space. 
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Condition (4) assures the well-definedness of the convolution *, in 
Mb ~ H ) @  Mb (0. 

We note that the unit ea: of K is (eH, e,) and that (h* H(l), 1) -  = 
(h-+H(i-) ,  1-), since W(1-)  = H(1). 

Now it is an easy task to check that K satisfies all axioms (1H6) of 
a hypergroup. We omit the details. IB 

4. DUALITY OF FIELDS AND HWEBGRO?.JPS 
- 

Let H and L be strong hypergroups such that every connected component 
of both L and the dual A of H is an open set, and let rp: L3l1+H(t) c H be 
a field of compact subhypergroups of H based on L. Then- for each 1 E L  we 
choose X(1) to be the annihiIator 

A ( H ,  H(Z)):= ( x E H :  ~ ( x )  = 1 for all x ~ H ( 1 ) )  

of HIE) in the dual A of W. 
LEMMA 4.1. The family (X (1) c H: I E L} satiSjies the following condi- 

tions: 
(I) Each X(1) is an open subhypergroup of H with the properties that 

X (e,) = H and X ( I - )  = X ( I ) .  
(2) For E l ,  E 2 ,  and 1 E L such that 1 E supp (E~ ,o  ~ ~ 3 ,  X (11) n X ( I 2 )  c X ( I )  

holds. 
(3) For Z1 and Z2 contained in a connected component of L, X(1,) = X(12) 

holds. 

Proof. Statements (I), (2), and (3) on X ( I )  follow naturally from con- 
ditions (I), (2), and (3) on H(I), respectively. We omit the details. w 

Next, for each x E A set Y (x )  = ( IE  L : x E X  (Z)). 

LEMMA 4.2. The family ( Y  (x) c L : x E H )  satisJies the following condi- 
tions : 

(1) Each Y ( x )  is an open subhypergroup of L with Y ( e k )  = L and 
,,_ - -  

y(X-) = Yk). 
(2) For X I ,  Xz , and x E A such that x E SUPP (EX ,  * EX,), Y ( X I )  f, Y ( ~ 2 )  C y (XI 

holds. 
(3) For and x2 contained in a connected component of H ,  Y (xi)  = Y ( X 2 )  

hoIds. 

Proof. (1) We denote by C(l)  the connected component of L containing 
I E  L. Then for each Z E Y (y) we see that C (1)  c Y (X) by (3) of Lemma 4.1. Hence 
the set Y (x)  can be written as 
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which means that Y (11) is an open set because all C(I) are open by the as- 
sumption on L. For IE Y ( x )  * Y ( x )  we can take I , ,  E2 E Y ( x )  such that 
ZE supp ( E ~ ~  * E ~ ~ ) .  The conditions 1, E Y (2) and E2 E Y ( x )  imply that x E X ( E l )  and 
x E X  ( I a ) .  By statement (2) of Lemma 4.1 we see that x E X ( I ) ,  i.e. 1 E Y (x) .  Hence 
we obtain Y ( x )  * Y k) = Y (1). The property Y ( X I -  = Y ( x )  follows directly 
from X(1-) = X(1). Therefore Y ( x )  is seen to be an open subhypergroup of L. 
The conditions Y (eh) = L and Y ( 2 - )  = Y &) are just translations of the facts 
that ea E X(I)  and X ( I ) -  = X (I) for all 1 EL,  respectively. 

(2) Take 1 E Y ( x , )  n Y (xz) for x l ,  x2 s A. Then we see that x ,  , x2 EX ( 1 )  by 
the definition of Y (x).  Since X(I) is a subhypergroup of fi by (1) oflemma 4.1, 
for x E fi such that x E supp * E ~ , )  we see that x E X (I), i.e. I E Y (x). Hence we 
proved that Y (xi) n Y (X2) c Y (x) .  

(3) Let and X ,  be in a connected component C of A. Take E E  Y (x,) ,  
then xi E X  (1). Since X ( I )  is open and closed, we see that C c X ( I ) .  Hence 
xz  E X  (l), i.e. I E Y (xz). This fact implies that Y (11 , )  = Y (x2) .  H 

Finally, for each EA we introduce Zh) = A (i, Y (11)) and obtain the 
following 

PROPOSITION 4.3. The family ( Z h )  c f,: ~ ~ f i )  gives rise to a  Jield 4:  
H 3 x h Z ( x )  c of compixt subhypergroups of .f based on I?. 

P r o  of. Since Y ( x )  is an open subhypergroup of the strong hypergroup L, 
the annihilator Z ( X )  of Y h )  in is known to be a compact subhypergroup of 

which is isomorphic to the dual of the discrete commutative hypergroup 
L/Y (X). Conditions (I), (2), and (3) of a field on Z ( x )  are easily obtained from 
the respective facts ( I ) ,  (2), and (3) on Y ( x )  described in Lemma 4.2. We omit 
the details. 

We call the field 
4:  f i 3 X ~ ~ ( x )  c 

the dual Jield of cp : L 3  E H  H(1) c H.  Associated with the dual field 4 one can 
construct an extension K ( L ,  4, H) of by $ We arrive at the following 

. - 
duality theorem. 

> -  - -  

THEOREM 4.4. Let cp : L 3  1 H H ( I )  c H be a Jield of compact subhyper- 
groups of a strong hypergroup H based on a strong hypergroup L such that all 
connected components of L and are open sets. Then 

( I )  K ( L ,  @,a z K(H, 9, L). 
Moreover, if both H and L are Pontryagin hypergroups, then K(H, q,  L) is 

also a Pontryagin hypergroup and 
(2) I?@, 4, G K(H, rp, L). 

Proof. (1) Let w ( l )  and o ( ~ )  denote the normalized Haar measures of 
H ( 1 )  and Z (x), respectively. We note that x (o ( l ) )  = w (X) ( E ~ )  = I if and only if 
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x E X (I), which is equivalent to 1 E Y 0. Otherwise we see that x (o (1)) = 

~ ( X ) ( E ~ )  = 0. Applying this formula it is easy to check that each element of 
K (f,, 4, H )  defines a character of K ( H ,  q, L). We show the converse. Take 
a character z of K(H, q, L). Then there exist x E If and p~ such that 

Hence we obtain 
('%I * Ii)@&t) = p (€3 W Ix)  (~11  ( ~ h ) .  

This implies .that - 

= (p*Z(1I), x ) E K ( ~ ,  @,@). 

(2) For Pontryagin hypergroups H and L we see that the dual of the dual 
field 4 coincides with the original field q so that the formula (2) follows 
from (1). ia 

5. SPLITTING EXTENSIONS 

Let H = [H, +) and L = (L, 0) be commutative hypergroups, and let K be 
an extension of L by H, i.e., the sequence 

is exact. We say that the extension K of L by H splits or that K is a splitting 
extension if K satisfies the following conditions: 

There exists a proper and continuous injective mapping 4 from L into 
K such that: 

(I) 4 (eL) = e~ and 4 ( I - )  = I$ (1)-. 

(2) The sets H ( I )  = { h  E H : E~ * = E ~ ( ~ ) )  are compact subhypergroups 
of H with H(E-) = H(I). 

(3) E ~ I I ~ ~  * E+(I~) = 4 (cI1 0 E ~ J  * w ( I 1 )  * w (12) for I l  and I ,  EL, where w (1) de- 
notes the normalized Haar measure of H(1). - 

(4) o ( E l )  * w ( l , )  * w ( E )  = w (Il) * co (4) for I , ,  I,, and I E&= - such that 
E SUPP (811 0 &lz). 

(5) K  = {h*$( l ) :  ~ E H  and  EL) and H n + ( L )  = {e,). 

The subsequent result provides a characterization of extensions associated 
with a field of hypergroups as splitting extensions. 

THEOREM 5.1. Let H and L be commutative hypergroups such that every 
connected component of L is an open set. Then the extension K(H,  q, L) as- 
sociated with a field c p :  L3 E w H ( l )  c H splits. Conversely, if L  is a discrete 
commutative hypergroup, then all splitting extensions of L by H are obtained in 
this way. 
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Proof. Let 4 be a mapping from L into K ( H ,  cp, L) defined by 

4 ( 1 )  = H ( 1 ,  1 for all 1 E L .  

Then the former part of the statement is clear. We only show the latter part. 
Let K be a splitting extension of L by H, and let H(1) be the compact subhyper- 
group of H for I E  L given by 

H ( 1 )  = ( h  E H : E,, * &$(I] = E @ ( ~ ) } .  

For each h~  H put 

H (h, 1) = (k E H : Ek * Eh * Eg(lj = EJ, * & g I 1 ) ] .  
- 

We show that H ( h ,  I )  = N(I)  for all h g H .  Since H ( h ,  I )  3 H(1) is clear, it 
remains to show the inverse inclusion. Take k~ H ( h ,  2). Then we have 

Ek * Eh * E@(l )  * & i l l  = Eh * q i 5 ( 1 j  * &GI). 
By the condition 

&g(l) * &Go = 4 ( ~ l *  € 1  -1 c!.lu) 
we obtain 

H n  supp (E* * E + ( ~ )  * E&)) = h * H ( I ) .  

From this equality we see that k satisfies 

which implies that k E H(1). Hence we have checked that H (h, 1 )  = H ( 1 )  for a11 
~ E H .  

If L is a discrete commutative hypergroup, a family { H  (I) c H : I E  L )  gives 
rise to a field cp: L 3 1 ~ H ( l )  c H, and one can construct 

K(Hy  q, L ) =  ( ( h * H ( l ) ,  1): ~ E H ,  I E L ) .  
The mapping 

~: K(H, q, L ) 3 ( h * H ( l ) ,  I ) H ~ * # ( ~ ) E K  

is well defined by the above argument, and it is easy to see that $ is a hyper- 
group isomorphism from K ( H ,  rp, L) onto K. 

6. RELATIONSHIP BETWEEN SUBSTITUTION AND EXTENSIONS 

Let H  be a compact commutative hypergroup, and let L be a discrete 
commutative hypergroup. Then the hypergroup join H v L  is canonically de- 
fined and appears as a typical extension of H by L. In [12], Voit developed the 
notion of substitution as a generalization of the hypergroup join. From the 
point of view of extension of hypergroups one can reformulate the notion of 
substitution in the following way. 

For two exact sequences 

l + W + H + Q + l  and l + Q + M + L + I  
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the substitution K = S ( M ,  Q + H) = (Hu (M\Q), 0) is defined. K is called the 
hypergroup obtained by substitution Q in M by N via R :  H + Q c M ,  and it 
satisfies the exact sequences 

l + j y + ~ + L - , l  and I-+ W + K + M - + l .  

This extension K of L by H strongly depends on M. Our method of 
constructing the extensions associated with a field is dserent from the notion 
of substitution. However, there is some relationship between substitution and 
extension as shown below. - 

Case 1: If M is given as K ( Q ,  $, L) for some field $: L ~ I I + Q ( ~ )  c Q, 
the associated field q : L 3  1 H H (I) c H is canonically defined by 
H (2) = x-I (Q (I)), and we see that 

Case 2. For a field cp : L 3 1 I+ H (1) c N of compact subhypergroups of 
H based on L, take the common compact subhypergroup W of N (I) for all 1 EL 
except E = e ~ ,  for example, 

W =  n ~ ( 1 ) .  
l f L \ { e ~ l  

Setting Q = H/ W and Q ( I )  = H(I)/W c Q we obtain a field $ : L 3 Iw 
Q(1) c Q.  In this case we can take M as K ( Q ,  $, L), and we see that 

If for each I E L except for I = e ~ ,  H (I) is equal to the fixed compact subhyper- 
group W of H, then 

Remark. Here we note the triviality of substitution. If W = (e,}, we see 
that Q = H and S ( M ,  Q  + H) = M. This is the trivial substitution. For 
HES(M, Q - H) such that k $ H ,  

always holds. Therefore, if the condition 

H n supp (ck * ck - ) = (eH} 

holds for some k~ S ( M ,  Q -, H) with k 4 H, the substitution must be trivial. 
If for an extension K of L by H the condition 

H n supp (ck * &k - ) = ( e K )  

holds for some k EX with k # H ,  K does not arise from non-trivial substitution. 
Consequently, K ( H ,  rp, L) does not arise from non-trivial substitution if 
H(1) = {e,) for some 1 E L  (I # e,). We note that this situation often occurs as 
will be shown in the next section. 



Extensions of Pontryagin hypergroups 257 

7. APPLICATIONS A N D  EXAMPLES 

In the category of commutative hypergroups there are only few Pontrya- 
gin hypergroups which are not of group-theoretic origin in the sense that they 
do not arise from orbital actions and Gelfand pairs. Applying the method of 
fields of hypergroups one can provide many new examples of Pontryagin hy- 
pergroups. These examples show the strength of the method of fields of hyper- 
groups and indicate the possibility of further investigations on the structure of 
commutative hypergroups. 

Before describing our examples we prepare some well-known simple facts. 
Let A be the smallest non-trivial hypergroup with 

where lo is the unit, 0 < p < 1, and we write l i Z j  instead of E~~ * c l j .  
Let B be Z, xZ,, namely, 

Let C denote the simplest compact hypergroup which is given as an or- 
bital hypergroup of the one-dimensional torus T by the action of Z2, i.e. 

Finally, let D denote the simplest discrete hypergroup which arises from 
a random walk on Z, i.e. 

Here we note that A and B are self-dual and r C, e r D. These facts 
imply that A, B, C, and D are all Pontryagin hypergroups. - 

For a natural number a, D(a) and F(a) denote the subhypergroups of 
D and C which are defined by 

D(a)=(E,: n = 0 ,  1 , 2  ,.. .I 
and 

F (a) = (cos(2kn/a): k = 0, 1,2, . . ., a- l), 
respectively. 

Observe that 

We denote the quotient hypergroup C/F(a) by C(a) and write 



258 H. Heyer and S. Kawakami 

EXAMPLE 7.1. Let H be a compact Pontryagin hypergroup and let 
L = A = {lo, E l ) .  Take any closed subhypergroup W of H and denote H/W 
by Q. Then we obtain a held q : L3 1 w H (I) c H, where H ( I o )  = {e,} 
and H(E1) = W This field cp gives rise to an extension of L by H of the 
form 

K ( H ,  9, L ) = S ( Q x L y  Q+H).  

If we choose H = C and W = F(a),  we get the concrete model 

with a parameter a from the set of natural numbers. 

EXAMPLE 7.2. Let W, and W, be two compact subhypergroups of a com- 
pact Pontryagin hypergroup H and let L = B = (Io, 11, I z ,  4). When we put 

we obtain a field cp : L 3 I H H(1) c H and an extension K (H, 50, L) of L 
by H. With the choice H = C and W, = P{a), Wz = F (b) we see that 
[W, + W2] = F (c) for a natural number c which is the least common multiple of 
a  and b. Hence, we arrive at an extension K = K ( a ,  b) which is concretely 
represented as 

K(a, b) = ([- 1, I] u [cos(x/a), I] u [cos (n/b), I] v [cos(n/c), I], *). 

In a similar way one can get the extensions K, = K(H, cp,, L,) for 
L , , = B x B x  ... xBandKm=K(H,cp , ,Lm)wi thL,=BxBx  ... x B x  ... 
We note that L,  is the inductive limit of the sequence {L,:  n = 1, 2, . . .) and 
K, is the inductive limit of the sequence {K,: n = 1,  2, ...). 

EXAMPLE 7.3. Let Wf and W2 be two compact subhypergroups of a com- 
pact Pontryagin hypergroup H, and let L = D = (lo, Z,, Z,, . . ., l,,, . . .). Putting 

H (Ed = W2, H(14) = W1, H(I,) = [w * K1l H(hj) = W1 n W2 
- .  

,m -- 
and ' 

H(l,)=H(Ik) (n = k(mod 6), n # O  and k =  1, 2, 3 , 4 ,  5 , 6 )  

we obtain a field 9: L 3 1 W H  (1) c H and an extension K (H, q, L) of L by H. 
If H = C, Wf = P(a), and W, = F(b), we see that, as above, [Wl * W,] = F(c)  
for a natural number c which is the least common multiple of a and b, and 
Wl n W, = P (d) for a natural number d which is the greatest common divisor 
of a and b. Thus we have an extension K = K (a, b), where a and b are natural 
numbers. 

It is easy to see that the dual hypergroup of K(a, b) can be concretely 
described by the dual field $3 : a 3 x H Z ('y) c z. We give the description in the 
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case when l < d < a < b < c :  

H = ( X ~ , X ~ , X ~  ,..., xn ,... ) E D  and f , = ~ = ( [ - l , l ] , * ) ,  

Z(X.) = F (1) for n = 0 (mod c), 

Z(x.1 = F (2) for n = 0 (mod a) except n = 0 (mod b), 

Z(X,,) = F (3) for n = 0 (mod b) except n = 0 (mod a), 

Z(x.1 = F (6) for n = 0 (mod d)  except n = 0 (mod a) and n = O (mod b), 

Z(X.) = e -for any other n. - 

We list further properties of the Pontryagin hypergroup K(u ,  b): 
(1) K (al, bl) r K(aZ, b2) if and only if a, = a, and b1 = b2. 
(2) K(1, 1) E C x D .  
(3) K ( a ,  a) = s ( C ( a ) x ~ ,  C(a)+C). 
(4) K ( a ,  b) is self-dual if and only if a = 2 and b = 3. 
(5 )  For the greatest common divisor d of a and b, 

K(a,b)=S(M(d),C(d)+C) for M ( d ) = K ( C ( d ) , $ , D ) .  

(6) If a and b are coprime, Kta, b) does not arise from non-trivial sub- 
stitution. 

This follows from the facts that H(l , )  = F(1) = (e,) and 

H n  sup~((~e,@~,J- *q (&e,@&IJ) = {e,> 
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